-} hetgate

Product Manual
TNSR v21.03

© Copyright 2025 Rubicon Communications LLC

Aug 08, 2025

CONTENTS

Introduction 2
1.1 TNSR Secure Networking e 2
1.2 TNSR Architecture o . e e e e e e e e e 2
1.3 Technology Stack L . e e 4
1.4 Basic ASSUMPLONS . . . v v v vt o e 5
Supported Platforms 6
Installation 7
3.1 Hardware Installation oL e e e e e e e e 11
Default Behavior 13
4.1 Default Accounts and Passwords L. e e e 13
4.2 Default TNSR Permissions e e e e e 14
4.3 Default Allowed Traffic e 14
4.4 Default Namespaces v v v v v v vt e 15
4.5 Default Services oL e e e 15
4.6 Default Routing and VRF Behavior 15
Zero-to-Ping 16
5.1 FirstLogin L e e e e e e e e 16
5.2 Interface Configuration L e e e 17
5.3 TNSRInterfaces o i 0 e e e e e e e 19
54 NAT . o 21
55 DHCPServer o e e 22
5.6 DNSServer. e 22
57 PIng . . o e e e e 23
5.8 Save the TNSR Configuration e 24
59 NextSteps o o i e 25
Command Line Basics 26
6.1 Workinginthe TNSRCLI 0 e 26
6.2 FindingHelp e 27
6.3 Starting TNSR L . e 28
6.4 Enteringthe TNSR CLI e e e e e e e e e 28
6.5 Configuration Database e e e e 30
6.6 Configuration Mode e 33
6.7 Configuration Backups L e 36
6.8 Viewing Status Information e 37
6.9 Networking Namespaces o v v i i v et e e e e e e e e e e e e e 38
6.10 Service Control L e e 39

10

11

12

13

14

6.11 Diagnostic Utilities 0 o e e e e e e e e e
6.12 Basic System Information L e e e
6.13 Rebootingthe Router e

Basic Configuration

7.1 Setup Interfaces L e e e e e e
7.2 Disable Host OS NICs for TNSR o e
7.3 Setup NICsin Dataplane e e e e e
7.4 Setup QAT Compatible Hardware
7.5 Remove TNSRNIC for Host Use et et
7.6 Secure Shell (SSH) Server e e e e e

Updates and Packages

8.1 GenerateaKey Pair e e e e e
8.2 Generate a Certificate Signing Request e
8.3 Submit the Certificate Signing Request L
8.4 Retrieve the signed certificate L L e
8.5 Imstall the certificate L L e e e
8.6 Package Management L. e e e e e e e
8.7 Updating TNSR o e e e e e e

Interfaces

9.1 LocateInterfaces o o e e e e e e e e e e e
9.2 Configure Interfaces i i e e e e e e e e e e
9.3 TypesofInterfaces L L e e e e e e

Static Routing

10.1 Virtual Routing and Forwarding e
10.2 Neighbors o e e e e e e e
10.3 Viewing Routes o L e e e e e e e
10.4 Managing Routes L e e e
10.5 Default Route o o o e e e

Dynamic Routing

11.1 Dynamic Routing Manager. e e e
11.2 Border Gateway Protocol o e e e e e e e
11.3 Open Shortest Path First v2 (OSPF) e
11.4 Open Shortest Path First v3 (OSPF6) et
11.5 Routing Information Protocol (RIP)
11.6 Dynamic Routing Protocol Lists

Virtual Router Redundancy Protocol

12.1 VRRP Compatibility o o e e e e e e
122 VRRP Example e e e e e
12.3 VRRP Configuration o 0 i e e e e e e e e e e e e e
12.4 VRRP Status o e e e e e e e e

Access Lists

13.1 Standard ACLS o e e e
132 MACIP ACLS . . . o e e e e e e e e e e e e e e e
13.3 Viewing ACL and MACIP Information
13.4 ACL and NAT Interaction 0 i i e e e e e e e e e e e
13.5 Host ACLs o e e e e e e e

IPsec

46
46
47
48
51
56
58

60
61
61
63
64
65
66
67

105
105
107
108
110
112

113
113
124
143
160
171
179

180
181
182
186
188

190
190
193
194
195
196

201

15

16

17

18

19

20

21

22

23

14.1 Required Information. e e e e e e e e e e
14.2 TPsec Example e e e e e e e e
14.3 IPsec Configuration i i e e e
14.4 TIPsec Status Information o
14.5 TIPsec Cryptographic Acceleration o e

Network Address Translation

15.1 NAT Modes o o e e e e
152 NAT Global Options i e e e e e
15.3 NAT Pool Addresses o v i i e e e e e e e e e e e e e e
154 Outbound NAT e e
15.5 Static NAT e e e e
15.6 Dual-Stack Lite e e e e e e
157 NAT Status o e e e e e e e e e
15.8 NATExamples o oo e e e e e e e e e e

MAP (Mapping of Address and Port)

16.1 MAP Configuration e e e
16.2 MAPParameters o v v e
16.3 MAPExample e e e e e e e
16,4 MAPTYPES . . . o v o o e e e e e e e e e e e e e

Dynamic Host Configuration Protocol

17.1 DHCP Configurationt i i i e e e e e e e e e e e e e e e e e
172 DHCPLOZZING o o e e e e e e e e e e e e e e e e e e e
17.3 DHCP Service Control and Status 0 o i e e e e e
17.4 DHCP Service Example o e e e e e

DNS Resolver

18.1 DNS Resolver Configuration i e e e e e e e
18.2 DNS Resolver Service Control and Status
18.3 DNS Resolver Examples o 0 e e e e e e e e e e e

Network Time Protocol

19.1 NTP Configuration it e e e e e e e e
19.2 NTP Service Control and Status 0 e e e e e e e e
19.3 NTP Configuration Examples o e e e e e e
19.4 NTP Best Practices o o i e e e e e e e e e e

Link Layer Discovery Protocol
20.1 Configuring the LLDP Service 0 e
20.2 LLDP Status o i e e e e e e e e e e e

Public Key Infrastructure

21.1 Key Management i i e
21.2 Certificate Signing Request Management
21.3 Certificate Management e e e e e e e e e e e
21.4 Certificate Authority Management L

Bidirectional Forwarding Detection

22.1 BFED Sessions. o o i e e e e e e
22.2 BFD Session Authentication L e e e e e e e e e e
223 BEDExample e e e e e e e e e e e

User Management

236
236
239
240
242

243
243
250
252
253

255
255
262
264

265
265
269
271
272

273
273
274

275
275
277
279
281

285
285
287
289

293

24

25

26

27

28

29

23.1 User Configurationo ot i e e e e e e e
23.2 Authentication Methods

NETCONF Access Control Model (NACM)

24.1 NACMExample e e e e
24.2 View NACM Configuration i v v i it e i e et e e e e e e e e e
243 Enableor Disable NACM e
24.4 NACM Default Policy Actions e
24.5 NACM Username Mapping o o vt i it e it e e e e e e e e e
24.6 NACM GIoups v v v v it it e e e e e e e e e e e e e e e
247 NACMRule Lists o e
248 NACMRules oo
249 NACM Rule Processing Order i e
24.10 Regaining Access if Locked Out by NACM i
2411 NACM Defaults o o o e

HTTP Server

25.1 HTTP Server Configuration ittt e ettt
252 HTTPS Encryption o o o o e e e e e e e e e e
25.3 Authentication L e e e e e
25.4 RESTCONF Server ittt i e e e e e e e e e e s e e e

Monitoring

26.1 Monitoring Interfaces L e e e e e e e e
26.2 Simple Network Management Protocol L. ...
26.3 Prometheus Exporter
204 TPFIX EXPOIter o v it it it e e e e e e e e e e e e

TNSR Configuration Example Recipes

27.1 RESTCONEF Service Setup with Certificate-Based Authenticationand NACM
27.2 TNSR IPsec Hub for pfSense e
27.3 Edge Router Speaking eBGP with Static Redistribution for IPv4 AndIPv6
27.4 Service Provider Route Reflectors and Client for iBGPIPv4
27.5 LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver)
27.6 Using Access Control Lists (ACLS) o o o i i i e e e e e e e e e
277 Inter-VLAN Routing L e e e e
27.8 GREERSPAN Example Use Case oo it i ittt e e et
27.9 OSPF Router with Multiple Areas and Summarization
27.10 TNSR Remote Office With Existing IPsec Hub
27.11 VRRP with Outside NAT o o e e

Advanced Configuration

28.1 Dataplane Configuration o L e e e e e e e e e e e
28.2 Host Memory Management Configuration L ...
283 TP Reassembly L e e e e e

Troubleshooting

29.1 Services do not receive traffic on an interface with NAT enabled
29.2 NAT session limits / “Create NAT session failed” error
29.3 ACL rules do not match NAT trafficasexpected
29.4 Some Traffic to the host OS management interface is dropped
29.5 Unrecognized routes in aroutingtable L Lo
29.6 OSPF Neighbors Stuck in ExStart State o
29.7 Large packets fail topassover IPsec L
29.8 Associating TNSR Interfaces with Shell Interfaces

295
295
296
298
298
298
299
299
300
302
303
304

305
305
306
307
308

309
309
313
318
320

323
323
333
353
358
366
369
372
376
378
382
398

402
402
410
411

414
414
414
414
414
415
415
415
415

30

29.9 Troubleshooting DHCP Client ettt it e e e 416

29.10 Locked out by NACM Rules o i e e e e e e e e 416
29.11 How to gain access to the oot aCCOUNt v v v v v i v it e e e e e e e e e e 417
29.12 IPsec packets are dropped or fail to pass with QAT enabled 417
29.13 Console DMA / PTE Read access Error Messages 417
29.14 Console Messages Obscure Prompts o e 417
29.15 Console Terminal Size e e e 417
29.16 Dataplane Packet Tracing o o 0 i e e e e e e e e 418
29.17 Capturing Packets on Dataplane Interfaces 419
29.18 RESTCONF APLEITOrs o oo it e i e e e e e e e e e e e e e e e e e e e 420
29.19 Diagnosing Service Issueso 421
29.20 Debugging TNSR o o e e 421
29.21 Diagnostic Information for Support L L L e e 423
Commands 424
30.1 ModeList. 424
30.2 Master Mode Commands e e e e e e 426
30.3 ConfigMode Commands e e e 427
30.4 Show Commands in Both Master and Config Modes 431
30.5 AccessControl List Modes o e 432
30,6 MACIPACL Mode. oottt e e e e 433
307 GREMode e 434
30.8 HTTPmode e e e e e e 435
309 Interface Mode L e e e e e e e e 435
30.10 Loopback Mode e 437
30.11 Bridge Mode e e e e 437
30.12 NAT Commands in Configure Mode i i et e e e 438
30.13 DS-Lite Commands in Configure Mode o e 438
3014 Tap Mode oo e e e e e e e e 438
30,15 BFDKey Mode o o e e e 439
30.16 BED Mode 439
30.17 Host Interface Mode e e e 440
30.18 IPsec Tunnel Mode oL e e e 441
30,19 IKEmode o L e e e 441
30.20 IKE Peer Authentication Mode Lo e e 442
30.21 IKE Peer Authentication Round Mode L 442
3022 IKEChild SAMode e 443
30.23 IKE Child SA Proposal Mode o . e e e e e e 443
30.24 IKE Peer Identity Mode o e e e e e e 444
30.25 IKE Proposal Mode L. 444
3026 MapMode e e 445
30.27 Map Parameters Mode e e 446
3028 memif Mode e e e 446
30.29 Dynamic Routing Access List Mode e e 447
30.30 Dynamic Routing Prefix List Mode 447
30.31 Dynamic Routing Route MapMode 448
30.32 Dynamic Routing BGPMode 449
30.33 Dynamic Routing BGP Server Mode e 450
30.34 Dynamic Routing BGP Neighbor Mode 451
30.35 Dynamic Routing BGP Address Family Mode 452
30.36 Dynamic Routing BGP Address Family NeighborMode 453
30.37 Dynamic Routing BGP Community List Mode 454
30.38 Dynamic Routing BGP ASPathMode, 455
30.39 Dynamic Routing OSPFMode e e 455

31

32

30.40 Dynamic Routing OSPF Server Mode it
30.41 Dynamic Routing OSPF Interface Mode i
30.42 Dynamic Routing OSPF AreaMode e
30.43 Dynamic Routing OSPF6 Mode e
30.44 Dynamic Routing OSPF6 Server Mode
30.45 Dynamic Routing OSPF6 Interface Mode
30.46 Dynamic Routing OSPF6 AreaMode i i e e e
30.47 Dynamic Routing RIPMode e e e
30.48 Dynamic Routing RIP Server Mode
30.49 Dynamic Routing RIP Interface Mode Lo oL,
30.50 Dynamic Routing RIP Key ChainMode
30.51 Dynamic Routing Manager Mode i e e e
30.52 Route Table Mode L e e
30.53 Route Table Next HopMode e
30.54 SPAN Mode e e
30.55 VXLANMode o oo e e
30.56 User Authentication Configuration Mode
30.57 NTP Configuration Mode o 0 i e e e e e e e e
30.58 NTP Restrict Mode L L e e e
30.59 NTP Upstream Server Mode e
30.60 NACM Group Mode o o e e e e e e
30.61 NACM Rule-list Mode e
30.62 NACMRule Mode e e
30.63 DHCP IPv4 Server ConfigMode i it e e e e
30.64 DHCP4 Subnetd Mode e
30.65 DHCP4 Subnetd Pool Mode o o o e e e
30.66 DHCP4 Subnet4 Reservation Mode e
30.67 Kea DHCP4, Subnet4, Pool, or Reservation OptionMode
30.68 Kea DHCP4 Option Definition Mode ittt e e
30.69 DHCP4 Log Mode o i i e e e e e e e e e e e e
30.70 DHCP4 Log Output Mode oo e e e e e e e e e e e
30.71 Unbound Server Mode e
30.72 Unbound Forward-Zone Mode e
30.73 Subif Mode e e e
3074 Bond Mode L e e e e
3075 Host ACL Mode o o e e e e e e e e e e
30.76 Host ACL Rule Mode o e e e e e e e
3077 VRRP Mode e e e
30.78 DNS Resolver Mode o e e
30.79 TIPFIX Exporter Mode i o e e e e e e e e e e e e e

API Endpoints
31.1 YANGDataModels e e e e e
31.2 RESTCONF APL e e e e s s s s

Netgate TNSR Releases

32.1 TNSR 21.03.1 Release NOtes o i i i i e e e e e e e e e e e e e e e
32.2 TNSR21.03Release NOtES v vt v i e
32.3 TNSR 20.10.1 Release Notes i i i e e e e e e e e e e e
32.4 TNSR 20.10Release Notes o o i i it e e e e e e e e e e e e e e e
32.5 TNSR 20.08 Release NOteS v v i e e e e e e e e e e e
32.6 TNSR 20.02.2 Release NOtes v i i i it e e e e e e e e e e e e e
32,7 TNSR 20.02.1 Release NOtes o i v i i e e e e e e e e e e e e
32.8 TNSR 20.02 Release NOtes v i i i e e e e e e e e e e e e e e e e e

479
479
479

480
480
488
497
503
512
528
528
529

vi

32.9 TNSR 19.12 Release NOteS o . v v i e e e e e e e e e e e e e e e
32.10 TNSR 19.08 Release NOteS o . v i v i e e e e e e e e e e e e e e e e e
32.11 TNSR 19.05 Release NOtes o v i v i o e e e e e e e e e e e e e e e e
32.12 TNSR 19.02.1 Release Notes i i i e e e e e e e e e e e e e e e e
32.13 TNSR 19.02 Release NOtes o it i i e e e e e e e e e e e e e e e e e e
32.14 TNSR 18.11 Release NOtes o o v i e e e e e e e e e s s e
32.15 TNSR 18.08 Release NOtes v i v i o e e e e e e e e e e e e e e e
32.16 TNSR 18.05 Release NOteS o v i v i e e e e e e e e e e e e e e e e e
32.17 TNSR O.1.0Release Notes i i i i e e e e e e e e e e e e e e e

33 Licensing
33.1 Apache 2.0 LAcense. o o i e e e e e e e e
332 BSD 2-Clause License o i i i i i e e e e e e e e e e e e e
33.3 BSD3-Clause License e e e e e e e
334 CentOS EULA License 0 i i i e e e e e e e e e e e e e e e s e
335 GPLV2.0OLIcense o v i i e e e e e e e e e e
33.6 LGPLV2.1LICense v o v i i e e e e e e e e e e e e e e e e e
337 MITLIcense o v i e i e e e e e e e e e e e e e e e e
33.8 Mozilla Public License 2.0 (MPL-2.0) e
339 NetSNMPLIcense o o i i e e e e e e e e e e e e e e e
3310 NTP License o o v o e e e e e e e e e e e e
33.11 Joint OpenSSL and SSLeay License i ittt e e

34 Glossary of Terms

Index

582

584
585
589
589
590
590
597
607
607
615
621
622

625

628

vii

Product Manual TNSR v21.03

This documentation has all the details needed to fully configure TNSR, from the basics all the way to the complexities
of implementing different applications. For quotes, updates, and more information about TNSR, please visit tnsr.com
or contact TNSR sales.

© Copyright 2025 Rubicon Communications LLC

https://www.tnsr.com/
https://www.tnsr.com/contact-sales

CHAPTER
ONE

INTRODUCTION

TNSR is an open-source based packet processing platform that delivers superior secure networking solution perfor-
mance, manageability, and services flexibility. TNSR can scale packet processing from 1 to 10 to 100 Gbps, even 1
Tbps and beyond on commercial-off-the-shelf (COTS) hardware - enabling routing, firewall, VPN and other secure
networking applications to be delivered for a fraction of the cost of legacy brands. TNSR features a RESTCONF API
- enabling multiple instances to be orchestration managed - as well as a CLI for single instance management.

1.1 TNSR Secure Networking

TNSR is a full-featured software solution designed to provide secure networking from 1 Gbps to 400 Gbps. TNSR
is a viable option for users with moderate bandwidth needs to the demanding requirements of enterprise and service
providers.

Each licensed instance comes bundled with TNSR Technical Assistance Center (TAC) from the 24/7 world-wide team
of support engineers at Netgate.

Visit tnsr.com for details on TNSR availability and pricing.

1.2 TNSR Architecture

TNSR runs on a Linux host operating system. Initial configuration of TNSR includes installing associated services
and configuring network interfaces. It is important to note that network interfaces can be managed by the host OS or
by TNSR, but not by both. In other words, once a network interface is assigned to TNSR, it is no longer available - or
even visible - to the host OS.

A little background. TNSR is the result of Netgate development, using many open source technologies to create a
product that can be supported and easily implemented in production environments.

Without TNSR, Linux systems use drivers to plumb the connections from hardware interfaces (NICs) to the OS kernel.
The Linux kernel then handles all I/O between these NICs. The kernel also handles all other I/O tasks, as well as
memory and process management.

https://www.tnsr.com/support
https://www.tnsr.com/subscriptions

Product Manual TNSR v21.03

Linux Host

User Space

Kermel

_Z25%0 reEv £ ras .

L 2IN
& JIN
U OIN

In high I/O situations, the kernel can be tasked with servicing millions of requests per second. TNSR uses two open
source technologies to simplify this problem and service terabits of data in user space. Data Plane Development Kit
(DPDK) bypasses the kernel, delivering network traffic directly to user space, and and Vector Packet Processing (VPP)

accelerates traffic processing.

Linux Host

-)

User Space

Kernel

\ o ndivends, |/

£ 3IN
u JIN

In practical terms, this means that once a NIC is assigned to TNSR, that NIC is attached to a fast data plane, but it is
no longer available to the host OS. All management - including configuration, troubleshooting and update - of TNSR is
performed either at the console or via RESTCONF. In cloud or virtual environments, console access may be available,
but the recommended configuration is still to dedicate a host OS interface for RESTCONF API access.

The recommended configuration of a TNSR system includes one host NIC for the host OS and all other NICs assigned
to TNSR.

© Copyright 2025 Rubicon Communications LLC 3

Product Manual TNSR v21.03

This is important and bears repeating:
* The host OS cannot access NICs assigned to TNSR
* In order to manage TNSR, administrators must be able to connect to the console

The host OS and TNSR use separate network namespaces to isolate their networking functions. Services on TNSR can
run in the host OS namespace, the dataplane namespace, or both, depending on the nature of the service.

See also:
See Networking Namespaces for more details.

Additional isolation is possible inside the dataplane using Virtual Routing and Forwarding (VRF). VRF sets up isolated
L3 domains with alternate routing tables for specific interfaces and dynamic routing purposes.

See also:

See Virtual Routing and Forwarding for more details.

1.3 Technology Stack

TNSR is designed and built from the ground up, using open source software projects including:
* Vector Packet Processing (VPP)
e Data Plane Developer Kit (DPDK)
* YANG for data modeling
¢ Clixon for system management
— Command Line Interface (CLI)
— RESTCONEF for REST API configuration served by nginx
* FRR for routing protocols
* strongSwan for IPsec key management
» Kea for DHCP services
* net-snmp for SNMP
* ntp.org daemon for NTP
* Unbound for DNS
* CentOS as the base operating system
See also:

What is Vector Packet Processing? Vector processing handles more than one packet at a time, as opposed to scalar
processing which handles packets individually. The vector approach fixes problems that scalar processing has with
cache efficiency, read latency, and issues related to stack depth/misses.

For technical details on how VPP accomplishes this feat, see the VPP Wiki.

© Copyright 2025 Rubicon Communications LLC 4

https://fd.io/vppproject/vpptech/
https://www.dpdk.org/
http://www.yang-central.org
http://www.clicon.org/
https://tools.ietf.org/html/rfc8040
https://nginx.org/
https://frrouting.org/
https://strongswan.org/
https://kea.isc.org/
http://www.net-snmp.org/
http://www.ntp.org/
https://nlnetlabs.nl/projects/unbound/about/
https://www.centos.org/
https://wiki.fd.io/view/VPP/What_is_VPP%3F

Product Manual TNSR v21.03

1.4 Basic Assumptions

This documentation assumes the reader has moderate to advanced networking knowledge and some familiarity with
the CentOS Linux distribution.

© Copyright 2025 Rubicon Communications LLC 5

CHAPTER
TWO

SUPPORTED PLATFORMS

There are three tiers of Supported Platforms for TNSR that serve as a guide to deploying TNSR successfully. The
information and specifications in each tier listed below meet different requirements for different deployment types:

* Tier One - Tested by Netgate
¢ Tier Two - DPDK and VPP Compatible

¢ Tier Three - Community Reported

Documented Platforms

https://docs.netgate.com/tnsr/en/latest/platforms
https://docs.netgate.com/tnsr/en/latest/platforms/#tier-one-tested-by-netgate
https://docs.netgate.com/tnsr/en/latest/platforms/#tier-two-dpdk-and-vpp-compatible
https://docs.netgate.com/tnsr/en/latest/platforms/#tier-two-dpdk-and-vpp-compatible

CHAPTER
THREE

INSTALLATION

Use the following instructions to install TNSR 21.03 from an .ISO image. Ensure that the target hardware meets the
minimum specifications for a TNSR Supported Platform.

1.
2.

10.

Obtain the TNSR . iso image file from Netgate®.

Write the . iso image to bootable media (DVD or USB drive) for hardware installations, or copy the .iso image
to a location readable by the hypervisor for virtual machine installations.

Connect to the system or VM console.

Note: The installer supports both VGA and serial console output, with VGA as the default.

Check the TNSR Supported Platform documentation for notes about options which must be set before booting,
for example in the system BIOS/EFI, Hypervisor, or VM guest settings.

Insert or attach the boot media to the target system.

Boot the system using the TNSR image.

Note: If the optical drive or removable media is not set as the primary boot device for the hardware, then use
the system boot menu to manually select the boot device.

After a few seconds, the installer displays a TNSR 21.03 screen.

Press any key, such as space, to stop the 60-second timer. The menu contains, at minimum, the following two
choices:

« Install TNSR (serial-console) <version>: Select this option for hardware that uses serial port § for its
console.

* Install TNSR <version>: Select this option for installation via VGA console

Highlight the correct option for this hardware and press Enter to begin the installation of TNSR. It may take a
few seconds for the installer to display output to the console.

Note: If the console does not display a visual indication of which item is selected, reboot the device and use the
BIOS boot selection menu to choose UEFI as the boot method. For example, on the SG-5100, press Esc during
POST to access this menu, and of the two entries in the menu for the USB drive, choose the line that starts with
UEFI:.

Once the installer launches, it displays a menu labeled Installation with nine choices. All options marked with
[!] must be configured to resolve all installation requirements.

https://docs.netgate.com/tnsr/en/latest/platforms/
https://docs.netgate.com/tnsr/en/latest/platforms/

Product Manual TNSR v21.03

Install (serial-console) THSR
Install THSR

Troubleshoot ing

Automatic boot in 51 seconds...

Fig. 1: TNSR 21.03 Installation Menu

Note: Some items marked with a ! will resolve on their own a few moments after the installer launches, such
as options 3 and 4. Wait a few moments and enter r to refresh the screen.

At a minimum, configure 2) Time Settings, 5) Installation Destination, and an administrator account with 9)
User creation to allow the installer to proceed. These are covered next.

11. Configure the time zone
* Enter 2 to start the time zone configuration process.
* Enter 1 to enter the time zone selection screen.
* Continue through the available options until the correct zone is located.
For example, Enter 3 for America, then 36 for Chicago.
* Enter the number corresponding to the region and zone, or type out the zone name.
After selecting a zone, the installer will return to the main menu.
12. Configure the installation destination.
* Enter 5 to start the installation destination configuration process.
* Select the correct target disk on the next screen.
The installer will select the disk automatically when only one is present.
* Enter c to continue.
* Choose how to partition the disk.

The default Use All Space is the best practice.

© Copyright 2025 Rubicon Communications LLC 8

Product Manual TNSR v21.03

Starting installer, one moment. ..

anaconda 21.48.22.147-1 for THSR started.

= installation log files are stored in ~tmp during the installation

= shell is available on TTYZ

= when reporting a bug add logs from ~tmp as separate textrplain attachments
18:83:25 Not asking for UNC because we don’t have a network

Installation

1) [x] Language settings Time settings
(English (United States)) (Timezone iz not set.)
3) [x] Installation source Software selection
(Local media) (TNSR Install)
5) [?] Installation Destination Kdump
(No disks selected) (Kdump i=s enabled)
7) [1 Network configuration Root password
(Not connected) (Root account is disabled.)
9) [1 User creation
(No user will be created)
Flease make your choice from above ['q’ to quit § 'b" to begin installation i
‘r' to refreshl:

Fig. 2: TNSR 21.03 Setup Menu

© Copyright 2025 Rubicon Communications LLC 9

Product Manual TNSR v21.03

Enter c to continue.
Choose the partition scheme.
The default LVM is the best practice.

Enter c to finish and return to the main menu.

13. Add an administrator account.

Note: Security best practices dictate that it is best not to enable interactive logon for the root account. As
such, the root account will be locked out after the installation. Use this process to add at least one alternate
administrator account.

Enter 9 to start the user configuration process.
Enter 1 to create a new user.

Enter 3 to enter the username.

Enter 4 to configure the account to use a password.
Enter 5 to set and confirm the password for the user.
Enter 6 to mark the user as an Administrator.

Enter c to finish and return to the main menu.

14. Optionally configure a Host OS interface.

This will enable a network interface in the host OS for use as a management interface. This interface can then
be used to access the system for troubleshooting or maintenance.

Warning: Though this is technically optional, using a management interface is the best practice.

L]

Enter 7 to start the interface configuration.
Choose one of the listed network interfaces.

Configure interface parameters on this screen as needed, such as a static IP address.

Note: The default behavior is to use DHCP to obtain the interface address. If this is the desired behavior,
then leave the address options as-is.

Enter 7 to enable Connect automatically after reboot.
Enter 8 to enable Apply configuration in installer.
Enter c to complete the interface configuration and continue back to the interface list.

Enter c again to exit the network configuration.

15. Once all options with [!] have been resolved, enter b from the main menu to begin the installation. Messages
are displayed indicating the progress of the installation. When the installer finishes its tasks, it displays message
that says Installation complete. Press return to quit. At that point, press Enter and the system will reboot.

Note: The installer may spend several minutes displaying the message Performing post-installation setup
tasks, but it will eventually continue.

© Copyright 2025 Rubicon Communications LLC 10

Product Manual TNSR v21.03

16. When the system is restarting, remove the DVD or USB drive while the system reboots. CentOS 7 will start up
automatically from the disk to which it was installed. If the installation media remains inserted, the system may
boot into the installer again.

Note: The boot options in the system BIOS may need changed if it does not boot automatically into CentOS 7.

17. After the system finishes rebooting, log in with the user and password chosen during the installation.

Note: Once the system reboots, network interfaces not configured in the installer will be disabled in CentOS. Depend-
ing on the hardware, these interfaces may automatically be enabled in TNSR. If TNSR does not see any interfaces, they
will need to be manually configured in TNSR. See Setup NICs in Dataplane for details.

Tip: One network interface should be enabled in the host OS as a management interface to allow access to the system
for troubleshooting or maintenance. This can be configured in the installer, as mentioned above, or afterward.

Warning: Once the Host OS is capable of reaching the Internet, check for updates (Updating TNSR) before
proceeding. This ensures the security and integrity of the router before TNSR interfaces are exposed to the Internet.

Before continuing on, check the next section for hardware-specific installation guidance. Certain hardware may require
additional configuration before it is usable by TNSR.

3.1 Hardware Installation

This section includes information about known actions required for certain hardware components to function with
TNSR. If this TNSR installation does not include any of the hardware listed here, skip ahead to Default Behavior.

3.1.1 Mellanox ConnectX-5 Firmware Requirements

Mellanox ConnectX-5 network interface cards (mlIx5) in the MT27800 family are currently shipping with firmware
revision 16.26.1040 which is not compatible with TNSR.

The incompatible firmware can be identified by errors in the log (e.g. sudo vppctl show errors), such as:

net_mlx5: probe of PCI device [PCI ID] aborted after encountering an error: Operation.
—not supported

Or:

Interface WAN error -12: Unknown error -12

net_mlx5: Failed to query QP using DevX

net_mlx5: Fail to query port O Tx queue ® QP TIS transport domain
net_mlx5: port ® Tx queue allocation failed: Cannot allocate memory
Device with port_id=0 already stopped

Firmware version 16.24.1000 is compatible with TNSR, and can be manually downgraded using the following pro-
cedure.

© Copyright 2025 Rubicon Communications LLC 11

Product Manual TNSR v21.03

First, identify the first PCI ID of the card in question. This can be found by looking in the boot logs, the output of a
utility such as 1spci, or similar methods. The ID will take the form of xx:yy. z, for example 65:00.0. The ID will
be used in the following set of commands.

Next, download and decompress the appropriate firmware:

$ curl -LO http://www.mellanox.com/downloads/firmware/fw-ConnectX5-rel-16_24_1000-
- MCX516A-CCA_Ax-UEFI-14.17.11-FlexBoot-3.5.603.bin.zip
$ unzip fw-ConnectX5-rel-16_24_1000-MCX516A-CCA_Ax-UEFI-14.17.11-FlexBoot-3.5.603.bin.zip

Now install the Mellanox firmware tool and perform the firmware downgrade:

$ sudo dnf install mstflint

$ sudo mstconfig q > mst.log

$ sudo mstfwmanager -d <PCI ID> -u -f -i fw-ConnectX5-rel-16_24_1000-MCX516A-CCA_Ax-UEFI-
-.14.17.11-FlexBoot-3.5.603.bin

Replace <PCI ID> in the last command with the first PCI ID of the card.

With the appropriate firmware loaded on the card, it will no longer produce errors and it will be usable by TNSR.

Warning: Reboot after performing the firmware downgrade to ensure the card is fully reinitialized with the
appropriate firmware.

© Copyright 2025 Rubicon Communications LLC 12

CHAPTER
FOUR

DEFAULT BEHAVIOR

After the installation completes and TNSR boots for the first time, TNSR has an empty default configuration. This
means that TNSR has no pre-configured interfaces, addresses, routing behavior, and so on.

The host OS defaults are set during installation, and depend on the base OS, CentOS 8. For example, host management
interfaces may have been configured by the installer.

4.1 Default Accounts and Passwords

By default, the TNSR installation includes host OS accounts for root with interactive login disabled, and a tnsr
account.

For ISO installations, the best practice is to create at least one additional initial administrator account during the instal-
lation process. That user is custom created by the person performing the installation, and thus is not a common default
that can be listed here.

Warning: When installing TNSR from an ISO image, the installer allows the root account to be unlocked and
assigned a password. The best practice, however, is to leave the root account locked and create at least one addi-
tional administrator account using the installer. These additional accounts may use sudo to elevate privileges. Any
users added to the wheel group later may also use sudo to execute commands as root.

The default behavior of the tnsr account varies by platform:

ISO/Bare Metal
The tnsr user is available with a default password of tnsr-default.

Appliances Shipped with TNSR Pre-installed
The tnsr user is available with a default password of tnsr-default.

AWS
The tnsr account is present but restricted to key-based authentication via SSH, using a key selected
when launching the TNSR instance.

Azure
The tnsr account is present but restricted to key-based authentication via SSH, using a key selected
when launching the TNSR instance.

The password for the tnsr account can be reset by any other account with access to the shell and sudo. For example,
the command host shell sudo passwd tnsr run at a TNSR prompt will set and confirm a new password for the
tnsr user. The same action may also be performed for the root account (host shell sudo passwd root). As
mentioned in the previous warning, it is best to leave interactive logins for root disabled.

13

Product Manual TNSR v21.03

Warning: Change default passwords, even randomized default passwords or passwords pre-configured when
launching a cloud-based instance, after the first login. Do not leave default passwords active!

Note: User authentication is performed by the host OS. Though users may be created inside TNSR (User Manage-
ment), these users are propagated to the host. To control what users may access, see NETCONF Access Control Model
(NACM).

4.2 Default TNSR Permissions

Current versions of TNSR include a default set of NACM rules. These rules allow members of group admin to have
unlimited access and sets the default policies to deny. By default this group includes the users tnsr and root.

See NETCONF Access Control Model (NACM) for more information on managing access to TNSR.

4.3 Default Allowed Traffic

For the default behavior of allowed traffic to and from TNSR, there are two separate areas to consider:
* Traffic flowing through TNSR

e Traffic for the host OS management interface

4.3.1 TNSR

There are no access lists (ACLs) in the default TNSR configuration. Thus, once TNSR is able to route traffic, all packets
flow freely. See Access Lists for information on configuring access lists.

4.3.2 Host OS

The TNSR installation configures a default set of Netfilter rules for the host OS management interface. The following
traffic is allowed to pass into and out of the host operating system interfaces:

* ICMP / ICMP6

SSH (TCP/22)

HTTP (TCP/80)

HTTPS (TCP/443)

NTP (UDP/123, TCP/123)

SNMP (UDP/161)

* UDP Traceroute (UDP ports 33434-33524 with TTL=1)

To manage host ACLs which can override this behavior, see Host ACLs.

Note: Previous versions of TNSR also included Netfilter rules granting access to services run by the dataplane (dy-
namic routing, I[Psec, DNS, DHCP). These are no longer necessary as current versions of TNSR isolate the dataplane

© Copyright 2025 Rubicon Communications LLC 14

Product Manual TNSR v21.03

and host OS services using separate network namespaces. Access to dataplane services can be controlled using TNSR
ACLs.

4.4 Default Namespaces

Networking Namespaces enable isolated networking environments for the host OS and TNSR.

Network-related services run in the dataplane namespace, these are available via interfaces and addresses controlled
by TNSR:

¢ BGP, OSPF, OSPF6, RIP (frr-dataplane)

* IKE/IPsec (strongswan-dataplane)

¢ Unbound DNS Resolver (unbound-dataplane)
e [Pv4 DHCP Server (kea-dhcp4)

Management-oriented services run in the host namespace by default. As such, these services are only accessible via
interfaces controlled by the host itself. These services include:

¢ Secure Shell (sshd)

¢ RESTCONF API (nginx)
e SNMP (snmpd)

* NTP (ntpd)

Note: When upgrading TNSR from an older version without namespaces, enabled services will also be automatically
activated in the dataplane namespace.

CLI commands can also support multiple namespaces, as described in Namespaces in TNSR CLI Commands. The
ping and traceroute commands default to the dataplane namespace.

See Networking Namespaces for details on working with TNSR namespaces.

4.5 Default Services

The SSH server (sshd) in the host namespace is the only service active on TNSR installation by default.

4.6 Default Routing and VRF Behavior

The default VRF used by TNSR is named default and has a VRF ID of 8. The default VRF is special in that it has
separate route table names for [Pv4 (ipv4-VRF:0) and IPv6 (ipv6-VRF:0).

The default VRF is assumed when a VRF is not explicitly specified, for example on an interface with no VRF.
See also:

See Virtual Routing and Forwarding for more details.

© Copyright 2025 Rubicon Communications LLC 15

CHAPTER
FIVE

ZERO-TO-PING

This document is a crash course in getting TNSR up and running quickly after installation. The topics included here
are covered in more detail throughout the remainder of the documentation.

Each section contains a list of additional related resources with more detail in a See Also box. Follow these links for
more information on each topic.

5.1 First Login

When TNSR boots, it will present a login prompt on the console (video and serial). Login at this prompt using either
the default tnsr account or an administrator account created during the installation process.

Note: For installations from ISO and for hardware shipped with TNSR preinstalled, the default password for the tnsr
user is tnsr-default. For cloud-based installs such as AWS and Azure, by default the tnsr account can only login
with key-based ssh authentication. See Default Accounts and Passwords for more information.

The tnsr user automatically enters the TNSR CLI when used to login interactively. Manually created administrative
users do not have this behavior, and using them to login interactively will result in a login shell.

Alternately, if the host OS management interface was configured in the installer, login using an SSH client connecting
to that interface.

See also:
e Installation

* Default Accounts and Passwords

5.1.1 Changing the Password
The password for administrator accounts was set during the installation process, but the default tnsr account should
have its password reset before making other changes.

Login to the tnsr account with the default tnsr-default password and change it using the host shell passwd
command from the TNSR CLI:

tnsr# host shell passwd
Changing password for user tnsr.
Changing password for tnsr.
(current) UNIX password:

New password:

(continues on next page)

16

Product Manual TNSR v21.03

(continued from previous page)
Retype new password:

passwd: all authentication tokens updated successfully.
tnsr#

Alternately, login in as an administrator and change the password for the default tnsr account using sudo:

tnsr# host shell sudo passwd tnsr

Changing password for user tnsr.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.
tnsr#

Note: These examples use the TNSR prompt and host shell command. The same commands may be used without
the host shell prefix from a non-TNSR shell prompt.

Warning: Use a strong password for this account as it will be able to make changes to the TNSR configuration,
unless restricted by a custom NACM configuration.

See also:
e Installation
* Default Accounts and Passwords

e NETCONF Access Control Model (NACM)

5.2 Interface Configuration

There are two types of interfaces on a TNSR system: Host OS interfaces for managing the device and dataplane
interfaces which are available for use by TNSR.

5.2.1 Host OS Management Interface

A host management interface may be configured manually in the installer or later in TNSR or in CentOS. See Instal-
lation for the full procedure to configure a host OS management interface during installation, and Host Interfaces for
information on configuring host OS interfaces from within TNSR.

At a minimum, the host OS interface must have an IP address, subnet mask, and a default gateway configured. The
default gateway is necessary so that the host OS may retrieve updates as that traffic does not flow through TNSR, but
over the management interface. Additionally, other host traffic may flow through the management interface, such as
the ping command from within the TNSR CLI.

If an interface was not configured for management in the installer, it will need to be manually changed back to host
OS control and then configured for network access. See Remove TNSR NIC for Host Use for instructions on how to
return an interface from TNSR back to host OS control so it can be used for management. This procedure will require
rebooting the TNSR device.

Consult CentOS 8 documentation for the specifics of network configuration for other environments.

© Copyright 2025 Rubicon Communications LLC 17

Product Manual TNSR v21.03

Warning: Once the Host OS is capable of reaching the Internet, check for updates (Updating TNSR) before
proceeding. This ensures the security and integrity of the router before TNSR interfaces are exposed to the Internet.

See also:
e Installation
* Disable Host OS NICs for TNSR
* Host Interfaces

* Remove TNSR NIC for Host Use

5.2.2 Dataplane Interfaces

Interfaces not configured for host OS management control in the installer will be setup in such a way that they are
available for use by the dataplane and thus TNSR.

To see a list of available interfaces, start the TNSR CLI (Entering the TNSR CLI) and enter dataplane dpdk dev 7:

tnsr# configure
tnsr(config)# dataplane dpdk dev ?

0000:00:14.0 Ethernet controller: Intel Corporation Ethernet
Connection I354 (rev 03)

0000:00:14.1 Ethernet controller: Intel Corporation Ethernet
Connection I354 (rev 03)

0000:00:14.2 Ethernet controller: Intel Corporation Ethernet
Connection I354 (rev 03)

0000:00:14.3 Ethernet controller: Intel Corporation Ethernet
Connection I354 (rev 03)

0000:03:00.0 Ethernet controller: Intel Corporation I211 Gigabit
Network Connection (rev 03)

0000:04:00.0 Ethernet controller: Intel Corporation I211 Gigabit

Network Connection (rev 03) (Active Interface enp4s0)

This is an ideal time to set optional custom interface names since they are difficult to change later:

tnsr(config)# dataplane dpdk dev 0000:00:14.1 network name WAN
tnsr(config)# dataplane dpdk dev 0000:00:14.2 network name LAN
tnsr(config)# service dataplane restart

tnsr(config)# exit

The custom names set in that example will be used in the remainder of this document.

Note: Without custom names, interfaces are named after the port speed and bus location, such as
GigabitEthernet®/14/1.

See also:
e [Installation
» Setup NICs in Dataplane

* Customizing Interface Names

© Copyright 2025 Rubicon Communications LLC 18

Product Manual TNSR v21.03

5.3 TNSR Interfaces

Next, the interfaces inside TNSR must be configured with addresses and routing.

5.3.1 Optional: Access Lists

The best security practice is to filter inbound traffic so that only required traffic is allowed to pass. This step is optional,
but we recommend at least applying the basic ACLs shown in this section, and then reading through Access Lists for
additional details.

First, create an ACL to only allow DHCP client responses, ICMP inbound, and DNS server responses for the DNS

resolver configuration later in this document:

tnsr# configure terminal
tnsr(config)# acl internet-in

tnsr(config-acl)# rule
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl)# rule
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl)# rule
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl)# rule
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl)# rule
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#

10

description Allow DHCP responses
action permit

ip-version ipv4

protocol udp

source port 67

destination port 68

exit

20

description Allow ICMP

action permit

ip-version ipv4

protocol icmp

exit

30

description Allow DNS Responses
action permit

ip-version ipv4

protocol udp

source address 8.8.8.8/32
source port 53

exit

31

description Allow DNS Responses
action permit

ip-version ipv4

protocol tcp

source address 8.8.8.8/32
source port 53

exit

32

description Allow DNS Responses
action permit

ip-version ipv4

protocol udp

source address 8.8.4.4/32
source port 53

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

19

Product Manual

TNSR v21.03

tnsr(config-acl-rule)#
tnsr(config-acl)# rule
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl)# exit

exit

33

description Allow DNS Responses
action permit

ip-version ipv4

protocol tcp

source address 8.8.4.4/32
source port 53

exit

(continued from previous page)

Next, create an ACL to reflect all outbound connections so return traffic is automatically permitted inbound:

tnsr(config)# acl internet-out

tnsr(config-acl)# rule
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl-rule)#
tnsr(config-acl)# exit

10

description Reflect all Outbound
action reflect

ip-version ipv4

exit

Finally, configure these ACLs on the interface connected to the Internet:

tnsr(config)# int WAN

tnsr(config-interface)# access-list input acl internet-in sequence 10

tnsr(config-interface)# access-list output acl internet-out sequence 10
tnsr(config-interface)# exit

tnsr(config)# exit

See also:

e Access Lists

5.3.2 WAN DHCP Client

In this example, WAN will be set as a DHCP client:

tnsr# configure terminal

tnsr(config)# interface WAN
tnsr(config-interface)# description Internet
tnsr(config-interface)# dhcp client ipv4
tnsr(config-interface)# enable
tnsr(config-interface)# exit

See also:

e DHCP Client Example

» Configure Interfaces

© Copyright 2025 Rubicon Communications LLC

20

Product Manual TNSR v21.03

5.3.3 LAN Interface

Next, configure an address for the internal network:

tnsr(config)# interface LAN
tnsr(config-interface)# ip address 172.16.1.1/24
tnsr(config-interface)# description Local Network
tnsr(config-interface)# enable
tnsr(config-interface)# exit

See also:

* Configure Interfaces

5.4 NAT

The global NAT options must be set first, and then NAT must be explicitly enabled. The configuration for NAT pools
and interfaces can only be added once NAT is enabled.

The following commands configure TNSR to use NAT forwarding, endpoint-dependent mode NAT:

tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)# nat global-options nat44 endpoint-dependent true

With the global options complete for this example, NAT must be enabled before the remaining options can be set:

[tnsr(config)# nat global-options nat44 enabled true }

Warning: To make changes to the global NAT options later, NAT must first be disabled, and then re-enabled after
the changes are complete.

Now setup a NAT pool using the WAN interface address, and set the interfaces which will participate in NAT. In this
example, the WAN interface is the outside NAT interface and the LAN interface is inside:

tnsr(config)# nat pool interface WAN
tnsr(config)# interface WAN
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit
tnsr(config)# interface LAN
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit

See also:
* Network Address Translation
* NAT Pool Addresses
e NAT Forwarding

© Copyright 2025 Rubicon Communications LLC 21

Product Manual TNSR v21.03

5.5 DHCP Server

Setup a basic DHCP server on the LAN side to hand out addresses, also instruct clients to use TNSR as their gateway
and DNS server.

tnsr(config)# dhcp4 server

tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen LAN
tnsr(config-kea-dhcp4)# lease lfc-interval 3600
tnsr(config-kea-dhcp4)# subnet 172.16.1.0/24
tnsr(config-kea-subnet4)# pool 172.16.1.100-172.16.1.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface LAN
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# exit
tnsr(config-kea-dhcp4)# exit

tnsr(config)# dhcp4 enable

See also:

* Dynamic Host Configuration Protocol

5.6 DNS Server

Configure TNSR to act as a DNS server for local clients, using upstream forwarding DNS servers of 8.8.8.8 and
8.8.4.4:

tnsr# configure

tnsr(config)# unbound server

tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 172.16.1.1
tnsr(config-unbound)# access-control 172.16.1.0/24 allow
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4
tnsr(config-unbound-fwd-zone)# exit

tnsr(config-unbound)# exit

tnsr(config)# unbound enable

Configure the DNS Resolver behavior of the TNSR dataplane network namespace to use unbound as its DNS server

tnsr(config)# system dns-resolver dataplane
tnsr(config-dns-resolver)# server 127.0.0.1
tnsr(config-dns-resolver)# exit

Configure the DNS Resolver behavior of the host operating system to use the chosen upstream forwarding DNS servers
directly, since the host namespace cannot access unbound running in the dataplane namespace:

© Copyright 2025 Rubicon Communications LLC 22

Product Manual TNSR v21.03

tnsr(config)# system dns-resolver host
tnsr(config-dns-resolver)# server 8.8.8.8
tnsr(config-dns-resolver)# server 8.8.4.4
tnsr(config-dns-resolver)# exit

Note: The DNS resolution behavior of both namespaces may be left at the default values which will use the DNS
servers provided by DHCP.

See also:
¢ DNS Resolver

o System DNS Resolution Behavior

5.7 Ping

5.7.1 From TNSR

The TNSR CLI includes a ping utility which will send an ICMP echo request to a target. This utility can operate in
either the host or dataplane namespace (Networking Namespaces), and defaults to using the dataplane namespace.

tnsr# ping 203.0.113.1

PING 203.0.113.1 (203.0.113.1) 56(84) bytes of data.

64 bytes from 203.0.113.1: icmp_seq=1 ttl=64 time=0.700 ms
64 bytes from 203.0.113.1: icmp_seq=2 ttl=64 time=0.353 ms
64 bytes from 203.0.113.1: icmp_seq=3 ttl=64 time=0.590 ms
64 bytes from 203.0.113.1: icmp_seq=4 ttl=64 time=0.261 ms
64 bytes from 203.0.113.1: icmp_seq=5 ttl=64 time=0.395 ms
64 bytes from 203.0.113.1: icmp_seq=6 ttl=64 time=0.598 ms
64 bytes from 203.0.113.1: icmp_seq=7 ttl=64 time=0.490 ms
64 bytes from 203.0.113.1: icmp_seq=8 ttl=64 time=0.790 ms
64 bytes from 203.0.113.1: icmp_seq=9 ttl=64 time=0.155 ms
64 bytes from 203.0.113.1: icmp_seq=10 ttl=64 time=0.430 ms

--- 203.0.113.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9001ms
rtt min/avg/max/mdev = 0.155/0.476/0.790/0.187 ms

Note: This is equivalent to dataplane ping 203.0.113.1 since the dataplane namespace is the default.

To ping from the host namespace, using the host OS environment and routing, specify the host namespace before the
command:

tnsr# host ping 198.51.100.1

PING 198.51.100.1 (198.51.100.1) 56(84) bytes of data.

64 bytes from 198.51.100.1: icmp_seq=1 ttl=64 time=0.142 ms
64 bytes from 198.51.100.1: icmp_seq=2 ttl=64 time=0.109 ms
64 bytes from 198.51.100.1: icmp_seq=3 ttl=64 time=0.126 ms
64 bytes from 198.51.100.1: icmp_seq=4 ttl=64 time=0.110 ms

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 23

Product Manual

TNSR v21.03

64 bytes from 198.51.100.
64 bytes from 198.51.100.
64 bytes from 198.51.100.
64 bytes from 198.51.100.
64 bytes from 198.51.100.
64 bytes from 198.51.100.

: icmp_seq=5 ttl=64 time=0.109 ms
: icmp_seq=6 ttl=64 time=0.120 ms
: icmp_seqg=7 ttl=64 time=0.100 ms
: icmp_seq=8 ttl=64 time=0.086 ms
: icmp_seq=9 ttl=64 time=0.087 ms
: icmp_seqg=10 ttl=64 time=0.088 ms

[T T G T U

--- 198.51.100.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 8999ms
rtt min/avg/max/mdev = 0.086/0.107/0.142/0.021 ms

(continued from previous page)

See also:

* Diagnostic Utilities

5.7.2 From LAN Client

At this stage a LAN client will be able to connect to the network (port or switch) connected to

the LAN interface. It can

pull an IP address and other configuration via DHCP, resolve domain names via DNS, and reach hosts beyond TNSR

using it as a gateway.

A ping executed on a client will flow through TNSR and replies will return.

5.8 Save the TNSR Configuration

TNSR maintains three separate configuration databases: startup, candidate, and running.
active configuration. TNSR loads the startup copy at boot time.

The running copy is the

To ensure the expected configuration is loaded when TNSR is rebooted, copy the running configuration to the startup

configuration after making changes:

tnsr# configure
tnsr(config)# configuration copy running startup

Optionally, create a backup copy of the configuration which can be loaded later if necessary:

[tnsr(config)# configuration save running backup.xml

See also:
» Configuration Database

* Configuration Backups

© Copyright 2025 Rubicon Communications LLC

24

Product Manual TNSR v21.03

5.9 Next Steps

From here, click the Next button at the bottom of the page to continue on to the next section of the documentation, or
choose a topic from the table of contents to the left.

Other suggested next steps include:
* Configure updates (Business versions only)
» See more practical examples, such as setting up the RESTCONF API
» Configure /Psec tunnels

 Configure time synchronization

© Copyright 2025 Rubicon Communications LLC 25

CHAPTER
SIX

COMMAND LINE BASICS

The TNSR command line interface (CLI) may seem familiar to administrators who are familiar the CLI of other routers
or networking equipment. However, the specific behavior and structure of the TNSR CLI differs in several aspects.

Tip: For a full TNSR CLI command reference, visit Commands.

6.1 Working in the TNSR CLI

6.1.1 Command Prompt

The TNSR CLI command prompt has a several components:

[<hostname> tnsr<(mode)># <user input>

These components are:

hostname
The fully qualified hostname of the router.

mode
This section of the prompt changes depending on the current mode to indicate that a different subset
of commands is available.

See also:
For a list of modes and prompt strings, see Mode List.

user input
This area is where a user enters commands and other input.

In this brief example, the router hostname is router, and the mode section of the prompt is shown changing when a
command enters or exits a mode.

router tnsr# configure

router tnsr(config)# interface GigabitEthernet3/0/0
router tnsr(config-interface)# description Management
router tnsr(config-interface)# exit

router tnsr(config)# exit

router tnsr#

26

Product Manual TNSR v21.03

6.1.2 Command History

The TNSR CLI stores the last 300 commands across sessions. This command history is kept in ~/. tnsr_history.

The command history is accessed by pressing Ctrl-P (previous command), Ctrl-N (next command), or by using the
up and down arrow keys.

The number of commands stored by TNSR can be controlled by the c1i history-config lines <count> com-
mand. To restore the default value, use no cli history-config lines.

This behavior may also be disabled by the c1i history-config disable or no cli history-config enable
commands. Use cli history-config enable to turn it back on.

6.1.3 Autocomplete

The TNSR CLI supports case-sensitive tab expansion and prediction for input to speed up interactive work. For exam-
ple, the first few letters of a command or entity may be typed, depending on context, and then pressing the tab key will
complete a portion or all of the remaining input where possible. Additionally, in cases when there is an existing entry
or only one possible choice, pressing tab will automatically insert the entire entry. Commands or entities may also be
shortened provided the input is not ambiguous.

Tip: Press ? to show possible completions of the current command when in the middle of a word, or press it between
words to show the next available parameter (Finding Help).

6.1.4 Keyboard Shortcuts

The TNSR CLI supports several CLI navigation and editing key combinations, including:

Command Keys

Previous History Command Ctrl-P or up arrow
Next History Command Ctrl-N or down arrow
Erase Character Backspace or Ctrl-H
Erase Word Ctrl-w

Cursor to Start of Line Ctrl-A

Cursor to End of Line Ctrl-E

Clear and Redraw Screen Ctrl-L

Exit the CLI Ctrl-D
Context-Sensitive Help ?

6.2 Finding Help

The CLI includes context-sensitive help. At any point, enter a ? and TNSR will print a list of available commands or
keywords that are valid in the current context. Enter a space before the ? to ensure correct context.

Additionally, the help command can be issued in any mode. There are three variations:

help, help commands
These are equivalent and print a list of available commands in the current mode.

© Copyright 2025 Rubicon Communications LLC 27

Product Manual TNSR v21.03

help mode
Prints information about the current mode, including whether or not exiting the mode will cause a
commit (Configuration Database).

6.3 Starting TNSR

The services required by TNSR to run are enabled by the installer, and they will automatically start at boot time. There
is no need to manually stop or start TNSR services during normal operation.

6.3.1 TNSR Service Relationships

TNSR requires the vpp, clixon-backend, and clixon-restconf services.

Note: TNSR may require additional services depending on features enabled by the TNSR configuration. These will
be automatically managed as needed.

6.3.2 Manual TNSR Service Operations

Stop TNSR services:

[$ sudo tnsrctl stop]

Start TNSR services:

[$ sudo tnsrctl start J

Restarting TNSR services if they are already running:

[$ sudo tnsrctl restart }

View TNSR service status (can be run as any user):

[$ tnsrctl status J

These services are all daemons and not interactive. To configure TNSR, the administrator must initiate the TNSR CLI
separately, as described in Entering the TNSR CLI.

6.4 Entering the TNSR CLI

The TNSR CLI can be started a few different ways. The command to start the CLI is /usr/bin/clixon_cli, but the
exact method varies, as discussed in this section.

When started, the TNSR CLI will print the hostname followed by the prompt:

[tnsr#]

From that prompt, commands can be entered to view status information or perform other tasks. Throughout this doc-
umentation, the router hostname will typically be omitted unless it is required for clarification.

© Copyright 2025 Rubicon Communications LLC 28

Product Manual TNSR v21.03

6.4.1 Using the tnsr account

TNSR includes a tnsr user by default, and this user will automatically load the TNSR CLI at login. To take advantage

of this user, login to it directly using ssh, or switch to it using sudo or su from another account.

The behavior of the tnsr account varies by platform, and its password can be reset using any account with access to

sudo (See Default Accounts and Passwords).

To switch from another user to the tnsr user, use sudo:

[$ sudo su - tnsr

Alternately, use su and enter the password for the tnsr user:

$ su - tnsr
Password:

6.4.2 Using another account

The TNSR CLI can also be started manually from any user.

This command will start the TNSR CLI as the current user, which is ideal to use in combination with NACM:

[s Just/bin/clizon cli

6.4.3 Using root

This command will start the TNSR CLI as root, which generally should be avoided unless absolutely necessary (for

example, recovering from a flawed NACM configuration):

[s sudo /usr/bin/clizon cli

6.4.4 Current User

From inside TNSR, check the current user as seen by TNSR with whoami:

tnsr# whoami
real UID/GID: 996/992
effective UID/GID: 996/992

user name: tnsr
home dir: /var/lib/tnsr
shell: /bin/bash

© Copyright 2025 Rubicon Communications LLC

29

Product Manual TNSR v21.03

6.4.5 Shell Alias

For convenience, the command to launch the TNSR CLI can be added to an alias in the shell. For example, the following
line can be added to ~/.bashrc to run TNSR as the current user:

[alias tnsrcli="/usr/bin/clixon_cli'

Note: The changes to ~/.bashrc will not take effect immediately. Either logout and login again, or source the file
by running source ~/.bashrcor . ~/.bashrc.

Then the TNSR CLI may be accessed using the alias from the shell, tnsrcli.

6.5 Configuration Database

TNSR maintains three separate configuration databases: startup, candidate, and running. These files are stored as XML
in plain text files.

startup
The configuration loaded when the host boots up.

Note: A restart of TNSR services is not the same as a reboot. If, for example, the clixon services
are restarted, TNSR will still be using the running database.

candidate
An in-process potential configuration that exists while the TNSR configuration is being actively
edited. When committed, this configuration will be accepted as the running configuration by TNSR
if it is free of errors.

running
The active running configuration, which reflects the current state of TNSR.

Note: These databases are located in /var/tnsr/ on the host, but these files are not intended to be accessed outside
of TNSR.

The configuration database is managed using the configuration command from within config mode.

6.5.1 Saving the Configuration

For changes to persist between reboots of the TNSR host, the running configuration must be copied to the startup
configuration as shown in this example:

tnsr# configure
tnsr(config)# configuration copy running startup

© Copyright 2025 Rubicon Communications LLC 30

Product Manual TNSR v21.03

6.5.2 Viewing the Configuration

To view the configuration databases, use the show configuration command followed by the database name, for
example:

[tnsr# show configuration running]

or:

[tnsr# show conf run

The output format can be given after the database name using one of the following names:

xml
XML format. The default output format, and the native format of the configuration databases.

json
JSON format, similar to the data format used by RESTCONF
cli [<section>]

Outputs a set of CLI commands which can be pasted back into a terminal to re-create the current
configuration.

Tip: The cli format is useful for replicating parts of a configuration on another TNSR instance
without restoring a full configuration database.

When using the cli format, an optional configuration area name can limit the output to a certain
portion of the database. For example, to show only the DHCP server configuration:

tnsr# show configuration running cli kea
dhcp4 enable
dhcp4 server
option domain-name
data example.com
exit
description LAN DHCP Server
lease persist true
lease lfc-interval 0
interface listen LAN
interface socket raw
subnet 10.2.0.0/24
interface LAN
option domain-name-servers
data 10.2.0.1
exit
option routers
data 10.2.0.1
exit
pool 10.2.0.129-10.2.0.191
exit
exit
exit

© Copyright 2025 Rubicon Communications LLC 31

Product Manual TNSR v21.03

6.5.3 Reverting to the Startup Configuration

TNSR can also revert to the previously saved startup configuration to remove undesirable changes to the running con-
figuration, should a regression in behavior occur.

For example:

tnsr# configure

tnsr(config)# configuration copy startup candidate
tnsr(config)# configuration candidate commit
tnsr(config)# exit

Warning: It is not possible to copy the startup configuration directly to the running configuration as that will not
result in the settings being active. The configuration must be committed after copying to the candidate.

6.5.4 Configuration Database Commands

These brief examples show other available configuration database management commands.

Delete the candidate database entirely, which if committed will leave TNSR with an empty configuration:

[tnsr(config)# configuration candidate clear J

Commit changes made to the candidate database, which if successful will become the running database:

[tnsr(config)# configuration candidate commit]

Discard the current candidate database to remove a change that has failed to validate, returning to the running config-
uration without the attempted changes:

[tnsr(config)# configuration candidate discard J

Attempt to validate the current candidate configuration to locate errors:

[tnsr(config)# configuration candidate validate]

Load a file from the host into the candidate database. The contents of the file can replace the candidate entirely, or
merge a new section into an existing configuration. After loading, the candidate must be committed manually.

[tnsr(config)# configuration candidate load <filename> [(replace|merge)]]

Copy the candidate configuration to the startup configuration:

[tnsr(config)# configuration copy candidate startup]

Copy the running configuration to either the candidate or startup configuration:

[tnsr(config)# configuration copy running (candidate|startup)]

Copy the startup configuration to the candidate configuration:

[tnsr(config)# configuration copy startup candidate]

Save either the candidate or running configuration to a file on the host.

© Copyright 2025 Rubicon Communications LLC 32

Product Manual TNSR v21.03

[tnsr(config)# configuration save (candidate|running) <filename> J

While not a configuration database command directly, the TNSR CLI automatically discards the candidate database if
it fails to validate. This behavior can be changed using the following command:

[tnsr(config)# no cli option auto-discard }

6.6 Configuration Mode

After starting the TNSR CLI, the administrator is in basic mode and not configuration mode. To enter configuration
mode, enter the configure command. This command may be abbreviated to config and it is also acceptable to write
terminal after, as a convenience for administrators familiar with IOS who type it out of habit.

All of the following commands are equivalent:

tnsr# configure

tnsr# configure terminal
tnsr# config

tnsr# conf t

After entering any one of the above commands, the prompt changes to reflect the new configuration mode:

tnsr# configure
tnsr(config)#

After entering other configuration commands, the new configuration is stored in the candidate database (Configuration
Database). A candidate database may be committed either when all of the required information is present, or when
exiting the current context. Some commands are committed immediately.

6.6.1 Navigating Configuration Modes

Certain commands in configuration mode enter other modes, for example, the interface command will enter
config-interface mode when used on an existing interface:

tnsr(config)# interface GigabitEthernet3/0/0
tnsr(config-interface)#

To leave a mode, use the exit command. This will return to the previous, lower mode:

tnsr(config-interface)# exit
tnsr(config)#

From config mode, using exit will return to basic mode:

tnsr(config)# exit
tnsr#

From any mode, the exit command may be repeated until the prompt returns to basic mode.

At that point, if no errors have been encountered by TNSR, all changes will have been committed to the running
database. If an error occurs, TNSR will print a message indicating the problem. Solving such problems is covered in
Troubleshooting later in this section.

© Copyright 2025 Rubicon Communications LLC 33

Product Manual

TNSR v21.03

6.6.2 Removing Configuration ltems

Items are removed or negated using no, followed by the option to remove. For example, to remove an interface descrip-

tion:

tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# no description

In this case, since there is only one description, removing the the description does not require the existing content of that
option. In most cases, the no command only requires enough parameters to uniquely identify an entry to be removed

or negated.

In certain cases, a partial command may remove multiple items or may be used as a shorthand method of removing a

longer entry when the details do not uniquely identify an entry.

For example, this command removes one input ACL from an interface:

[tnsr(config-interface)# no access-list input acl idsblock

Where this shorter version will remove all input ACL entries on an interface:

[tnsr(config-interface)# no access-list input acl

Finally, this form would remove all ACLs of any type from an interface:

[tnsr(config—interface)# no access-list

J

The ? help command (Finding Help) is useful in determining when these actions are possible. For example, the CLI
will show <cr> (“carriage return”) as an available keyword when testing a command:

<cr>
acl
input
macip
output

tnsr(config-interface)# no access-list ?

ACL Rule

ACL applies to ingress packets
MACIP Rule

ACL applies to egress packets

Since the help request printed <cr> among the choices, the command may be completed by pressing Enter.

Interactive Large Delete Confirmation

When performing a delete operation in sensitive areas, TNSR checks the size of the pending change when exiting
a mode or committing configuration changes. This feature prevents accidental removal of significant sections of the

router configuration.

If TNSR considers a change too large to happen automatically, such as removing the entire OSPF configuration, then
TNSR will prompt for confirmation before proceeding.

This feature is disabled by default, but may be enabled as follows:

tnsr# configure

tnsr(config)# cli option check-delete-thresholds

To disable the feature, precede it with no:

© Copyright 2025 Rubicon Communications LLC

34

Product Manual TNSR v21.03

tnsr# configure
tnsr(config)# no cli option check-delete-thresholds

For example, with the feature enabled, attempting to make a large change results in a confirmation prompt:

tnsr(config)# route dynamic ospf
tnsr(config-frr-ospf)# no server
Really delete that? [yes/no]: y
tnsr(config-frr-ospf)#

6.6.3 Troubleshooting

If a change to the candidate database fails a validation check or application of the change to the system fails for some
reason, it is discarded automatically by default. TNSR resets the candidate database to the current contents of the
running database to avoid further attempts to apply the faulty configuration contained in the candidate database.

This automatic behavior can be changed, however, in cases where power users want more control to troubleshoot failed
configuration transactions:

tnsr# configure
tnsr(config)# no cli option auto-discard

When auto-discard is disabled, if a configuration commit fails the candidate database retains the faulty configuration
data. Further configuration commands may apply additional changes to the candidate database. However, until the
configuration data which caused the failure is removed or set to a value which can be successfully applied, no further
commit will succeed.

Disabling the auto-discard feature only persists for the duration of the current CLI session in which it was disabled. At
the start of a new CLI session, auto-discard will again be enabled by default.

To view the status of the auto-discard option, use show cli:

tnsr# show cli
Discard erred candidate database: true

A faulty candidate can be viewed with the show configuration candidate command, as described in Configura-
tion Database

There are three approaches to rectify this situation:
¢ Issue alternate commands that directly correct the faulty configuration.

* Abandon the attempted configuration:

g
tnsr# configure
tnsr(config)# configuration candidate discard

L

Remove the fault from the candidate configuration by reverting to the running configuration:

g
tnsr# configure

tnsr(config)# configuration copy running candidate
tnsr(config)# configuration candidate commit

.

© Copyright 2025 Rubicon Communications LLC 35

Product Manual TNSR v21.03

6.7 Configuration Backups

The candidate and running databases can be saved to or loaded from files in the host OS. This can be used to make
backups, copy configurations to other routers, or similar purposes.

Warning: This procedure only backs up the configuration database. It does not back up other important files such
as PKI entries (Certificate Authorities, Certificates, Keys) from /etc/pki/tls/tnsr/. Copy those files, and any
other modified files such as custom scripts and shell configuration files, outside of TNSR as described in Backups
Outside of TNSR.

The filenames can take an absolute path and filename, or the path may be omitted to save the file in the directory from
which the TNSR CLI was invoked by the administrator. When saving, this file must be writable by the TNSR backend
daemon. When loading, this file must be readable by the TNSR backend daemon.

Tip: The best practice is to store backup configuration files in a secure location to prevent unauthorized access to
sensitive information.

Saving the running configuration as a backup:

tnsr# config
tnsr(config)# configuration save running backup.xml

Loading a configuration file from a backup:

tnsr# config
tnsr(config)# configuration candidate load backup.xml
tnsr(config)# configuration candidate commit

6.7.1 Backups Outside of TNSR

The previous procedure creates and restores the configuration from within the TNSR CLI. In certain cases that method
may not be viable, such as when the configuration from an older version of TNSR must be updated (Updating the
Configuration Database).

In these cases, the TNSR configuration database files in /var/tnsr may be accessed directly.

Warning: Unlike operations performed within TNSR, these actions must be performed with elevated privileges,
either by the root account or using sudo.

Warning: This procedure only backs up the configuration database. It does not back up other important files such
as PKI entries (Certificate Authorities, Certificates, Keys) from /etc/pki/tls/tnsr/. Copy those files, and any
other modified files such as custom scripts and shell configuration files, using the same method described here.

To make a configuration backup of the running database:

[$ sudo cp -p /var/tnsr/running_db ~/backup.xml

© Copyright 2025 Rubicon Communications LLC 36

Product Manual

TNSR v21.03

Warning: The configuration database files may be read while TNSR is running, but TNSR must be stopped when

making changes.

To restore a backup to the running and startup databases:

$

$
$
$

sudo tnsrctl stop

sudo cp -p ~/backup.xml /var/tnsr/running_db
sudo cp -p /var/tnsr/running_db /var/tnsr/startup_db

sudo tnsrctl start

6.8 Viewing Status Information

Status information can be viewed using the show command from either basic or configuration mode.

For a full list of possible show commands, enter show ?:

tnsr# show ?

tnsr# show version

acl

bfd

cli

clock
configuration
dataplane
documentation
dslite

gre
history-config
host

http
interface

ip

ipsec

kea

macip

map

nacm

nat

neighbor

ntp
packet-counters
prometheus
route

span

sysctl

system

trace

unbound
version

vxlan

Access Control Lists

Bidirectional Forwarding Detection
State of per-session CLI options
Show the current system date and time
Config DB configuration state
Dataplane

Documentation URLs

DS-Lite

GRE tunnels

Show history configuration

Host information

HTTP

Interface details

Internet protocol

IPsec

Kea/DHCP

MACIP Access Control Lists
MAP-E/MAP-T

NACM data

Network Address Translation
Neighbors (ARP/NDP)

NTP

Packet statistic and error counters

Show routing information

SPAN mirrors

Sysctl parameters

System information

Packet trace

Unbound DNS

Show version of system components
VXLAN tunnels

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 37

Product Manual TNSR v21.03

(continued from previous page)

Version: tnsr-v21.03-2
Build timestamp: Thu Mar 4 10:24:34 2021 CST

6.9 Networking Namespaces

The host OS and TNSR use separate network namespaces to isolate their networking functions, as covered in 7TNSR
Architecture. These are the dataplane namespace and the host namespace. The dataplane namespace is for the
networking environment managed by TNSR, and the host namespace is for the networking environment managed
by the host operating system. These two namespaces are isolated from one another and cannot communicate directly
without manually creating a link or routing between them.

6.9.1 TNSR Service Namespaces
Services on TNSR can run in the host namespace, the dataplane namespace, or both, depending on the nature of
the service.

Network-related services such as dynamic routing daemons (BGP, OSPF, OSPF6, RIP), Unbound, DHCP Server, and
IPsec run only in the dataplane namespace.

Management-oriented services such as SSH, the RESTCONF API, and SNMP run in the host namespace by default,
but these services are capable of running in both namespaces at the same time using separate instances.

The NTP daemon can run in either namespace, but cannot be active in both at once.
See also:

See Service Control for information on controlling services in multiple namespaces, and Default Namespaces for a full
list of default namespaces used by TNSR services.

6.9.2 Namespaces in TNSR CLI Commands

TNSR commands which can operate in multiple namespaces will support a namespace parameter (Either host or
dataplane) prefixed before the command. To see a list of these commands, enter the namespace name followed by ?
from master mode:

tnsr# host ?

ping Send ICMP echo

shell Invoke shell or run a command

traceroute Determine path to destination
tnsr# dataplane ?

ping Send ICMP echo

shell Invoke shell or run a command

traceroute Determine path to destination

The remainder of the command parameters are the same.

Note: The ping and traceroute commands default to the dataplane namespace if the parameter is omitted.

Configuration commands for items which support multiple namespaces are called out throughout the documentation
where appropriate. Typically these will have either a namespace parameter or command, depending on the service and
mode.

© Copyright 2025 Rubicon Communications LLC 38

Product Manual TNSR v21.03

6.9.3 Namespaces in Shell Commands
When operating in a shell on the TNSR device, commands can be run in the current namespace or another namespace.
Outside of TNSR, the shell defaults to the host namespace.

From the TNSR CLI, a shell must be started in a specific namespace as mentioned previously in Namespaces in
TNSR CLI Commands. For example, using dataplane shell starts a shell where all commands are executed in
the dataplane namespace, and host shell uses the host namespace.

When using a host namespace shell, specific commands may be executed in the dataplane namespace in two ways.

sudo ip netns exec dataplane <command>
This method requires elevated privileges using sudo or to be run from a shell as root.

dp-exec <command>
TNSR includes a convenience launcher program, dp-exec, which may be run by any user and exe-
cutes the given command in the dataplane namespace as the current user.

When using a dataplane namespace shell, commands may be executed in the host namespace by using sudo
nsenter -t 1 -n -- <command>. This requires elevated privileges using sudo or to be run from a shell as root.

6.10 Service Control

Services controlled directly by TNSR can be restarted from within the TNSR CLI in configuration mode.

To control a service, use the service command as follows:

tnsr# configure

tnsr(config)# service (backend|bgp|dataplane|dhcp|ike|ospf|ospf6]|restconf|rip|unbound)
—<action>

tnsr(config)# service (http|ntp|prometheus|snmp|ssh) <namespace> <action>

name
The name of the service to configure. Must be one of:

backend
Configuration backend (clixon_backend)

bgp
BGP routing (bgpd, zebra)

dataplane
Dataplane (vpp)

dhcp
DHCP (kea)

http
HTTP for RESTCONF API (nginx)

ike
IKE daemon for IPsec (charon)

ntp
Time service (ntpd)

ospf
OSPF Routing (ospfd, zebra)

© Copyright 2025 Rubicon Communications LLC 39

Product Manual TNSR v21.03

ospf6
OSPF6 Routing (ospf6d, zebra)

prometheus
Prometheus exporter (vpp_prometheus_export)

restconf

RESTCONF API (clixon_restconf)
rip

RIP Routing (ripd, zebra)

snmp
SNMP Server (snmpd)

ssh
Secure Shell server (sshd)

unbound
DNS Resolver (unbound)

namespace
Services which are capable of running in more than one namespace (Networking Namespaces) take
the namespace as a second parameter. The namespace can be:

dataplane
Control the service instance running in the dataplane namespace This service will be
reachable on interfaces and addresses managed by TNSR.

host
Control the service instance running in the host OS namespace. This service will be
reachable on interfaces and addresses managed by the host OS.

action
The action to take on the service. Must be one of:

start
Start the service if it is not already running.

stop
Stop the service if it is currently running.

restart
Stop and restart the service, or start the service if it is not running. This action is not
available for the dhcp service.

reload
Reload the service configuration without restarting. This action is available for the dhcp
and unbound services.

status
Show the current status of the service daemon(s) and the last few log entries.

coredump (enable|disable)
Enable or disable core dumps, which are generated if the service encounters a problem.
See Diagnosing Service Issues.

© Copyright 2025 Rubicon Communications LLC 40

Product Manual TNSR v21.03

6.11 Diagnostic Utilities

The TNSR CLI includes convenience utilities for testing connectivity.

6.11.1 Diagnostic Routing Behavior
The utilities in this section behave the same with regard to routing. They can operate in either the host or dataplane

namespace (Networking Namespaces), and default to using the dataplane namespace so the tests will run using the
same networking environment as TNSR.

Test packets will follow the routing table available in the namespace.

6.11.2 Ping

To perform a basic ICMP echo request, use the ping command:

[tnsr# ping <destination host> J

TNSR will send 10 ICMP echo requests to the destination host using the dataplane namespace, waiting a maximum
of 12 seconds for a reply.

The ping command supports a number of additional parameters which alter its behavior:

tnsr# [(host|dataplane)] ping (<dest-host>|<dest-ip>) [ipv4|ipv6]
[interface <if-name>] [source <src-addr>] [count <count>]
[packet-size <bytes>] [ttl <ttl-hops>] [timeout <wait-sec>]
[buffered] [interval <seconds:0.000001-6000>]

host|dataplane
The namespace (Networking Namespaces) in which the command will run.

dest-host|dest-ip
The target of the ICMP echo request. This may be a hostname, IPv4 IP address, or IPv6 IP address.

ipvdlipv6
When a hostname is used for the destination, this parameter controls the address family used for
the ICMP echo request when the DNS response for the hostname contains both IPv4 (A) and IPv6
(AAAA) records.

interface
The TNSR interface from which the ICMP echo requests will originate.

source
The source IP address for the ICMP echo requests. If omitted, an address will be automatically
selected on the interface through which the packet will exit toward the target.

count
The number of ICMP echo requests to send. Default value is 10.

packet-size
The size of of the ICMP echo request payload, not counting header information. Default value is 56.

ttl
The Time To Live/Hop Limit value for ICMP echo requests, which can limit how far they may travel
across the network. Default value is 121 hops.

© Copyright 2025 Rubicon Communications LLC 41

Product Manual TNSR v21.03

timeout
The total time to wait for the command to complete.

buffered
Execute the command in the backend and only display the results when the test completes. Otherwise
the command is run through the terminal and the CLI displays the results live.

interval
The amount of time in seconds to wait between ICMP echo requests. Fractional seconds are allowed.
Value must be in the range 0.000001-6000.

6.11.3 Traceroute

To perform a network routing trace to a destination host, use the traceroute command:

[tnsr# traceroute <destination host>

As with the ping command, there several additional parameters to change the behavior of the trace:

tnsr# [(host|dataplane)] traceroute (<dest-host>|<dest-ip>) [ipv4|ipv6]
[interface <if-name>] [source <src-addr>] [packet-size <bytes>]
[no-dns] [ttl <ttl-hos>] [waittime <wait-sec>] [buffered]

Most parameters are the same as those found in ping (Ping). Only the items that differ are as follows:

no-dns
Do not attempt to use DNS to reverse resolve hosts that respond to probes.

waittime
Amount of time the command will wait for individual probe responses to return.

Warning: The traceroute command requires /usr/bin/traceroute to be present in the base operating sys-
tem. The TNSR package set includes a dependency which will automatically install a package for traceroute. It
may also be installed manually using sudo dnf install -y traceroute or a similar command, depending on
the host OS package management configuration.

6.12 Basic System Information

The TNSR CLI can set several basic elements about the system itself, which also serves as a good introduction to
making changes on TNSR. These settings are made in config mode.

Tip: These values are also propagated to SNMP, if configured. See Simple Network Management Protocol for infor-
mation on setting up SNMP.

The following parameters are available:

system contact <text>
System contact information, such as an e-mail address or telephone number (sysContact in SNMP).

system description <text>
A brief description of this TNSR instance, for example its role or other identifying information
(sysDescr in SNMP).

© Copyright 2025 Rubicon Communications LLC 42

Product Manual TNSR v21.03

system location <text>
The location of this TNSR instance, for example a physical location such as a building name, room
number, rack number/position, or VM host (sysLocation in SNMP).

system name <text>
The hostname of this TNSR instance (sysName in SNMP).

Warning: This setting also changes the hostname in the host operating system to match, replac-
ing any previously configured hostname.

This example shows how to set the above parameters, starting from master mode:

gw tnsr# configure

gw tnsr(config)# system contact support@example.com
gw tnsr(config)# system description TNSR Lab Router
gw tnsr(config)# system location HQ MDF/Rack 2 Top
gw tnsr(config)# system name labrtr01

labrtr®1 tnsr(config)# exit

To view the values of these parameters, along with uptime and memory usage, use the show system command from
either master or config mode:

labrtr®1 tnsr# show system
description: TNSR Lab Router
contact: support@example.com
name: labrtr01
location: HQ MDF/Rack 2 Top
System Parameters:
object-id: 1.3.6.1.4.1.13644
uptime: 1303615 seconds
total-ram: 8004488 KiB
free-ram: 3236820 KiB
total-swap: 2932732 KiB
free-swap: 2932732 KiB

Platform:
os-name: Linux
os-release: 3.10.0-957.21.3.el7.x86_64
os-version: CentOS Linux release 7.6.1810 (Core)
machine: x86_64

Product:
product-vendor: Netgate
product-name: TNSR
product-model: x
product-serial: 0

© Copyright 2025 Rubicon Communications LLC 43

Product Manual TNSR v21.03

6.12.1 System DNS Resolution Behavior

The way TNSR and the host OS resolve hostnames via DNS can be fine-tuned if necessary. DNS resolution behavior
has a separate configuration for each namespace (Networking Namespaces).

The default behavior in each namespace depends on the interface configuration. For example, if an interface is config-
ured for DHCP, the DNS server supplied by the DHCP server will be used automatically.

DNS resolution behavior is configured using the system dns-resolver <namespace> command, which enters
config-dns-resolver mode. In that mode, the following commands are available:

server <ip-addr>
Configures a DNS server IP address to be used as a forwarding DNS server in this namespace. This
command may be repeated multiple times to configure multiple servers.

search <domain>
Configures a search domain, which is appended to hostnames without a domain name if a result is
not found. This command may be repeated multiple times to configure multiple search domains.

DNS Resolution Examples

If Unbound is active and allows queries from 127.0.0.1, then the dataplane can be configured to use it as a DNS
server:

tnsr(config)# system dns-resolver dataplane
tnsr(config-dns-resolver)# server 127.0.0.1
tnsr(config-dns-resolver)# exit

Since the host namespace cannot access unbound running in the dataplane namespace, it must use a different
external DNS server. Configure the host operating system namespace to use specific forwarding DNS servers directly
as follows:

tnsr(config)# system dns-resolver host
tnsr(config-dns-resolver)# server 8.8.8.8
tnsr(config-dns-resolver)# server 8.8.4.4
tnsr(config-dns-resolver)# exit

6.13 Rebooting the Router

The reboot command, available in config mode, initiates an operating system reboot. This is equivalent to using the
shutdown -r command from a shell prompt.

Warning: This action will cause an outage until the system fully restarts.

The general form of the reboot command is:

tnsr(config)# reboot (now|<minutes>) [force]
tnsr(config)# reboot cancel

The command has a few available options to control its behavior:

now
Prompts for confirmation and then immediately initiates a reboot.

© Copyright 2025 Rubicon Communications LLC 44

Product Manual TNSR v21.03

<minutes>
Prompts for confirmation and then schedules a reboot for the given number of minutes in the future.

force
Modifies either the now or <minutes> format commands to run without confirmation.

cancel
Cancels a previously scheduled reboot.

© Copyright 2025 Rubicon Communications LLC 45

CHAPTER
SEVEN

BASIC CONFIGURATION

Now that TNSR is installed, it needs additional manual setup.

Note: This section assumes TNSR was installed as described in /nstallation. Devices pre-loaded with TNSR by
Netgate do not require these extra steps.

This section contains information for a manual setup of interfaces. It can also serve as a reference for activating
additional hardware added to an existing installation.

7.1 Setup Interfaces

TNSR requires complete control of the network interfaces that it will use. This means that the host operating system
must not be attempting to use or control them in any way. The device ID of the interface(s) also must be obtained to
inform VPP and TNSR what interfaces to use. The interface link can be tuned through VPP and configured through
TNSR.

Warning: The host management interface must remain under the control of the host operating system. It must not
be configured as an interface to be controlled by TNSR.

Network interfaces not configured in the installer will be disabled in CentOS during the installation process. The
interfaces will need to be re-enabled in TNSR. For a fresh installation of TNSR, skip ahead to Setup NICs in Dataplane.

Interfaces added to the TNSR instance after the initial setup will need to be disabled using the following procedure.

7.1.1 Identify NICs to use with TNSR

To start, locate the network interfaces in use by the host operating system. View a list of network interfaces known to
the host OS with this command:

[$ ip link

To determine if a network interface is in use by the host OS, run the following command:

[$ ip link show up

If an interface shows in that list, and its name does not start with vpp, then it is under control of the host.

46

Product Manual TNSR v21.03

Note: The TNSR installer will automatically mark any interface not configured in the installer for use by TNSR.

Make a note of the network interfaces and their purpose. Note which interface will be used for host management, and
which interfaces will be used by TNSR. The host management interface will be left under the control of the operating
system, while the remaining interfaces may be used by TNSR. In this example, the host contains four network interfaces:
enp0s20£0, enp®s20£f1, enp0s20£2, and enp®s20£f3 and TNSR will use enp®s20£f1 and enp0s20£2.

7.2 Disable Host OS NICs for TNSR

In order for TNSR to control network interfaces, they must be disabled in the host OS. In most cases this is not necessary,
as network interfaces not configured in the installer will be automatically disabled in CentOS during the installation
process. For a fresh installation of TNSR, skip ahead to Setup NICs in Dataplane. This section remains to explain
how to change interfaces added after initial installation, or for installations which do not contain whitelisted network
interfaces.

This is a two-step process. First, the link must be forced down, and then the network interface must be disabled in
Network Manager.

Warning: The host management interface must remain under the control of the host operating system. It must not
be configured as an interface to be controlled by TNSR. Do not disable the management interface during this step.

For each of the interfaces noted in the last section, manually force the link down:

[$ sudo ip link set <interface name> down

For example:

$ sudo ip link set enp0s20f1 down
$ sudo ip link set enp0s20f2 down

Next, disable these network interfaces in Network Manager. For each of these interfaces, edit the corresponding startup
script:

[$ sudo vi /etc/sysconfig/network-scripts/ifcfg-<interface name>

In each of these files, ensure the following values are set. Add lines if they are not already present in the file:

ONBOOT=no
NM_CONTROLLED=no

Note: To change an interface from being usable by TNSR to back under host OS control, see Remove TNSR NIC for
Host Use.

© Copyright 2025 Rubicon Communications LLC 47

Product Manual TNSR v21.03

7.3 Setup NICs in Dataplane

Next, determine the device ID for the interfaces. Start the CLI (Entering the TNSR CLI) and run the following command
to output the device IDs as seen by the dataplane:

tnsr# configure
tnsr(config)# dataplane dpdk dev ?

0000:02:01.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet
Controller (Copper) (rev 01) (Active Interface eth®)

0000:02:02.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet
Controller (Copper) (rev 01)

0000:02:03.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet

Controller (Copper) (rev 01)

Interfaces under host control will be noted in the output with Active Interface. Other listed interfaces are usable by
TNSR.

For a fresh installation of TNSR, skip ahead to Configuring Interfaces for TNSR, otherwise continue on to identify host
interfaces added after TNSR was installed.

7.3.1 Host Interface Name to Dataplane ID Mapping

The output of the dataplane dpdk dev ? command includes the device IDs in the first column. The device IDs will
map to the network cards in a way that is typically easy to determine. For example:

Table 1: Interface Identifiers

Interface Identifier

enp0s20f0 0000:00:14.0
enp0s20f1 0000:00:14.1
enp0s20f2 0000:00:14.2
enp0s20f3 0000:00:14.3
enp3s0 0000:03:00.0
enp4s0 0000:04:00.0

The host OS interface name and VPP identifiers contain the same information represented in different ways. They both
reference the PCI bus number, slot number, and function number. The Interface name contains the values in decimal
while the identifier shown in VPP uses hexadecimal.

Deconstructing the first interface name, it contains the following:

Table 2: Interface Name Components

Component Interface Value VPP ID Value

Device Type en (Ethernet) n/a

PCI Bus pO 00

Bus Slot s20 14 (Decimal 20 in Hex)
Function {0 .0

Using this pattern, make a note of the VPP identifiers for the next step. In this example, since enp®s20£f1 and
enp0s20£2 are the interfaces to use, the corresponding VPP IDs are 0000:00:14.1 and 0000:00:14.2.

© Copyright 2025 Rubicon Communications LLC 48

Product Manual TNSR v21.03

7.3.2 Configuring Interfaces for TNSR

Next, edit the dataplane configuration. Start the CLI (Entering the TNSR CLI) and enter configuration mode:

tnsr# configure
tnsr(config)#

Add the device IDs of the interfaces to be used by the VPP dataplane, determined above:

tnsr(config)# dataplane dpdk dev 0000:00:14.1 network
tnsr(config)# dataplane dpdk dev 0000:00:14.2 network

Then commit the configuration:

[tnsr(config)# configuration candidate commit J

Restart the VPP dataplane:

tnsr(config)# service dataplane restart
tnsr(config)# exit

The interfaces will now be available for TNSR. Start the CLI again and run show interface and verify that the
interfaces appear in the output. The output example below has been shortened for brevity:

tnsr# show interface
Interface: GigabitEthernet®/14/1

[...]

Interface: GigabitEthernet0/14/2
[...]

Interface: local®

[...]

The TNSR interface name also reflects the type, followed by the PCI Bus/Slot/Function ID of each interface, using the
same hexadecimal notation as VPP.

Note: The dataplane uses hexadecimal values by default but can use decimal values instead by setting dataplane
dpdk decimal-interface-names. See DPDK Configuration for details.

Note: Once TNSR attaches to interfaces in this way, they will no longer be shown as devices in the host OS. To return
a network interface back to host OS control, see Remove TNSR NIC for Host Use.

One exception to this behavior is Mellanox network interfaces as they use the same driver for both host OS and DPDK,
they still appear in the host OS.

© Copyright 2025 Rubicon Communications LLC 49

Product Manual TNSR v21.03

Customizing Interface Names

The default interface names, such as GigabitEthernet®/14/1, may be customized by an administrator. To customize
the names, the PCI ID of the device must be known. The custom names can be used anywhere that an interface name

is necessary in TNSR.

Note: Only dataplane hardware interface names may be customized in this way. Interfaces from virtual sources such

as loopback, IPsec, and GRE cannot be renamed.

The command to rename interfaces is dataplane dpdk dev <pci-id> network name <name>. To activate the

change, the dataplane must be restarted after making the name change.
This example changes the name of GigabitEthernet0/14/1, PCIID 0000:00:14.1, to DMZ:

First, look at the list of interfaces. Note that the interface is in the list with its original name:

tnsr# show interface
Interface: GigabitEthernet®/14/1

[...]

Interface: GigabitEthernet0/14/2
[...]

Interface: local®

[...]

Next, remove any references to the interface from TNSR, and then remove the interface configuration entirely:

[tnsr(config)# no interface GigabitEthernet®/14/1

Now set the name of the device, then restart the dataplane:

tnsr(config)# dataplane dpdk dev 0000:00:14.1 network name DMZ
tnsr(config)# service dataplane restart

After the dataplane restarts, the interface will appear in the list with its new name:

tnsr# show interface
Interface: DMZ

[...]

Interface: GigabitEthernet0/14/2
[...]

Interface: local®

[...]

To change the name back at a later time, all references to the interface must first be removed, and then the name can be

reset:

tnsr(config)# no interface DMZ
tnsr(config)# no dataplane dpdk dev 0000:00:14.1 name
tnsr(config)# service dataplane restart

© Copyright 2025 Rubicon Communications LLC

50

Product Manual TNSR v21.03

7.3.3 Troubleshooting

If the interfaces do not appear in the show interface output, the default driver did not attach to those interfaces and
they may require a different driver instead. To see a list of available drivers, use the following command from config
mode:

tnsr(config)# dataplane dpdk uio-driver ?

igb_uio UIO igb driver
uio_pci_generic Generic UIO driver
vfio-pci VFIO driver

To enable a different driver, complete the command using the chosen driver name, then commit the configuration and
restart the dataplane.

Note: Ethernet 700 Series Network Adapters based on the Intel Ethernet Controller X710/XL710/XXV710 and Intel
Ethernet Connection X722 are not compatible with the uio_pci_generic DPDK driver. For these devices, use the
igb_uio driver instead.

Note: Mellanox devices use RDMA and not UIO, so changing this driver will not have any effect on their behavior. If
a Mellanox device does not appear automatically, TNSR may not support that device.

tnsr(config)# dataplane dpdk uio-driver igb_uio
tnsr(config)# configuration candidate commit
tnsr(config)# service dataplane restart
tnsr(config)# exit

Then attempt to view the interfaces with show interface again. If they are listed, then the correct driver is now
active.

Warning: When using the vfio-pci driver, the DPDK IOVA mode must be explicitly set to pa. See DPDK
Configuration for more details.

7.4 Setup QAT Compatible Hardware

TNSR Supports hardware compatible with Intel® QuickAssist Technology, also known as QAT, for accelerating cryp-
tographic and compression operations.

This hardware can be found in CPIC cards as well as many C3000 and Skylake Xeon systems. Netgate XG-1541 and
XG-1537 hardware has an add-on option for a CPIC card.

© Copyright 2025 Rubicon Communications LLC 51

Product Manual TNSR v21.03

7.4.1 Setup Process

Enable SR-IOV in the BIOS

SR-IOV is required for QAT to function in TNSR. SR-IOV enables Virtual Functions which are required for binding
by crypto devices.

The procedure to enable SR-IOV varies by platform. Generally this involves rebooting the hardware and entering the
BIOS setup, making the change, and then saving and rebooting. The exact location of the SR-IOV option also varies
in different BIOS implementations.

Note: Netgate devices which ship with a CPIC card preinstalled will have this step completed at the factory, but double
check the BIOS to ensure it is set as expected.

Disable VT-d in the BIOS

Certain combinations of hardware may experience problems with QAT when VT-d is enabled in the BIOS. As such,
we recommend disabling VT-t in the BIOS for the best possible experience with QAT. Netgate XG-1537 and XG-1541
devices with a DH895xcc QAT CPIC card installed are known to have this limitation.

Note: One exception to this is the SG-5100 device, which is capable of using QAT while VT-d is active in its BIOS.

The procedure to disable VT-d varies by platform. The setting is typically located under Advanced > Chipset Con-
figuration > North Bridge > I1IO > VT-d or along a similar path.

If VT-d and QAT are incompatible, the problem can manifest in a few different ways, including:
¢ IPsec tunnels may come up but drop packets or otherwise fail to pass traffic.

* Errors may appear on the console when the dataplane tries to send buffers to the QAT device:

[110772.063766] DMAR: [DMA Read] Request device [04:01.0] fault addr 406482000..
—[fault

reason 06] PTE Read access is not set
[110773.059440] DMAR: DRHD: handling fault status reg 102

* The number of used “in flight” buffer resources will continually increase as traffic attempts to pass through
IPsec, as observed under used_resources in the output of the dataplane shell sudo vppctl show dpdk
crypto devices CLI command.

Enable IOMMU in grub
IOMMU (Input—Output Memory Management Unit), which in this context is also known as Intel VT-d, must be enabled
in grub for QAT to function. It functions similar to PCI passthrough, allowing the dataplane to access the QAT device.
To enable IOMMU in grub:

* Open /etc/default/grub in a text editor (as root or with sudo)

* Locate the line starting with GRUB_CMDLINE_LINUX

¢ Check if that line includes intel_iommu=on iommu=pt

* If those parameters are not included on the line, append them to the end, before the end quote.

© Copyright 2025 Rubicon Communications LLC 52

Product Manual TNSR v21.03

* Save and exit the text editor
* Run one following commands (depending on how the device boots):
— Legacy: sudo grub2-mkconfig -o /boot/grub2/grub.cfg
— UEFI: sudo grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg

¢ Reboot the device

Change the uio driver to igb_uio

Next, change the TNSR dataplane uio driver to igb_uio:

tnsr# configure
tnsr(config)# dataplane dpdk uio-driver igb_uio

Note: As of TNSR 20.02, igb_uio is the default driver.

Configure the QAT PCI device in TNSR

Next, configure the QAT device in TNSR.

To configure this device, first locate its PCI ID. TNSR will print the PCI ID when viewing possible parameters for
dataplane devices

tnsr(config)# dataplane dpdk dev ?

0000:03:00.0 Ethernet controller: Intel Corporation Ethernet Connection X552..
—10 GbE SFP+

0000:03:00.1 Ethernet controller: Intel Corporation Ethernet Connection X552,
—10 GbE SFP+

0000:04:00.0 Co-processor: Intel Corporation DH895XCC Series QAT

0000:05:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network.
—Connection (rev 01) (Active Interface enol)

0000:05:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network..
—Connection (rev 01)

In this instance, the following line from the output is for the QAT device:

[0@00:04:00.@ Co-processor: Intel Corporation DH895XCC Series QAT

The first value printed on the line is the PCI ID, 0000 :04:00.0.

Now, tell TNSR the device at that address is a crypto device:

[tnsr(config)# dataplane dpdk dev 0000:04:00.0 crypto }

If TNSR is running in a virtual machine and the QAT device is passed through from the hypervisor host system using
SR-IOV, use crypto-vf at the end of the command instead. When the device is defined with crypto-v{, the dataplane
uses the Virtual Function (VF) instead of the Physical Function (PF), since the PF is not directly available in a virtual
machine.

© Copyright 2025 Rubicon Communications LLC 53

Product Manual TNSR v21.03

Note: Typically a VF can be identified by the string Virtual Function printed in the device description listed by
dataplane dpdk dev ?. Some platforms may not make this distinction visible to TNSR, so the general guideline is
to use crypto-vf when running in a virtual machine and crypto otherwise.

Note: TNSR will only display device types which are usable by the dataplane. This means:
» If a PF is available, it is usable by the dataplane and will appear in the device list.

 If a VF is available without a corresponding PF, the VF is usable by the dataplane and will appear in the device
list.

If both a VF and corresponding PF are available, only the PF is usable by the dataplane and thus only the PF will
appear in the device list.

Activate and check the settings

When viewing the XML configuration with show configuration running, it will contain settings similar to the
following example. Note that if other dataplane options are present in the configuration, those will also be visible. Here
is how it looks once configured:

<dataplane-config>
<dpdk>
<dev>
<id>0000:04:00.0</id>
<device-type>crypto</device-type>
</dev>
<uio-driver>igb_uio</uio-driver>
</dpdk>
</dataplane-config>

After configuring the crypto device and uio driver, TNSR will commit the settings to the dataplane configuration.

To activate the new settings, restart the dataplane.

tnsr(config)# service dataplane restart
tnsr(config)# exit
tnsr#

Lastly, using the dataplane shell command, verify that VPP can see the crypto device:

tnsr# dataplane shell sudo vppctl show dpdk crypto devices
0000:04:00.0_gat_sym crypto_qgat up

numa_node 0, max_queues 2

free_resources 0, used_resources 1

SYMMETRIC_CRYPTO, SYM_OPERATION_CHAINING, HW_ACCELERATED, IN_PLACE_SGL, OOP_SGL_IN_SGL_
—0UT, OOP_SGL_IN_LB_OUT, OOP_LB_IN_SGL_OUT, OOP_LB_IN_LB_OUT

Cipher: none, aes-cbc-128, aes-cbc-192, aes-cbc-256, aes-ctr-128, aes-ctr-192, aes-ctr-
256, aes-gcm-128, aes-gcm-192, aes-gcm-256

Auth: none, md5-96, shal-96, sha-256-96, sha-256-128, sha-384-192, sha-512-256

© Copyright 2025 Rubicon Communications LLC 54

Product Manual

TNSR v21.03

7.4.2 Troubleshooting

If the QAT device does not appear in the show dpdk crypto devices output, or it only shows an AES-NI device,
then VPP can not see the crypto device. To correct this, first verify the QAT drivers are loaded, VFs exist for the QAT

device, and grub BOOT_IMAGE is passing the necessary iommu parameters.

Verify IOMMU parameters:

[$ dmesg | grep iommu

The following parameters should appear somewhere on the BOOT_IMAGE line in the dmesg output:

[intel_iommu:on iommu=pt

Verify that the QAT drivers are loaded in the operating system:

$ 1lsmod | grep gat

gat_dh895xccvf 13281
gat_dh895xcc 13510
intel_qgat 141755
dh_generic 13286
rsa_generic 18819
authenc 17776

e e = =)

gat_dh895xccvf,qat_dh895xcc
intel_qat
intel_qgat
intel_qgat

Verify Virtual Functions (VFs) exist for the QAT device:

[$ lspci | grep QAT | wc -1

)

The number of listings are dependent on how many threads VPP uses to process packets. At minimum there will be at

least three entries, but there may be many more. The lines will look similar to this example:

04:00.0 Co-processor: Intel Corporation DH895XCC Series QAT

04:01.0 Co-processor: Intel Corporation DH895XCC Series QAT Virtual Function
04:01.1 Co-processor: Intel Corporation DH895XCC Series QAT Virtual Function

TNSR stores the device Physical Function (PF), 84:00.0 for example, in its configuration because the VFs do not yet
exist at boot time. They are created by clixon-backend when it processes the crypto device. Then, the allocated
VFs on the PF have their addresses written to startup.conf.

The VFs are bound to igb_uio because igb_uio is a driver which allows a userspace process to do RDMA on buffers

that are used by a PCI device.

If the drivers are loaded and the VFs show under 1spci, then verify /etc/vpp/startup.conf has the appropriate
dpdk settings. The igb_uio driver must be present and the PCI IDs of TNSR interfaces along with one of the VFs for

the QAT device:

dpdk {
uio-driver igb_uio
dev 0000:04:01.0
dev 0000:05:00.1
dev 0000:03:00.0
dev 0000:03:00.1

}

If that looks correct, verify igb_uio is being used by the QAT VF and interfaces:

© Copyright 2025 Rubicon Communications LLC

55

Product Manual

TNSR v21.03

$ sudo vppctl show pci all | grep igb_uio
0000:03:00.0 O 8086:15ac 2.5 GT/s x1
0000:03:00.1 0O 8086:15ac 2.5 GT/s x1
0000:04:01.0 O 8086:0443 unknown

0000:05:00.1 0 8086:1521 5.0 GT/s x4

igb_uio
igb_uio
igb_uio
igb_uio

Physical TNSR interfaces will display there in addition to the QAT VF ID, which matches the QAT VF ID configured

for dpdk in /etc/vpp/startup.conf.

If any of those tests do not provide the expected output, then reboot the system and check again. Ensure the TNSR

services and VPP are running, and then check the VPP QAT status again.

[$ sudo vppctl show dpdk crypto devices

]

If there is still no output, verify the PCI ID for the crypto device specified in TNSR is accurate. It must be the first
PCI ID displayed by 1spci | grep gat. Then verify the PCI ID of the next listing in that output (first VF device) is
specified in /etc/vpp/startup.conf properly and also the same PCI ID seen by VPP when running:

[$ sudo vppctl show pci all | grep igb_uio

7.5 Remove TNSR NIC for Host Use

If TNSR is controlling a network interface that should be used by the host OS, it can be returned to host OS control in

a few steps.

7.5.1 Locate the Interface

First, identify the interface in question. The PCI ID and Linux interface name are required to proceed, and Host
Interface Name to Dataplane ID Mapping explains the relationship between these interface names and IDs.

In this example, the TNSR interface GigabitEthernet0/14/3 will be returned to the host OS. Based on the name, the
PCIID is 0000:00:14. 3, and converting from hexadecimal to decimal yields the Linux interface name enp0s20£3.

This is determined based on PCI bus 0, Bus slot 20 (decimal), function 3.

7.5.2 Remove the Interface from TNSR

First, remove any configuration items using the interface. The interface could be present in several places, so inspect

the entire running configuration for references to this interface and then remove them.

Next, remove the interface configuration itself:

tnsr# configure

tnsr(config)# no interface GigabitEthernet®/14/3

If the interface was manually specified in the dataplane by PCI ID as mentioned in Configuring Interfaces for TNSR,
that must be also be removed. This will be present in the running configuration inside the <dataplane> section, if one

exists. To remove the configuration, follow this example using the correct PCI ID:

[tnsr(config)# no dataplane dpdk dev 0000:00:14.3

)

Save the configuration after making these changes, as the next steps will involve actions that may result in the startup

configuration being used by TNSR:

© Copyright 2025 Rubicon Communications LLC

56

Product Manual TNSR v21.03

[tnsr(config)# configuration copy running startup J

Exit the TNSR CLI.

7.5.3 Edit the Host Interface Configuration

The network manager interface configuration scripts are located in /etc/sysconfig/network-scripts/. This di-
rectory will contain an interface configuration script for the Linux interface name determined above, in the form of
ifcfg-<name>. In this example, this is ifcfg-enp0s20£3.

From a shell on the host OS, edit the file for this interface using sudo, for example:

[$ sudo vi /etc/sysconfig/network-scripts/ifcfg-enp0s20£f3]

Inside that file change ONBOOT to yes:

[ONBOOT:yes

Remove the NM_CONTROLLED line. if one is present.

7.5.4 Reactivate the Host Interface

At this point, the interface is ready to return to host OS control. There are two methods to complete the process: Reboot
the host, or manually reactivate the interface.

Reboot

The fastest and easiest option is to reboot the host. This will allow the host to naturally locate and resume control of
the device.

Warning: All traffic processing by TNSR will stop while the host is rebooting!

Reboot the host from the shell as follows:

[$ sudo shutdown -r

Manually Reactivate

Warning: The following procedure is advanced and we do not recommend using this method. We strongly advise
rebooting the host instead.

There is also a manual method which may be used if a reboot is not feasible.

First, stop TNSR and related services:

Warning: This command will stop TNSR and all traffic processing!

© Copyright 2025 Rubicon Communications LLC 57

Product Manual TNSR v21.03

[$ sudo tnsrctl stop J

Next, start a root shell and unbind the device from the current driver (TNSR):

$ sudo -s
echo '0000:00:14.3"' > '/sys/bus/pci/devices/0000:00:14.3/driver/unbind’

Warning: Note the use of the PCI ID in both locations in the command, and the use of quotes around parameters.

That leaves the device unbound. Now it must be returned to a host kernel driver. The name of this driver depends on
the hardware. For most Netgate TNSR devices this will be igb, as in the following example.

Still using the root shell from the previous command, bind the interface to the driver as follows:

[# echo '0000:00:14.3' > '/sys/bus/pci/drivers/igb/bind’

Lastly, start the dataplane and related services:

[$ sudo tnsrctl start

7.5.5 Configure the Host Interface

At this point the interface is now under host OS control and will be listed in the output of ip and similar commands.

$ ip addr show dev enp0s20f3
5: enp®s20£f3: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc mq state DOWN group..
—.default glen 1000

link/ether 00:08:a2:09:95:b4 brd ff:ff:ff:ff:ff:ff

The interface configuration in the host OS can be used to change the interface behavior as needed. The default behavior
isto act as a DHCP client. This can be changed by editing the interface configuration file noted in Edit the Host Interface
Configuration. Consult the CentOS documentation for additional details.

7.6 Secure Shell (SSH) Server

The Secure Shell (SSH) service, sshd, is always enabled in the host namespace (Networking Namespaces) by default.
The SSH service can also run in the dataplane namespace, and may be active in both namespaces at the same time.
The dataplane namespace instance of SSH is configured using the ssh dataplane (enable|disable) command.

Warning: Though the SSH service is capable of running in the dataplane namespace, it should not be exposed
to insecure networks. Brute force and other attacks against SSH servers are common on the Internet, and exposing
TNSR to such attacks reduces its overall security. At a minimum, access to the service should be restricted to
specific remote hosts or networks by ACLs.

The best practice is to only run SSH in the host namespace.

To enable the SSH service for the dataplane namespace:

© Copyright 2025 Rubicon Communications LLC 58

Product Manual TNSR v21.03

[tnsr(config)# ssh dataplane enable J

To disable the SSH service for the dataplane namespace:

[tnsr(config)# ssh dataplane disable J

7.6.1 Control the SSH Service

The SSH service is controlled by the service ssh (host|dataplane) (start|stop|restart|status) com-
mand.

In most cases manual control of the service is unnecessary as the server will start and stop as needed based on the
configuration.

© Copyright 2025 Rubicon Communications LLC 59

CHAPTER
EIGHT

UPDATES AND PACKAGES

TNSR software updates are available to download over the Internet using Linux package management tools (RPM,
yum). The settings required to communicate with the software repository containing TNSR updates are preconfigured
on TNSR. Connections to the Netgate TNSR repository must be authenticated using a valid signed client certificate.

Warning: TNSR Home+Lab installations can be updated in-place by purchasing a TNSR Business subscription
and installing a signed update certificate.

If a subscription isn’t necessary at this time, install the newest version of TNSR Home+Lab software after registering
for the newest version of TNSR software, and then migrate any configuration settings.

Note: All versions of TNSR, including Home+Lab, can update the operating system even without the TNSR update
certificate in place. Only TNSR-related packages require authentication to update.

This guide explains how to obtain and install the required client certificate on a TNSR instance.

Warning: Portions of this process are not final and may change.

Commands must be executed on the TNSR instance to generate an X.509 certificate signing request. The request must
then be submitted to Netgate for signing. Once the request has been signed and a certificate has been generated, the
certificate must be downloaded and installed in TNSR.

Note: While it is possible to create the certificate outside of TNSR and import it afterward, this guide only demonstrates
using TNSR directly. See Public Key Infrastructure for more details about creating and importing certificates.

At a high level, the steps involved in the process can be summarized as:

60

https://www.tnsr.com/subscriptions
https://www.tnsr.com/subscriptions
https://www.tnsr.com/subscriptions
https://docs.netgate.com/tnsr/en/latest/updating/updating.html?#upgrading-by-redeploying-tnsr

Product Manual

TNSR v21.03

8.1 Generate a Key Pair

This guide uses the TNSR CLI pki commands documented in Public Key Infrastructure to generate cryptographic
keys that can be used for secure communications and authentication.

Warning: When creating keys and certificates for updates, the name of each component must be tnsr-updates,
which is the name required by the software repository configuration.

The first step is to generate a set of cryptographic keys:

tnsr# pki private-key tnsr-updates generate

tnsr#

Note:

This command can be run only once successfully as TNSR will not overwrite an existing key. To generate a
new key, remove the existing key first.

This new tnsr-updates key object contains the private key, which is secret, and a public key, which is included in
the certificate.

The same key pair can be used as the basis for multiple certificate signing requests. If a certificate expires, is accidentally
deleted, or needs to be replaced for any other reason other than the keys being compromised, generate a new signing
request using the existing key pair.

8.2 Generate a Certificate Signhing Request

The Certificate Signing Request (CSR) contains a public key derived from the key pair generated in the previous step,
plus attributes that uniquely identify the requester. A CSR is signed by a Certificate Authority to generate a certificate.

To generate a CSR, first set values which identify this TNSR instance:

tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#

pki
pki
pki
pki
pki
pki

signing-request
signing-request
signing-request
signing-request
signing-request
signing-request

set
set
set
set
set
set

common-name tnsr-example.netgate.com
country US

state Texas

city Austin

org Netgate

org-unit Engineering Testing 1 2 3

For the Common Name, enter the fully qualified domain name or Public IP address of the TNSR instance. For the
other fields, enter information about the name and location of the organization controlling this TNSR instance.

A Digest Algorithm is also required to sign the request:

[tnsr# pki signing-request set digest sha256

View the values that have been set before generating the request:

© Copyright 2025 Rubicon Communications LLC 61

Product Manual TNSR v21.03

tnsr# pki signing-request settings show
Certificate signing request fields:
common-name: tnsr-example.netgate.com
country: US
state: Texas
city: Austin
org: Netgate
org-unit: Engineering Testing 1 2 3
digest: sha256

Any typos can be corrected by re-running the appropriate set commands.

When all values are correct, generate the request:

Warning: As with the key pair, the request must have the name tnsr-updates.

tnsr# pki signing-request tnsr-updates generate

MIICzTCCAbUCAQAwgYcxITAfBgNVBAMMGHRuUcC3ItZXhhbXBsZS5uZXRnYXR1LmNv
bTELMAKGA 1UEBhMCVVMxD jAMBgNVBAgMBVR1eGFzMQ8wDQYDVQQHDAZBAXN®aW4x
EDAOBgNVBAOMBO51dGdhdGUxI jAgBgNVBASMGUVUZ21uZWVyaW5nIFR1c3Rpbmcg
MSAyIDMwggEiMAOGCSqGSIb3DQEBAQUAA4IBDWAWGgEKA0IBAQDAUXpX5KYNnult
7xIKV5ES6KPMDtBHgXB7d2 fywtqfI/UVvV9+LhCHLLOZz80ovqq/GcHioddCBQH63a
+UghO®cMIZVOwRQhe7eYMO3GmHMyuxz6P5eW03E9d/3sTOrL+fUDH8CVWwW jmwX0tC
1dP3PADH4ennxgaWk®+1Hga®DmI3hrErX5crzIMyZpGZ/BXfDYo+QuxktZOHIsSb
9gDtEN253412wk@hm6mFashDiixmYpcb8ventcVwt EOQGAByNsCg8z3VwcPQY6x9k
YIKFuQM3U8hZ2y60Ej jPqfsc+GnZ6b+7blinck7tITqz6FQwnSW3sKvXkwsyeDnEa
3eyIjSrFAgMBAAGgADANBgkghkiG9wOBAQSFAAOCAQEAet jRqn6IoekxZErrPvZE
encbvedPUTLSEbGF92 3PMpmH5KBAOe4QMT2wEA7dWd5GeuOEA5+6/Q1vQh3k11yU
bzDgRASj167cKFxp6fL2iDkvoaGf+PusLGM3eQthGzF6t7q96cH]1500ANVbrLZws2
qu09evqHgPCJkOhcmPLXSGgitMIwH7EBSmySsZPuEyUCsozA8YLsDLMOdxU5PQnX
XesDhGOAMcFhu34nmsUrCqJwi3CM4rulT1YseVVyZDy jhTEWuCp91Z£7 jzR12qEF
afis853CjtURIekfzeKIqqacrl1Y0XXt119DtKDz19Z4sWu3C1PsdciOgalCnSVHh

TNSR will print the CSR data to the terminal, as shown above. Copy the text, including the lines containing BEGIN
CERTIFICATE REQUEST and END CERTIFICATE REQUEST, and save it to a file

© Copyright 2025 Rubicon Communications LLC 62

Product Manual TNSR v21.03

8.3 Submit the Certificate Signing Request

To generate a signed certificate, the signing request must be submitted to Netgate. Netgate will sign the request with a
Certificate Authority key trusted by the TNSR update repository servers.

8.3.1 Required Customer Information

The certificate signing request must be accompanied by information Netgate can use to identify the customer and
validate the request. This information varies by platform.

TNSR Device or ISO Install

For customers using a device preloaded with TNSR or installing TNSR from an ISO image, the certificate signing
support request must be accompanied by information that Netgate can use to validate the request. Netgate must be
able to determine that the request is being sent from an authorized user on an account that has an appropriate TNSR
purchase.

For example, send the support request from the same e-mail address which was used when making the TNSR purchase
and include an order number and other relevant information in the support request when submitting the CSR.

TNSR in AWS
For AWS customers, two additional pieces of information are necessary to validate the status of customer accounts
before Netgate can sign a certificate:

¢ The AWS Customer ID

¢ The AWS Instance ID

Note: When registering a TNSR instance to obtain a client certificate, Netgate must be able to prove that this instance
of TNSR is a valid instance of the currently published AWS image. To do this, Netgate utilizes the AWS API that
indicates which TNSR image the specified instance ID is an instance of. This is the only use of the customer instance
ID, which is not stored or retained in any way.

The AWS Customer ID can be found using the instructions at https://docs.aws.amazon.com/general/latest/gr/
acct-identifiers.html

The AWS Instance ID can be retrieved from the EC2 Web Console:
1. Navigate to https://console.aws.amazon.com/ec2/
2. Click Instances
3. Click the box next to the TNSR instance to select it

4. The AWS Instance ID is displayed at the bottom of the page under the Description tab

© Copyright 2025 Rubicon Communications LLC 63

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://console.aws.amazon.com/ec2/

Product Manual TNSR v21.03

8.3.2 Create a Support Request for the CSR

Using the CSR and customer information, submit a request on the Netgate Support Portal.

Warning: The following steps are still under design and development and may change at any time.

1. Navigate to https://go.netgate.com/support/login

2. Log in with an existing account using an email address and password, or register a new account using the Sign
Up button and following the prompts

3. Create a new support request with the following properties:

Department
Select Netgate Global Support

Software Product
Select the matching purchased TNSR product, either TNSR Business or TNSR Enterprise

Platform
Choose the value that matches where TNSR is running, for example TNSR in AWS, Netgate
XG-1541 1U, or Whitebox / Other

General Problem Description
Select TNSR Certificate Authorization

Support Level
Choose the support level that matches the purchased TNSR product, TNSR Business, TNSR
Business Plus, or TNSR Enterprise

AWS Instance ID
For TNSR on AWS customers only, The ID for this TNSR instance located previously

AWS Customer ID
For TNSR on AWS customers only, the AWS Customer ID located previously

Order Number
For device and ISO customers, the order number of the TNSR purchase for this device

4. Include any other necessary identifying information in the Description field
5. Click Attach file and attach the file containing the CSR text

6. Submit the support request

8.4 Retrieve the signed certificate

Warning: The following steps are still under design and development and may change at any time.

Once the certificate signing request has been signed by Netgate, the status of the support request will be updated to
reflect that the certificate is ready.

When this occurs, download the signed certificate:
1. Navigate to https://go.netgate.com/support/login

2. Locate the support request

© Copyright 2025 Rubicon Communications LLC 64

https://go.netgate.com/support/login
https://go.netgate.com/support/login

Product Manual TNSR v21.03

3. Download the attached signed certificate file

8.5 Install the certificate

With the signed certificate in hand, it can now be installed on the TNSR instance:

Warning: As with the key and CSR, the name of the certificate must be tnsr-updates.

tnsr# pki certificate tnsr-updates enter
Type or paste a PEM-encoded certificate.
Include the lines containing 'BEGIN CERTIFICATE' and 'END CERTIFICATE'

MIIE7DCCAtSgAwIBAgIJANbZBxsCVDpvMAOGCSqGSIb3DQEBCWUAMHQxCzAJBgNV
BAYTA1VTMQ4wDAYDVQQIDAVUZXhhczEPMAOGA 1UEBwwGQXVzdG1uMRAwWDgYDVQQK
DAdOZXRnYXR1MRgwFgYDVQQLDA9OZXRnYXR1IFROU1IgQOEXGDAWBgNVBAMMDOS51
dGdhdGUgVE5TUiBDQTAeFwOxODAOMzAXNTE 1MDFaFwO®x0DA 1MzAXNTE 1MDFaMIGH
MSEwHwYDVQQDDBhObNNyLWV4YW1wbGUubmVOZ2FOZS5jb20xCzAIBgNVBAYTALIVT
MQ4wDAYDVQQIDAVUZXhhczEPMAOGA 1UEBWwGQXVzdG1uMRAwWDgYDVQQKDAJOZXRn
YXRIMSIwIAYDVQQLDB1FbmdpbmV1lcmluZyBUZXN®aW5nIDEgMiAzMIIBI jANBgkq
hkiG9wOBAQEFAAOCAQ8AMITIBCgKCAQEAWFMaV+SmDZ7tbe8SCleREupDzA7QR61w
e3dn8sLanyP1Fb1ffi4Qhyy9M/KL6qvxnB4gHXQgUB+t2v1KodHDCGVTSEUIXu3m
DDtxphzMrsc+j+X1jtxPXf97E9Ky/n1Ax/A1VsI5sFILQpXT9zwAx+Hp58amlpNP
PR4GtA5vd4axK1+XK8yTMmaRmfwV3w2KPtLsZLWThyLEm/YA7RDdud+CNsJINIZup
hiirIQ1sZmKXG/L3p7XFcLRDKBgAc jbAoPM91cHDOGOsfZGCChbkDN1PIWdsugBI4
z6n7HPhp2em/u21p3]07SE6s+hUMI01t7Cr15MLMng5xGt3siI0gxQIDAQABO20W
azAJBgNVHRMEA jAAMBEGCWCGSAGG+EIBAQQEAWIFoDAdBgNVHQ4EFgQUXPOsedA8
QS34KxEmzZJInKWjZKQwHwYDVRO jBBgwFoAU8CpQYHQGBICUwnHWUO1Unf7WES5 0w
CwYDVROPBAQDAgXgMAOGCSqGSIb3DQEBCWUAA4ICAQC+6M81sTWI9c/NL1LsS1ziQ
LWWdOL3qc7QlR6r+HdouU2R//+gP2y1H]elCM9k jCqHSQos5y+BDI1/cbrV5IR5U
cnA2s54uePzGZGk89vZHCcUkuXDIgloU8g+p6e7pIyLolxRU99psj8gT4nUBcczD
W+Vb7x4fotekPwXNWohsRsAXSPqEKbwuf®3H4nt fmXLMHSq/qWmv1/g2nH7 9DRRN
M+A1sEyKL1XwGljY4mjblsOV8PY42LAjnS£7x+LZXnLSYL+9jZGt 1A3U8FnQn4wWd
cSEUDDPE5YAj7xye96AAE7ayHt rBLKqbrVQXzVUX8xYQKroXyt 1WabMnTdHzXu7K
ZM92H20g1SW2VO1ABjzBIIPPJ2pvCZilvt4XM1krmyTIEsem+U30ByY/wGp93DNOe
SOsM7GlMBe]8+aYNgEYIrVcX63VKy3dCLWjZpldwH1v8BNwIn/npWPOMbIhOEIe7/
WeqGTJu86UVKzuezi1lsPkUjqPO®cdGIHHMrGB8Q8uJ4ReHdRLs7Rs6CKOOF2v681iQ
MyILSwy3cnlsxDnsm3JGIhXkm5aVCKkLhBVOEM8GXItW49£tP9tsODKM3DWLLe82p
CG4IiLHO/n1VMEeOHNn5XEQ5r+GjYy8vDLIvAukDaet91i3ZaPAOFHZgLxNhWaPF5
jiSpPVrliAlsJCv6Fy2FvA==

tnsr#

After successfully installing the certificate, TNSR can now download software updates from the repository.

© Copyright 2025 Rubicon Communications LLC

65

Product Manual TNSR v21.03

8.6 Package Management

The package management commands allow the operator to install new software packages as well as discover and per-
form updates for installed packages.

8.6.1 Package Information Commands

There are three commands which query the package database.

A <pkg-glob> is a simple regular expression. It consists of a string of alphanumeric characters which is optionally
prefixed or suffixed with a * character. The * character indicates zero or more characters.

For example:

abc matches only the package abc and would not match abcd.
*abc matches abc or zabc and would not match abcz.

abc* matches abc or abcz and would not match zabc.

abc matches any package with abc contained anywhere in its name.
* matches any package.

Tip: Do not escape or quote the glob as would typically be required by a Unix shell. The glob abc* is not the same
as abc*.

The first two commands have qualifiers that limit the scope of the packages to all, installed, or updatable packages.
These limitations are optional, and if not specified then it defaults to all packages in the database.

To display detailed information on packages:

[tnsr# package info [available | installed | updates] <pkg-glob>]

Warning: package information is limited to the first 25 packages found. If a query returns more items, a more
specific pkg-glob must be used to narrow the search.

To display a simple listing of package names and versions for all matching packages:

[tnsr# package list [available | installed | updates] <pkg-glob>]

The search command searches for a string in either the package name or description. The output includes the package
name and description of the package. The search term is literal, it is not a regular expression or glob:

[tnsr# package search <term>]

© Copyright 2025 Rubicon Communications LLC 66

Product Manual TNSR v21.03

8.6.2 Package Installation

Warning: Recommended procedure is to reboot the router after any package install, remove, or upgrade operation.

To install a package and its required dependencies:

[package install <pkg-glob>

To reinstall a package which is already present on TNSR:

[package reinstall <pkg-glob>

To remove a package:

[package remove <pkg-glob>

To upgrade a package:

[package upgrade [<pkg-glob>]

To clean up cached downloaded copies of package files:

[package cache-clean

8.7 Updating TNSR

Warning: TNSR Home+Lab installations cannot be updated. Reinstall with TNSR Business or install a new
version of TNSR Home+Lab. The operating system may be updated, but not TNSR.

With a signed client certificate from Netgate in place, TNSR has access to the Netgate software repositories which
contain important updates to TNSR. These updates can be retrieved using the package command in the TNSR CLI,
or dnf in the host OS shell.

Note: Updating TNSR will also update the operating system. Even when there are no TNSR updates available, it
is a good practice to periodically perform an update to obtain important operating system updates such as security
vulnerability mitigations.

See also:

Most of this document covers in-place updates. For information on updating by redeploying/reinstalling, see Upgrading
by Redeploying TNSR.

© Copyright 2025 Rubicon Communications LLC 67

Product Manual TNSR v21.03

8.7.1 Pre-Upgrade Tasks

Before updating TNSR, perform the following tasks:

* Read through the Nergate TNSR Releases release notes for the new version to identify relevant changes in behavior
which may require special actions before or after the upgrade

* Make sure the signed certificate is in place (Install the certificate)
* Make sure the TNSR instance has working Internet connectivity

* Have installation media ready for the new version of TNSR software. Problems during an in-place update may
require reinstallation of TNSR software.

» Take a backup of the running and startup configurations, plus other important files such as the signed certificate
and keys (Configuration Backups)

e If TNSR is running as a virtual machine, take a snapshot

Tip: Though it is optional, best practices for updating include a pre-upgrade reboot. This reboot ensures that the
hardware and installation are functional before attempting the upgrade. This can help identify potential hardware and
other issues, such as storage failures, so they do not present themselves unexpectedly during the upgrade.

8.7.2 Updating to TNSR 20.08 from Previous Versions

TNSR 20.08 is based on CentOS 8, while previous versions of TNSR software were based on CentOS 7.x. Due to this
major operating system change, updating to TNSR 20.08 requires special handling.

Warning: While Netgate has tested common update scenarios, updating in-place from a CentOS 7 base to CentOS
8 base may not work in all installations.

Installing TNSR 20.08 directly and then restoring the TNSR configuration data is a safer approach. However, that
method requires physical access or equivalent out-of-band access and is potentially more time consuming. See
Upgrading by Redeploying TNSR for details.

Before starting, update the current installation of TNSR software to version 20.02 as described in Updates via the TNSR
CLI. Upgrading from previous versions of TNSR software has not been tested.

The following shell script will upgrade TNSR software installations in place from CentOS 7 to CentOS 8 and TNSR
software version 20.08. Download the script to the router, inspect and verify its contents, then execute the script from
the console (serial, video, IPMI/OOB access).

Warning: The script must not be run using an SSH session connected through TNSR, as TNSR services will be
stopped and started during the upgrade, breaking connectivity between the client and TNSR.

Listing 1: Download: upgrade_centos_7_to_8.sh

#!/bin/sh

_fail(Q {
echo "Upgrade process has failed! Please contact support"

}

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 68

20

21

22

23

24

25

26

27

28

29

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Product Manual TNSR v21.03

(continued from previous page)

YUM="yum -y"

DNF="dnf -y"
CENTOS_RPM_SERVER="http://mirror.centos.org/centos/8/Base0S/x86_64/0s/Packages"
CENTOS_VERSION="8.2-2.2004.0.1"

if ["$(rpm -q kernel | wec -1)" = "1"]; then
echo "Only one kernel found, upgrading current system"
${YUM} upgrade
echo "Reboot your system and run this script again"
exit 0

fi

echo "This script will upgrade your TNSR instance to a new major"
echo "version based on CentOS 8. This operation is irreversible."
echo "Make sure you backup your configuration files before start."

echo ""
read -p "Are you ready to proceed? (y/N) " -e -n 1 _proceed
if ["${ _proceed}" != "y" -a "${_proceed}" != "Y"]; then
echo "Aborting..."
exit O
fi

Install items that are part of CentOS 8 Core group so they will be upgraded
at distro-sync step
${YUM} install epel-release dnf tnsr-release NetworkManager \
NetworkManager-team NetworkManager-tui dnf-plugins-core \
rng-tools sssd-common sssd-kcm libibverbs

systemctl disable NetworkManager >/dev/null 2>&1 || true

Adjust dnf.conf

if | grep -q 'clean_requirements_on_remove=False' /etc/dnf/dnf.conf; then
sed -i -e '/clean_requirements_on_remove/d' /etc/dnf/dnf.conf
echo 'clean_requirements_on_remove=False' >> /etc/dnf/dnf.conf

fi

At this point tnsr/tnsr-release packages will be removed due to yum-utils
dependency

rpm -e --nodeps yum-utils

${DNF} remove yum yum-metadata-parser '*rpmconf*' redhat-rpm-config

mv -f /etc/yum /etc/yum.backup_tnsr

Remove unnecessary kernels
TO_BE_REMOVED=$(dnf repoquery --installonly --latest-limit=-2 -q)
if [-n "${TO_BE_REMOVED}"]; then
${DNF} remove ${TO_BE_REMOVED}
fi

trap '' HUP INT TERM

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 69

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Product Manual TNSR v21.03

(continued from previous page)

trap _fail EXIT
set -e

${DNF} --disablerepo=* install \
${CENTOS_RPM_SERVER }/centos-repos-${CENTOS_VERSION}.el8.x86_64.rpm \
${CENTOS_RPM_SERVER }/centos-release-${CENTOS_VERSION}.el8.x86_64.rpm \
${CENTOS_RPM_SERVER }/centos-gpg-keys-${CENTOS_VERSION }.el8.noarch.rpm

${DNF} --disablerepo=* upgrade \
https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Cleanup all local files
dnf -y clean all

Remove CentOS 7 kernel used to boot
rpm -e --nodeps $(rpm -q kernel-$(uname -r))

Remove conflicting packages
rpm -e --nodeps sysvinit-tools

${DNF } --releasever=8 makecache

Enable nginx 1.16 module
${DNF} --releasever=8 module enable nginx:1.16

Cache all packages that will be used to upgrade

${DNF} --releasever=8 --allowerasing --setopt=deltarpm=false --best \
--downloadonly distro-sync

${DNF} --releasever=8 --allowerasing --setopt=deltarpm=false --best \
--downloadonly groupinstall Core

${DNF} --releasever=8 --allowerasing --setopt=deltarpm=false --best \
--downloadonly install tnsr-release libibverbs

Cleanup old dpdk stuff
rpm -e --nodeps dpdk
rm -rf /var/lib/dkms/dpdk

Upgrade CentOS

${DNF} --releasever=8 --allowerasing --setopt=deltarpm=false --best \
-C distro-sync

Enable legacy network service

systemctl disable NetworkManager >/dev/null 2>&1 || true

systemctl enable network

trap "-" HUP INT TERM EXIT

echo "Upgrade is complete! Reboot your system!"

When the script completes, reboot the router and monitor the console for errors.

© Copyright 2025 Rubicon Communications LLC 70

Product Manual TNSR v21.03

Warning: In certain cases, the first reboot after upgrading to CentOS 8 may also require an extra dataplane restart
to ensure interfaces have full connectivity. This can be performed from the shell with sudo tnsrctl restart or
from the TNSR CLI with config then service dataplane restart. Alternately, performing another reboot
will restart into the expected state.

If the upgrade failed, or it is otherwise not running and passing traffic properly after the upgrade, access the console
and check the state of the system from there. Before contacting support, review TNSR 20.08 Release Notes for relevant
changes in behavior which may require manual adjustments. For assistance, please contact Netgate TAC.

8.7.3 Updating after TNSR 20.08

The following methods are not a viable upgrade procedures to reach TNSR 20.08 from earlier versions. They may be
used to upgrade from TNSR 20.08 to later versions as well as to obtain regular updates from CentOS.

Updates via the TNSR CLI

The easiest way to update TNSR is from within the TNSR CLI itself.

[tnsr# package upgrade

That command will download and apply all available updates. Afterward, exit the CLI and start it again.

Note: There will be no output from this command until the process completely finishes, which may take a few minutes
for larger updates.

Updating via the shell

TNSR can also be updated from the command line using the host OS package management commands, in this case,
dnf:

$ sudo dnf -y module disable BaseOS
$ sudo dnf clean expire-cache
$ sudo dnf -y upgrade

Update Script

The following shell script may be used to keep TNSR and CentOS updated. In addition to the updates it also makes a
local backup before performing the update.

Listing 2: Download: updatetnsr.sh

#!/bin/sh

Time to make the backups

mkdir -p ~/tnsr-config-backup

sudo cp -p /var/tnsr/running_db ~/tnsr-config-backup/running_db- date +%Y%m%d%H%M%S .xml
sudo cp -p /var/tnsr/startup_db ~/tnsr-config-backup/startup_db- date +%Y%m%d%H%M%S .xml

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 71

https://go.netgate.com

Product Manual TNSR v21.03

(continued from previous page)

Update all RPMs

sudo dnf -y module disable BaseOS
sudo dnf clean expire-cache

sudo dnf -y upgrade

Restart TNSR services to ensure a clean and consistent run
sudo tnsrctl restart

8.7.4 Post-Upgrade Reboot
TNSR upgrades include kernel updates, driver updates, and other operating system component updates. As such, the

best practice is to reboot after upgrading these to ensure the device is running the proper kernel and is using a consistent
set of updated system components.

The reboot procedure is covered in Rebooting the Router.

8.7.5 Updating the Configuration Database

Automatic Configuration Update

When upgrading from TNSR 20.02 to a later version, TNSR has its own automatic configuration upgrade procedures
which accommodate changes made to the configuration database structure between versions.

Warning: The TNSR configuration upgrade only alters the running configuration database and not the startup
database. After starting TNSR the first time post-upgrade, validate the running configuration. If the running con-
figuration is OK, copy it to the startup configuration:

tnsr# config
tnsr(config)# configuration copy running startup

8.7.6 Configuration Update for Previous Versions of TNSR

When upgrading from a version older than 20.02, or restoring a configuration backup from before 20.02, additional
steps may be necessary to update the configuration database.

If TNSR fails to start due to a change in the configuration, use the included configuration database migration utility,
/usr/bin/tnsr-db-update, to check for and correct potential problems with older configuration files.

Warning: TNSR must be stopped before attempting to run this script, which modifies the running database at
/var/tnsr/running_db.

The /usr/bin/tnsr-db-update script must be run as root either directly or via sudo:

[$ sudo /usr/bin/tnsr-db-update

J

The utility will make a backup of the configuration before making alterations. This backup is placed in /var/lib/
tnsr/db-backups/tnsr-<version>/running_db-<timestamp>.

© Copyright 2025 Rubicon Communications LLC 72

Product Manual TNSR v21.03

If TNSR still will not start after running this utility, then the configuration database may contain errors which were not
able to be corrected by the script.

Once all errors are corrected and TNSR starts successfully, copy the running configuration to the startup configuration.

Manual Configuration Update
Any errors which could not be corrected by the automatic script must be corrected by hand. Alternately, the configu-
ration databases may be erased and recreated from scratch.

To attempt manual corrections, check the system logs after attempting to start TNSR for information about which con-
figuration entries are causing the failure. View the logs with sudo systemctl status clixon-backend.service,
sudo journalctl -xelu clixon-backend.service and sudo journalctl -xe.

A log entry for a configuration problem could look like the following example:

clixon_backend: startup_failsafe: 297: Database error: Startup failed and no
Failsafe database found, exiting

clixon_backend: <rpc-reply><rpc-error>
<error-type>application</error-type>
<error-tag>unknown-element</error-tag><error-info>
<bad-element>someinvalidtag</bad-element></error-info>
<error-severity>error</error-severity>
<error-message>namespace is: urn:ietf:params:xml:ns:netconf:base:1.0</error-message>
</rpc-error></rpc-reply>

To correct such problems, edit the configuration in /var/tnsr/running_db (e.g. sudo vi /var/tnsr/
running_db), erase or adjust the offending tag or configuration section, copy the repaired configuration to /var/
tnsr/startup_db, and attempt to start TNSR again. Repeat until no errors are reported and TNSR starts normally.

To erase the configuration database, remove its files from /var/tnsr:

[$ sudo rm /var/tnsr/*_db

After removing the configuration and starting TNSR, the TNSR configuration will need to be created again manually
from scratch using the CLI or RESTCONE. Open the contents of a configuration backup in a text editor to use as a
guide.

8.7.7 Additional Reboot / Update Verification

After performing a TNSR update and updating the configuration, administrators may wish to perform a reboot of the
router to ensure it starts up correctly with the expected configuration.

This practice ensurs that the router performs as expected at startup during an upgrade maintenance window.

© Copyright 2025 Rubicon Communications LLC 73

Product Manual TNSR v21.03

8.7.8 Update Troubleshooting

If the TNSR CLI method does not work, use the shell method instead.

If either method prints an error referring to a broken package database, recover it as follows:

$ mkdir -p ~/tmp/

$ sudo mv /var/lib/rpm/__db* ~/tmp/
$ sudo rpm --rebuilddb

$ sudo dnf clean all

8.7.9 Upgrading by Redeploying TNSR

Rather than performing an in-place update of a TNSR installation, administrators may instead choose to deploy a fresh
instance of TNSR using the new version. This practice is typical of environments such as cloud providers or virtual
machines, but may be performed for ISO installations and others as well.

In those cases, follow this general procedure:
* Take a backup of the configuration
* Deploy a new instance of TNSR using the installation instructions for the chosen platform
* Restore the configuration
 Update the configuration (Updating the Configuration Database)

See Configuration Backups for details on saving and restoring configuration backups, and review Updating the Con-
Jiguration Database for important information about updating the configuration for a new version of TNSR.

© Copyright 2025 Rubicon Communications LLC 74

CHAPTER
NINE

INTERFACES

An interface must exist in TNSR before it is available for configuration. For hardware interfaces this is handled by the
procedure in Sefup Interfaces. To create additional types of interfaces, see Types of Interfaces later in this chapter.

Once interfaces are present in TNSR, they can be configured to perform routing and other related tasks.
See also:

For information on interface status, see Monitoring Interfaces.

9.1 Locate Interfaces

The next step is to decide the purpose for which TNSR will use each interface.

First, look at the list of interfaces:

tnsr# show interface
Interface: GigabitEthernet0/14/1

[...]

Interface: GigabitEthernet®/14/2
[...]

Interface: local®

[...]

In the above shortened output, there are two viable interfaces, GigabitEthernet0/14/1 and GigabitEthernet®/
14/2. These can be used for any purpose, so map them as needed for the design of the network for which TNSR will
be routing.

The example configuration for this network is:

Table 1: Example Configuration

Interface Function IP Address Gateway
GigabitEthernet0/14/1 WAN

203.0.113.2/24 203.0.113.1

2001:db8:0:2::2/64 2001:db8:0:2::1
GigabitEthernet0/14/2 LAN n/a

10.2.0.1/24

2001:db8:1::1/64

75

Product Manual TNSR v21.03

Connect the interfaces on the router hardware to the appropriate networks at layer 1 and layer 2, for example by plugging
the WAN into an Internet circuit and the LAN into a local switch. If TNSR is plugged into a managed switch, ensure
that its ports are configured for the appropriate VLANS.

Tip: These interface names can be set to custom values. See Customizing Interface Names for details.

9.2 Configure Interfaces

With the configuration data in hand, it is now possible to configure TNSR interfaces for basic IP level connectivity.

From within the TNSR CLI (Entering the TNSR CLI), enter configuration mode and setup the interfaces using this
example as a guide:

tnsr# configure terminal

tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# description WAN
tnsr(config-interface)# ip address 203.0.113.2/24
tnsr(config-interface)# ipv6 address 2001:db8:0:2::2/64
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet0/14/2
tnsr(config-interface)# description LAN
tnsr(config-interface)# ip address 10.2.0.1/24
tnsr(config-interface)# ipv6 address 2001:db8:1::1/64
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

tnsr#

In this sample session, both interfaces were configured with an appropriate description for reference purposes, an IP
address/subnet mask, and then placed into an enabled state.

If other hosts are present and active on the connected interfaces, it will now be possible to ping to/from TNSR to these
networks.

Tip: After making changes, don’t forget to save them to ensure they persist for the next startup by issuing the
configuration copy running startup command from with in config mode. See Saving the Configuration for
more information.

9.2.1 Interface Command

The interface command can configure existing interfaces and create new interfaces.

Configure an existing interface:

tnsr(config)# interface <name>
tnsr(config-interface)#

This command enters config-interface mode

© Copyright 2025 Rubicon Communications LLC 76

Product Manual TNSR v21.03

Note: The maximum interface name length is 63 characters.

Create a new interface:

[tnsr(config)# interface <type> <options>

J

The mode entered by this command depends upon the type of interface it creates. For more information on interface

types and how to configure them, see Types of Interfaces.

Print a list of available interfaces and types:

[tnsr(config)# interface ?

9.2.2 Interface Configuration Options

The following commands are available when configuring an interface (config-interface mode):

access-list (inputloutput) acl <acl-name> sequence <seq>
Access Control Lists which apply to packets on this interface in the given direction (Standard ACLs).

access-list macip <macip-name>
MACIP Access Control Lists which apply to packets on this interface (MACIP ACLs).

bond <id>
Set this interface as a part of the given bonding group (Bonding Interfaces).

bridge domain <id>
Set this interface as a member of the given bridge domain (Bridge Interfaces).

description
Set the interface description.

detailed-stats (enable|disable)
Enable or disable the collection of detailed packet statistics which individually track received and
transmitted unicast, multicast, and broadcast packets. Disabled by default. Disabling these counters
for an interface will not clear the values, it only stops new data collection.

dhcp client [ipv4]
Configures this interface to obtain its IPv4 address using Dynamic Host Configuration Protocol.

Warning: If this interface contains an input ACL, it must allow DHCP responses. These re-
sponses cannot be passed via reflect on an outbound ACL. The inbound ACL must pass IPv4
UDP from any source address on port 67 to any destination address on port 68.

Tip: The DHCP client runs in the dataplane namespace and can be controlled as a systemd
service. See Troubleshooting DHCP Client for details.

dhcp client ipv4 hostname <host-name>
Sets the hostname sent with DHCP client requests.

disable
Disable interface administratively.

© Copyright 2025 Rubicon Communications LLC

77

Product Manual TNSR v21.03

enable
Enable interface administratively.

ip address <ip-address>
Sets the IPv4 address for this interface. May be repeated to add multiple addresses to an interface.

Note: TNSR 19.08 and later support multiple IP addresses in the same prefix. Older versions only
allowed a single address per prefix.

ip nat (inside|outside|none)
Configures this interface to be an inside or outside NAT interface (Network Address Translation). To
stop an interface from participating in NAT, use either no ip nat or ip nat none.

ip reassembly enable
Enables /P Reassembly for IPv4.

ip reassembly type (full|virtual)
Sets the rype of IP Reassembly to perform on this interface for IPv4 fragments.

ipv6 address <ip6-address>
Sets the IPv6 address for this interface. May be repeated to add multiple addresses to an interface.

Note: TNSR 19.08 and later support multiple IP addresses in the same prefix. Older versions only
allowed a single address per prefix.

ipv6 reassembly enable
Enables /P Reassembly for IPv6.

ipv6 reassembly type (full|virtual)
Sets the rype of IP Reassembly to perform on this interface for IPv6 fragments.

lidp
LLDP options for this interface (Link Layer Discovery Protocol).

mac-address
Configures an alternative MAC address for this interface.

Warning: Changing the MAC address on an active interface will result in unpredictable behav-
ior. Packets already in transit addressed to the old MAC will be dropped, and it may take some
time for other hosts and equipment on directly connected networks to update their ARP tables
with the new MAC address.

The best practice is to set an interface administratively down (disable) before changing the
MAC address, and then enable it again afterward.

map
MAP-E/T options for this interface (MAP (Mapping of Address and Port)).

mtu <size>
Sets the interface Layer 2 (L2) Maximum Transmission Unit (MTU) size, in bytes. This would reflect
the capability of the link or underlying medium and applies to all traffic on the interface.

When configuring interfaces which are encapsulated, such as IPsec ipip interfaces, this MTU must
account for the overhead incurred by the protocols involved. See /Psec Interface MTU for IPsec-
specific information.

© Copyright 2025 Rubicon Communications LLC 78

Product Manual TNSR v21.03

(iplipv6) mtu <size>
Sets a Layer 3 (L3) MTU specifically for IPv4 or IPv6 packets, which may have different upstream
link limitations.

rx-queue <queue_num> cpu <core-id>
Pin a specific receive queue for this interface to a specific CPU core. Both the queue number and
core ID must be valid and within range for the configured number of queues and cores as set with
either corelist-workers or coremask-workers.

See also:

For more information on configuring interface queue sizes, see DPDK Configuration. To configure
CPU core usage see CPU Workers and Affinity.

Warning: This option requires a list of cores configured for dataplane use by the either the
corelist-workers or coremask-workers methods. RX queue core pinning is incompati-
ble with the workers and skip-1list methods of defining CPU cores available for use by the
dataplane.

The only exception to this is when no additional workers are configured, an rx-queue may use
the core defined by dataplane cpu main-core. The main-core is core 1 by default, but may
be changed.

vlan tag-rewrite disable
Disable tag rewriting for this interface

vlan tag-rewrite pop-1
Remove one level of VLAN tags from packets on this interface.

vlan tag-rewrite pop-2
Remove two level of VLAN tags from packets on this interface.

vlan tag-rewrite push-1 (dotlad|dotlq) <tag 1>
Add a new layer of VLAN tagging to frames on this interface using the provided VLAN tag.

vlan tag-rewrite push-2 (dotlad|dotlq) <tag 1> <tag 2>
Add two new layers of VLAN tagging to frames on this interface using the provided VLAN tags.

vlan tag-rewrite translate-1-1 (dotlad|dotlq) <tag 1>
Replace one layer of VLAN tags with the a different VLAN ID.

vlan tag-rewrite translate-1-2 (dotlad|dotlq) <tag 1> <tag 2>
Replace one layer of VLAN tags with two layers of tagging using the provided VLAN IDs.

vlan tag-rewrite translate-2-1 (dotlad|dotlq) <tag 1>
Replace two layers of VLAN tags with one layer of tagging using the provided VLAN ID.

vlan tag-rewrite translate-2-2 (dotlad|dotlq) <tag 1> <tag 2>
Replace two layers of VLAN tags with two different layers of tagging using the provided VLAN IDs.

vrf <vrf-name>
Specifies a Virtual Routing and Forwarding instance used by route lookups for traffic entering this
interface. See Virtual Routing and Forwarding for details.

© Copyright 2025 Rubicon Communications LLC

Product Manual TNSR v21.03

9.2.3 Remove Interface Configuration

To remove an interface and all of its configuration settings, use no interface <if-name>.

For example, to remove the ipip2 interface:

[tnsr(config)# no interface ipip2

Warning: Static routes utilizing the interface must be removed before an interface can be deleted.

9.2.4 DHCP Client Example

The previous example was for a static IP address deployment.

To configure a TNSR interface to obtain its IP address via DHCP as a client, follow this example instead:

tnsr# configure terminal

tnsr(config)# interface GigabitEthernet3/0/0
tnsr(config-interface)# dhcp client ipv4
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

9.3 Types of Interfaces

Regular Interfaces
Typically these are hardware interfaces on the host, or virtualized by the hypervisor in a virtual ma-
chine environment. These are made available to TNSR through VPP, as described in Serup Interfaces.

VLAN Subinterfaces
VLAN interfaces are configured on top of regular interfaces. They send and receive traffic tagged
with 802.1q VLAN identifiers, allowing multiple discrete networks to be used when connected to a
managed switch performing VLAN trunking or tagging.

memif
Shared memory packet interfaces (memif) are virtual interfaces which connect between TNSR and
other applications on the same host.

tap

Virtual network TAP interfaces which are available for use by host applications.
ipip

Interfaces created and used by /Psec tunnels.
Loopback

Local loopback interfaces used for a variety of reasons, including management and routing so that
the address on the interface is always available, no matter the status of a physical interface.

GRE
Generic Routing Encapsulation, an unencrypted tunneling interface which can be used to route traffic
to remote hosts over a virtual point-to-point interface connection.

SPAN
Switch Port Analyzer, copies packets from one interface to another for traffic analysis.

© Copyright 2025 Rubicon Communications LLC 80

https://docs.fd.io/vpp/17.10/libmemif_doc.html

Product Manual TNSR v21.03

Bond
Bonded interfaces, aggregate links to switches or other devices employing a load balancing or failover
protocol such as LACP.

Bridge
Bridges connect interfaces together bidirectionally, linking the networks on bridge members together
into a single bridge domain. The net effect is similar to the members being connected to the same
layer 2 or switch.

VXLAN Interfaces
Virtual Extensible LAN (VXLAN) is a similar concept to VLANS, but it encapsulates Layer 2 traffic
in UDP, which can be transported across other IP networks. This enables L2 connectivity between
physically separated networks in a scalable fashion.

Host Interfaces
Host interfaces exist outside TNSR, in the operating system. These are used primarily for host OS
management.

9.3.1 VLAN Subinterfaces

VLAN:Ss enable a device to carry multiple discrete broadcast domains, allowing a single switch to function as if it were
multiple switches. VLANs are commonly used for network segmentation in the same way that multiple switches can
be used: To place hosts on a specific segment, isolated from other segments. Where trunking is employed between
switches, devices on the same segment need not reside on the same switch. Devices that support trunking can also
communicate on multiple VLANSs through a single physical port.

TNSR supports VLANSs primarily through subinterfaces, though a variety of VLAN tag rewriting options are available
directly on interfaces (Configure Interfaces). Using subinterfaces, TNSR can send and receive VLAN tagged traffic on
one or more interfaces. The device to which TNSR is connected must also tag traffic in the same way as TNSR.

TNSR also supports multiple levels of VLAN tagged subinterfaces, commonly known as QinQ or 802.1ad. This is used
to transport multiple VLANS inside another VLAN-tagged outer frame. Intermediate equipment only sees the outer
tag, and the receiving end can pop off the outer tag and use the multiple networks inside independently as if it had a
direct layer 2 connection to those networks. In this way, providers can isolate multiple tenants on the same equipment,
allowing each tenant to use whichever VLAN tags they require, or achieve other goals such as using greater than the
default limit of 4096 VLANS.

VLAN Subinterface Configuration

A few pieces of information are necessary to create a VLAN subinterface (“subif™):
* The parent interface which will carry the tagged traffic, e.g. GigabitEthernet3/0/0

* The subinterface ID number, which is a positive integer that uniquely identifies this subif on the parent interface.
It is commonly set to the same value as the VLAN tag

* The VLAN tag used by the subif to tag outgoing traffic, and to use for identifying incoming traffic bound for this
subif. This is an integer in the range 1-4095, inclusive. This VLAN must also be tagged on the corresponding
switch configuration for the port used by the parent interface.

© Copyright 2025 Rubicon Communications LLC 81

Product Manual TNSR v21.03

Creating a VLAN Subinterface

The interface subif <parent> <subinterface id> command creates a new subif object with the given iden-
tifier. This command enters config-subif mode. That mode contains the following commands:

default
Default subinterface, will match any traffic that does not match another subinterface on the same
parent interface.

untagged
This subinterface will match frames without any VLAN tags.

exact-match
Specifies whether to exactly match the VLAN ID and the number of defined VLAN IDs. When this
is not set, frames with more VLAN tags will also be matched. Layer 3/routed interfaces must use
exact-match, it is optional for unrouted/L?2 interfaces.

dotlq (<vlan-id>|any)
The VLAN tag to match for this subinterface.

inner-dotlq (<vlan-id>|any)
An inner 802.1q VLAN tag for use with QinQ

outer-dotlad (<vlan-id>|any)
An outer 802.1ad VLAN tag for use with QinQ

outer-dotlq (<vlan-id>|any)
An outer 802.1q VLAN tag for use with QinQ

vlan <vlan-id>
VLAN ID for tag rewriting

Note: Where multiple similar options are present, generally this is for compatibility with other equipment that requires
using those specific options. Consult the documentation for the peer device to find out which options it prefers.

After creating the interface, it will be available in TNSR. The name of this interface is composed of the parent interface
name and the subif id, joined by a .. For example, TenGigabitEthernet6,/0/0.70.

VLAN Subinterface Examples

See also:

To see a complete example scenario of using VLAN subinterfaces to forward network traffic from one VLAN to another
VLAN, see the Inter-VLAN Routing recipe.

VLAN Example

First, create a new subif object. In this example, both the subif id and the 802.1qg VLAN tag are the same, 70:

tnsr(config)# interface subif TenGigabitEthernet6/0/0 70
tnsr(config-subif)# dotlq 70

tnsr(config-subif)# exact-match

tnsr(config-subif)# exit

Upon commit, this creates a corresponding subif interface which appears with the parent interface name and the subif
id, joined by a .:

© Copyright 2025 Rubicon Communications LLC 82

Product Manual TNSR v21.03

tnsr(config)# interface TenGigabitEthernet6/0/0.70
tnsr(config-interface)#

At this point, it behaves identically to regular interface in that it may have an IP address, routing, and so on.

QinQ Example

This example creates a QinQ subinterface with an inner tag of 100 and an outer tag of 200. The subinterface ID number
can be any arbitrary unsigned 32-bit integer, but in this case it makes the purpose more clear to have it match the outer
and inner VLAN tags of the subinterface:

tnsr(config)# interface subif GigabitEthernet0®/b/0 200100
tnsr(config-subif)# inner-dotlq 100

tnsr(config-subif)# outer-dotlq 200

tnsr(config-subif)# exit

tnsr(config)# exit

9.3.2 Shared Memory Packet Interfaces (memif)
A Shared Memory Packet Interface (memif) has two components: A socket and an interface. A memif also requires

a role, either server or client. In most TNSR applications, it will be the server and the other endpoint will be a
client. A single socket may only be associated with one role type.

Memif Configuration

The interface memif socket command has two forms, both of which are required in most cases. The first creates
an association between a socket ID and a filename. The second creates a memif interface using a specific socket.

Creating a memif Socket

To create the socket-filename association, use: interface memif socket <socket-id> filename
<socket-filename>.

Note: An exception to this is socket ® which is special and locked to /run/vpp/memif. sock. It cannot be changed
to another file. This entry is always present and does not need to be manually configured.

When defining a filename for a socket, the available parameters are:

socket-id
A required identifier unique to this memif instance. This is an integer in the range 1..4294967294.

socket-filename
The full path to a socket file used for establishing memif connections. A socket can be used for either
server or client interfaces, but not both. A socket can have more than one server, or it can have more
than one client.

Warning: Sockets cannot be edited or deleted if they are in use by a memif. To change or remove a socket, first
remove the associated memif.

© Copyright 2025 Rubicon Communications LLC 83

https://docs.fd.io/vpp/17.10/libmemif_doc.html

Product Manual TNSR v21.03

Creating a memif interface

Next, the interface memif socket <socket-id> interface <if-id> command creates a memif object. This
command requires its own interface identifier, and it must be tied to the socket using the same ID from the previous
command. This results in a new TNSR interface named memi f<socket-id>/<if-id>.

Note: The combination of socket ID and interface ID must be unique, but multiple sockets may use the same interface
ID. For example, memif®/0 and memifl/0.

Warning: Each socket can only be used by a single memif.

This command enters config-memif mode, where the following commands are available:

buffer-size <size>
The size of the buffer allocated for each ring entry. Default 2048.

mac-address <mac>
MAC address for the memif interface.

mode <mode>
Sets the mode for the memif interface. Mode must be one of:

ethernet
Ethernet (L2) mode.

Note: When ethernet mode is active and a mac-address is not set, TNSR will
generate a random MAC for the interface.

ip
1P (L3) mode.
punt/inject
Reserved for future use. Not yet implemented.

ring-size <size>
Number of entries in receive and transmit rings. Value is 8. .32 and is used as a power of 2. Default
value is 10 for 1024 (2410) entries.

role <role> [<options>]
Sets the role of the memif interface. The default role is server and this is the most common role for
TNSR. The following modes and options are available:

server
Server role. The server does not expose its memory to the client peer.

client [(rx-queues|tx-queues) <num-queues>]
Client role. Allocates and shares memory with the server to transfer data. When oper-
ating in client mode, the number of receive or transmit queues may be set as an option:

rx-queues <n-rx-qs>
Number of receive queues. May be between 1. .255.

tx-queues <n-tx-qs>
Number of transmit queues. May be between 1. .255.

© Copyright 2025 Rubicon Communications LLC 84

Product Manual TNSR v21.03

secret <sec-str>
A quoted secret string, up to 24 characters.

Memif Example

First, create a socket with an ID of 23, using a socket file of /tmp/memif23.sock:

[tnsr(config)# interface memif socket 23 filename /tmp/memif23.sock]

Next, run commands to create a memif interface with an interface ID of 100 taking on the role server on the socket
created previously:

tnsr(config)# interface memif socket 23 interface 100
tnsr(config-memif)# role server
tnsr(config-memif)# exit

Now the interface will be available to TNSR. In this example with a socket ID of 23 and an interface ID of 100, the
full interface name is memif23/100.

Memif status

For a list of all current memif entries, along with their names and configuration, use the show interface memif
command:

tnsr# show interface memif

Socket Id Filename

0 /run/vpp/memif.sock
23 /tmp/memif23.sock
memif23/100:

Socket id: 23

Interface id: 100

Interface: memif23/100

Role: server

Mode: ethernet

MAC address: 02:fe:2d:e2:87:a8
Ring size: 0

Buffer size: 0

Admin up: false

Link up: false

© Copyright 2025 Rubicon Communications LLC 85

Product Manual TNSR v21.03

9.3.3 Tap Interfaces

Virtual network tap interfaces give daemons and clients in the host operating system access to send and receive network
traffic through TNSR to other networks. A tap interface can carry layer 2 and layer 3 frames between the host OS and
TNSR, and be a bridge member.

Tap Configuration

The interface tap <name>command creates a tap object with the given name. This name is also used to create the
tap interface in the host OS. For example, if a tap object was created with interface tap mytap, then the interface
in the host OS is named mytap.

This command enters config-tap mode, which contains the following commands:

instance <instance>
Required instance identifier for the tap interface. A tap interface appears in TNSR using the tap
prefix followed by the chosen identifier number. For example, with an identifier number of 1, the
TNSR interface will be tapl.

mac-address <mac>
The MAC address for the TNSR side of the tap interface.

(rx-ring-size|tx-ring-size) <size>
Configures the receive (rx) or transmit (tx) ring buffer size.

Note: Default ring size is 256. The value must be a power of 2 and must be less than or equal to
32768.

host bridge <bridge-name>
Configure the tap as part of a host bridge.

Note: A tap object cannot have both an IP address and a bridge name set.

host (ipv4|ipv6) gateway <ip-addr>
Configure a gateway for the host tap interface.

host (ipv4|ipv6) prefix <ip-addr>
Configures the host IPv4 or IPv6 address for the tap interface.

host mac-address <mac>
The MAC address for the host side of the tap interface.

host namespace <ns>
Configure a namespace inside which the tap will be created on the host.

© Copyright 2025 Rubicon Communications LLC 86

Product Manual TNSR v21.03

TAP Examples

Example tap Interface

The following commands create a tap object named mytap with an instance id of 1:

tnsr(config)# interface tap mytap
tnsr(config-tap)# instance 1

At this point, the TNSR and host OS interfaces exist but contain no configuration:

In TNSR:

tnsr# show interface tapl

Interface: tapl
Admin status: down
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 02:fe:77:d9:be:le
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0

In the host OS:

$ ip address show mytap
300: mytap: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN.
—group
default glen 1000
link/ether 42:5a:f0:6£:d9:77 brd ff:ff:ff:ff:ff:ff
inet6 fe80::405a:f0ff:fe6f:d977/64 scope link
valid_l1ft forever preferred_lft forever

Example Tap Interface Addresses

Configuring addresses for tap interfaces depends on the location of the interface.

For the interface visible in TNSR, configure it in the same manner as other TNSR interfaces:

tnsr# configure

tnsr(config)# int tapl

tnsr(config-interface)# ip address 10.2.99.2/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

tnsr#

The MAC address of the tap interface may also be set on the tap object:

tnsr# configure

tnsr(config)# interface tap mytap
tnsr(config-tap)# mac-address 02:fe:77:d9:be:ae
tnsr(config-tap)# exit

tnsr(config)# exit

tnsr#

© Copyright 2025 Rubicon Communications LLC 87

Product Manual TNSR v21.03

The address for the host OS interface is configured by the host command under the tap object instance:

tnsr# configure

tnsr(config)# interface tap mytap
tnsr(config-tap)# host ipv4 prefix 10.2.99.1/24
tnsr(config-tap)# exit

tnsr(config)# exit

tnsr#

At this point, the interfaces will show the configured addresses:

In TNSR:

tnsr# show interface tapl
Interface: tapl
Admin status: up
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 02:fe:77:d9:be:ae
IPv4 Route Table: ipv4-VRF:0
IPv4 addresses:
10.2.99.2/24
IPv6 Route Table: ipv6-VRF:0

In the host OS:

$ ip address show mytap
308: mytap: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc pfifo_fast state UNKNOWN.
—.group
default glen 1000
link/ether 02:fe:77:d9:be:ae brd ff:ff:ff:ff:ff:ff
inet 10.2.99.1/24 scope global mytap
valid_lft forever preferred_lft forever
inet6 fe80::02fe:77d9:beae/64 scope link
valid_l1ft forever preferred_lft forever

The host <family> prefix <address> syntax works similarly for IPv6 with an appropriate address.

9.3.4 Loopback Interfaces

Loopback interfaces are internal interfaces available for use in TNSR for routing and other internal traffic handling
purposes such as acting as a bridged virtual interface (Bridge Interfaces).

Loopback Configuration

Before a loopback interface can be configured, a loopback instance must be created by the interface loopback
<name> command. This command enters config-loopback mode. The loopback must be given a unique name and
a positive numeric instance identifier.

The following commands are available in config-loopback mode:

instance
A required instance identifier. This value is used to generate the loopback interface name in TNSR
in the form of loop<id>. For example, with an id of 1, the loopback interface name is loopl.

© Copyright 2025 Rubicon Communications LLC 88

Product Manual TNSR v21.03

description
A brief text description of this loopback instance.

mac-address
An optional MAC address to use for the loopback interface. If omitted, TNSR will generate a MAC
in the form of de:ad:00:00:00:<id>.

Loopback Example

This example creates a new loopback object named mgmtloop with an instance identifier of 1:

tnsr(config)# interface loopback mgmtloop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit

Upon commit, the new interface will be available for use by TNSR. The interface will be designated loop<instance
id>, in this case, loopl. It can then be configured in the same manner as other interfaces:

tnsr(config)# interface loopl
tnsr(config-interface)# ip address 10.25.254.1/24
tnsr(config-interface)# exit

9.3.5 GRE Interfaces

A Generic Routing Encapsulation (GRE) interface enables direct routing to a peer that does not need to be directly
connected, similar to a VPN tunnel, but without encryption. GRE is frequently combined with an encrypted transport
to enable routing or other features not possible with the encrypted transport on its own. GRE interfaces can be combined
with dynamic routing protocols such as BGP, or use static routing.

GRE Configuration

To create a GRE object, TNSR requires an object name, positive integer instance ID, source IP address, and destination
IP address. The first step is to run the gre <object-name> command, which enters config-gre mode. Inside
config-gre mode, the following commands are available:

instance <id>
Required instance identifier. This value is used to generate the GRE interface name in TNSR in the
form of gre<id>. For example, with an id of 1, the GRE interface name is grel.

source <ip-address>
Required IP address on TNSR to use as a source for GRE traffic associated with this instance. Can
be an IPv4 or IPv6 address.

destination <ip-address>
Required IP address of the remote GRE peer, which is the destination for GRE traffic associated with
this instance. Can be an IPv4 or IPv6 address, but the address family must match that of the source
IP address.

encapsulation route-table <route-table>
This option controls which route table is used by the GRE object, for traffic utilizing the GRE inter-
face. The default behavior is to use the default routing table.

tunnel-type <type>
TNSR supports multiple GRE tunnel types, where <type> is one of the following:

© Copyright 2025 Rubicon Communications LLC 89

Product Manual TNSR v21.03

13
Layer 3 encapsulation, the default type of GRE tunnel, which can carry layer 3 IP traffic
and above.

erspan session-id <id>
Encapsulated Remote Switched Port Analyzer (ERSPAN). This requires a session ID
number, which is an integer in the range 0. .1023. When combined with Switch Port
Analyzer (SPAN) Interfaces, ERSPAN can deliver copies of local packets to a remote
host for inspection. Explained in detail in GRE ERSPAN Example Use Case.

teb
Transparent Ethernet Bridging (TEB)

GRE Examples

This example creates a new GRE object named test1, with an instance id of 1, and the source and destination addresses
shown:

tnsr(config)# gre testl

tnsr(config-gre)# instance 1
tnsr(config-gre)# source 203.0.113.2
tnsr(config-gre)# destination 203.0.113.25
tnsr(config-gre)# exit

Upon commit, the new GRE interface will be available for use by TNSR. The name of the GRE interface is
gre<instance id>, which in this case results in grel. The GRE interface can then be configured similar to other
interfaces (Configure Interfaces):

tnsr(config)# interface grel
tnsr(config-interface)# ip address 10.2.123.1/30
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

See also:

For an example ERSPAN configuration, see GRE ERSPAN Example Use Case

GRE Status

To view a list of current GRE objects, use show gre:

tnsr# show gre

Name Instance Type Source IP Dest IP Encap Rt Session Id

testl 1 L3 203.0.113.2 203.0.113.25 ipv4-VRF:0 0

This command prints a list of all GRE objects and a summary of their configuration.

© Copyright 2025 Rubicon Communications LLC 90

Product Manual TNSR v21.03

9.3.6 Switch Port Analyzer (SPAN) Interfaces

A SPAN interface ties two interfaces together such that packets from one interface (the source) are directly copied
to another (the destination). This feature is also known as a “mirror port” on some platforms. SPAN ports are com-
monly used with IDS/IPS, monitoring systems, and traffic logging/statistical systems. The target interface is typically
monitored by a traffic analyzer, such as snort, that receives and processes the packets.

A SPAN port mirrors traffic to another interface which is typically a local receiver. To send SPAN packets to a remote
destination, see GRE ERSPAN Example Use Case which can carry mirrored packets across GRE.

SPAN Configuration

SPAN instances are configured from config mode using the span <source-interface>command. That command
enters config-span mode. Inside config-span mode, the following commands are available:

onto <destination-interface> <layer> <state>
Specifies a destination for SPAN traffic. May be repeated for multiple destinations. This interface
may not be the same as the <source-interface> given to create the span instance.

The available parameters include:

destination-interface
The interface which will receive copies of packets from the source interface.
The destination interface can be any interface available to TNSR except for the
<source-interface> given to create the span instance.

layer
Sets the layer above which packet information is forwarded to the destination. Can be
one of the following choices:

hw
Mirror hardware layer packets.

12
Mirror Layer 2 packets.

state
Can be one of the following choices:

rx
Enables receive packets

tx
Enables transmit packets

both
Enables both transmit and receive packets

disabled
Disables both transmit and receive

Note: When removing a span instance, the state does not need to be present on the command, and will be ignored.

© Copyright 2025 Rubicon Communications LLC 91

Product Manual TNSR v21.03

SPAN Example

This example creates a new span that copies all packets sent and received on GigabitEthernet0/14/0 tomemif1/1.
The packet copies include hardware level information and above.

tnsr(config)# span GigabitEthernet®/14/0
tnsr(config-span)# onto memifl/1 hw both
tnsr(config-span)# exit

See also:

For an example ERSPAN configuration that combines GRE in ERSPAN mode with a span instance, see GRE ERSPAN
Example Use Case.

9.3.7 Bonding Interfaces

TNSR supports bonding multiple interfaces together for link aggregation and/or redundancy. Several bonding methods
are supported, including Link Aggregation Control Protocol (LACP, 802.3ad). These types of interfaces may also be
called LAG or LAGG on other platforms and switches.

Bond Configuration

A bond instance has two main components on TNSR: The bond itself, and the interfaces which are a member of the
bond. Beyond that, the device to which the bonded interfaces connect, typically a switch, must also support the same
bonding protocol and it must also have ports with an appropriately matching configuration.

Warning: Bonds may only be created between hardware interfaces. Virtual interfaces such as Tap interfaces,
loopback interfaces, subinterfaces, and other bond interfaces cannot be added to a bond.

Creating a bond

The interface bond <instance> command in config mode enters config-bond mode. An instance number,
such as 0, must be manually specified to create a new bond interface.

config-bond mode contains the following commands:

load-balance (12[123|134)
Configures the load balancing hash for the bonded interface. This setting determines how traffic will
be balanced between ports. Traffic matching a single source and destination pair for the configured
hash value will flow over a single link. Using higher level hashing will balance loads more evenly in
the majority of cases, depending on the environment, but requires additional resources to handle.

This load-balance configuration is only available in lacp and xor modes.
This should be set to match the switch configuration for the ports.

12
Layer 2 (MAC address) hashing only. Any traffic to/from a specific pair of MAC ad-
dresses will flow over a single link. This method is the most common, and may be the
only method supported by the other end of the bonded link.

© Copyright 2025 Rubicon Communications LLC 92

Product Manual TNSR v21.03

Note: If the bonded interface only transmits traffic to a single peer, such as an upstream
gateway, then all traffic will flow over a single link. The bond still has redundancy, but
does not take advantage of load balancing.

123
Layer 2 (MAC address) and Layer 3 (IP address) hashing. For non-IP traffic, acts the
same as 12.

134
Layer 3 (IP address) and Layer 4 (Port, when available) hashing. If no port information
is present (or for fragments), acts the same as 123, and for non-IP traffic, acts the same
as 12.

mode (round-robin|active-backup|xor|broadcast|lacp)

round-robin
Load balances packets across all bonded interfaces by sending a packet out each inter-
face sequentially. This does not require any cooperation from the peer, but can poten-
tially lead to packets arriving at the peer out of order. This can only influence outgoing
traffic, the behavior of return traffic is up to the peer.

active-backup
Provides only redundancy. Uses a single interface of the bond, and will switch to an-
other if the first interface fails. The switch can only see the MAC address of the active
port.

Xor
Provides hashed load balancing of packet transmission. The transmit behavior is con-
trolled by the 1load-balance option discussed previously. This mode is a step up from
round-robin, but the behavior of return traffic is still up to the peer.

broadcast
Provides only link redundancy by transmitting all packets on all links.

lacp
Provides dynamic load balancing and redundancy using Link Aggregation Control Pro-
tocol (LACP, 802.3ad). In this mode, TNSR will negotiate an LACP link with an
appropriately-configured switch, and monitors the links. This method is the most flex-
ible and reliable, but requires active cooperation from a switch or suitable peer. The
load balancing behavior can be controlled with the 1load-balance command discussed
previously.

mac-address <mac-address>
Optionally specifies a manually-configured MAC address to be used by all members of the bond,
except in active-backup mode in which case it is only used by the active link.

© Copyright 2025 Rubicon Communications LLC 93

Product Manual TNSR v21.03

Bond Interface Settings

Additionally, from within config-interface on an Ethernet interface, the following commands are available:
bond <instance> [long-timeout] [passive]

instance
The instance ID of the bond to which this interface will belong.

long-timeout
Uses a 90-second timeout instead of the default timeout of 3 seconds when monitoring
bonding peers, such as with LACP.

passive
This interface will be a member of the bond but will not initiate LACP negotiations.

Bond Example

This example sets up a basic LACP bond between two interfaces. The first step is to create the bond instance:

tnsr(config)# interface bond 0
tnsr(config-bond)# load-balance 12
tnsr(config-bond)# mode lacp

tnsr(config-bond)# mac-address 00:08:a2:09:95:99
tnsr(config-bond)# exit

Next, decided which TNSR interfaces will be members of the bond, and configure them to be a part of the bond instance.
In this case, the example uses GigabitEthernet®/14/2 and GigabitEthernet0/14/3:

tnsr(config)# int GigabitEthernet0/14/2
tnsr(config-interface)# bond 0
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# int GigabitEthernet®/14/3
tnsr(config-interface)# bond 0
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit

With that complete, TNSR will now have a new interface, BondEthernet®:

Interface: BondEthernet®
Admin status: down
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 00:08:a2:09:95:99
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0
Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3
counters:
received: 0 bytes, 0 packets, 0 errors
transmitted: O bytes, 0 packets, O errors
0 drops, O punts, 0 rx miss, 0 rx no buffer

© Copyright 2025 Rubicon Communications LLC 94

Product Manual TNSR v21.03

Looking at the interfaces that are members of the bond, the BondEthernet® membership is also reflected there:

Interface: GigabitEthernet0/14/2

Admin status: up

Link up, unknown, full duplex

Link MTU: 9206 bytes

MAC address: 00:08:a2:09:95:99

IPv4 Route Table: ipv4-VRF:0

IPv6 Route Table: ipv6-VRF:0

Bond interface: BondEthernet®

counters:
received: 52575 bytes, 163 packets, 0 errors
transmitted: 992 bytes, 8 packets, 19 errors
31 drops, O punts, 0 rx miss, 0 rx no buffer

Interface: GigabitEthernet®/14/3

Admin status: up

Link up, unknown, full duplex

Link MTU: 9206 bytes

MAC address: 00:08:22:09:95:99

IPv4 Route Table: ipv4-VRF:0

IPv6 Route Table: ipv6-VRF:0

Bond interface: BondEthernet®

counters:
received: 4006 bytes, 37 packets, 0 errors
transmitted: 620 bytes, 5 packets, 13 errors
20 drops, O punts, 0 rx miss, 0 rx no buffer

A configuration can now be applied to BondEthernet®:

tnsr(config)# interface BondEthernet®
tnsr(config-interface)# ip address 10.2.3.1/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

Finally, look at the completed interface configuration:

tnsr# show interface BondEthernet®

Interface: BondEthernet®

Admin status: up

Link up, unknown, unknown duplex

Link MTU: 9216 bytes

MAC address: 00:08:a2:09:95:99

IPv4 Route Table: ipv4-VRF:0

IPv4 addresses:
10.2.3.1/24

IPv6 Route Table: ipv6-VRF:0

Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3

counters:

received: 0 bytes, 0 packets, 0 errors

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 95

Product Manual

TNSR v21.03

transmitted: 806 bytes, 9 packets, 0 errors
2366 drops, O punts, 0 rx miss, 9 rx no buffer

(continued from previous page)

For information on the LACP state, use show interface lacp

tnsr# show interface lacp

Interface name: GigabitEthernet®/14/2
Bond name: BondEthernet®
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Interface name: GigabitEthernet®/14/3
Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Bond Status

To view the bond configuration, use show interface bond. This will show the configured bond parameters and

other information that does not appear on the interface output:

tnsr# show interface bond
Interface name: BondEthernet®
Mode: lacp
Load balance: 12
Active slaves: 2
Slaves: 2
Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3

To view the bonding status of all interfaces, use show interface bonding:

tnsr# show interface bonding

Interface: BondEthernet®
Admin status: up
Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3

Interface: GigabitEthernet®/14/0
Description: Uplink
Admin status: up

Interface: GigabitEthernet0/14/1
Admin status: down

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

96

Product Manual TNSR v21.03

(continued from previous page)

Interface: GigabitEthernet0/14/2
Admin status: up
Bond interface: BondEthernet®

Interface: GigabitEthernet®/14/3
Admin status: up
Bond interface: BondEthernet®

Interface: GigabitEthernet3/0/0
Description: Local Network
Admin status: up

To view the LACP status, use show interface lacp [interface name]:

tnsr# show interface lacp

Interface name: GigabitEthernet®/14/2
Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Interface name: GigabitEthernet®/14/3
Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

9.3.8 Bridge Interfaces

Bridges connect multiple interfaces together bidirectionally, linking the networks on bridge members together into a
single bridge domain. The net effect is similar to the members being connected to the same layer 2 or switch.

This is commonly used to connect interfaces across different types of links, such as Ethernet to VXLAN. Another
common use is to enable filtering between two segments of the same network. It could also be used to allow individual
ports on TNSR to act in a manner similar to a switch, but unless filtering is required between the ports, this use case is
not generally desirable.

Warning: Bridges connect together multiple layer 2 networks into a single larger network, thus it is easy to
unintentionally create a layer 2 loop if two bridge members are already connected to the same layer 2. For example,
the same switch and VLAN.

There are two components to a bridge: The bridge itself, and the interfaces which are members of the bridge.

© Copyright 2025 Rubicon Communications LLC 97

Product Manual TNSR v21.03

Bridge Configuration

Creating a Bridge

A bridge is created by the interface bridge domain <bdi>command, available in config mode. This command
enters config-bridge mode where the following options are available:

arp entry ip <ip-addr> mac <mac-addr>
Configures a static ARP entry on the bridge. Entries present will be used directly, rather than hav-
ing TNSR perform an ARP request flooded on all bridge ports to locate the target. Additionally,
when a bridge is not set to learn MAC:s, these entries must be created manually to allow devices to
communicate across the bridge.

arp term
Boolean value that when present enables ARP termination on this bridge. When enabled, TNSR will
terminate and respond to ARP requests on the bridge. Disabled by default.

description <text>
A brief description of the bridge for reference purposes.

flood
Boolean value that when present enables Layer 2 flooding. When TNSR cannot locate the interface
where a request should be directed on the bridge, it is flooded to all ports.

forward
Boolean value that when present enables Layer 2 unicast forwarding. Allows unicast traffic to be
forwarded across the bridge.

learn
When present, enables Layer 2 learning on the bridge.

mac-age <minutes>
When set, enables MAC aging on the bridge using the specified aging time.

uu-flood
When present, enables Layer 2 unknown unicast flooding.

Warning: At least one of flood, forward, learn, or uu-flood must be enabled when creating a bridge for it
to be valid.

Bridge Interface Settings

To add an interface to a bridge as a member, the following settings are available from within config-interface
mode:

interface bridge domain <domain-id> [bvi] [shg <n>]

domain id
Bridge Domain ID, corresponding to the ID given when creating the bridge interface previously.

bvi
Boolean value that when present indicates that this is a Bridged Virtual Interface (BVI). A bridge
connects multiple interfaces together but it does not connect them to TNSR. A BVIinterface, typically
a loopback, allows TNSR to participate in the bridge for routing and other purposes.

An L3 packet routed to the BVI will have L2 encapsulation added and then is handed off to the bridge
domain. Once on the bridge domain, the packet may be flooded to all bridge member ports or sent

© Copyright 2025 Rubicon Communications LLC 98

Product Manual TNSR v21.03

directly if the destination is known or static. A packet arriving from the bridge domain to a BVI will
be routed as usual.

Note: A bridge domain may only contain one BVI member.

shg <n>
A Split Horizon Group identifier, used with VXLAN interfaces. This number must be non-zero and
the same number must be used on each VXLAN tunnel added to a bridge domain. This prevents
packets from looping back across VXLAN interfaces which are meshed between peers.

Bridge Example

This example will setup a bridge between GigabitEthernet3/0/0 and GigabitEthernet0/14/1, joining them
into one network. Further, a loopback interface is used to allow TNSR to act as a gateway for clients on these bridged
interfaces.

First, create the bridge with the desired set of options:

tnsr(config)# interface bridge domain 10
tnsr(config-bridge)# flood
tnsr(config-bridge)# uu-flood
tnsr(config-bridge)# forward
tnsr(config-bridge)# learn
tnsr(config-bridge)# exit

Next, add both interfaces to the bridge:

tnsr(config)# int GigabitEthernet3/0/0
tnsr(config-interface)# bridge domain 10
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# int GigabitEthernet0/14/1
tnsr(config-interface)# bridge domain 10
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface loopback bridgeloop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit

tnsr(config)# interface loopl
tnsr(config-interface)# ip address 10.25.254.1/24
tnsr(config-interface)# bridge domain 10 bvi
tnsr(config-interface)# enable
tnsr(config-interface)# exit

© Copyright 2025 Rubicon Communications LLC 99

Product Manual TNSR v21.03

Bridge Status

To view the status of bridges, use the show interface bridge domain [<id>] command:

tnsr(config)# show interface bridge domain 10
Bridge Domain Id: 10
flood: true
uu-flood: true
forward: true
learn: true
arp-term: false
mac-age: 0
BVI IF: loopl
Domain Interface Members
IF: GigabitEthernet0/14/1 SHG: O
IF: GigabitEthernet3/0/0 SHG: 0
IF: local® SHG: 0
IF: loopl SHG: 0
ARP Table Entries

If the id value is omitted, TNSR will print the status of all bridges.

9.3.9 VXLAN Interfaces

Virtual Extensible LAN, or VXLAN, interfaces can be used to encapsulate Layer 2 frames inside UDP, carrying traffic
for multiple L2 networks across Layer 3 connections such as between routed areas of a datacenter, leased lines, or
VPNs.

VXLAN tunnels are commonly used to bypass limitations of traditional VLANSs on multi-tenant networks and other
areas that require large scale L2 connectivity without direct connections.

There are two main components to a VXLAN tunnel: The VXLAN tunnel itself, and the bridge domain used to
terminate the tunneled traffic to another local interface.

VXLAN Configuration

A new VXLAN tunnel is created with the vxlan <if-id> command in config mode, which then enters
config-vxlan mode.

Note: An <if-id> is a string which starts with a letter (a-z or A-Z) or underscore followed by letters, digits (8-9), or
any of the following allowed characters: _, /, ., and -. For VXLAN interfaces, the string may be at most 63 characters
long.

In config-vxlan mode, the following commands are available:

instance <id>
Required instance identifier configured on the VXLAN tunnel. Based on this, a new interface will
be available in TNSR named vxlan_tunnel<id>. For example, with instance 0 the interface is
named vxlan_tunnel®.

vni <u24>
Required VXLAN Network Identifier

© Copyright 2025 Rubicon Communications LLC 100

Product Manual TNSR v21.03

source <ip-addr>
Required source IP address on TNSR used to send VXLAN tunnel traffic.

destination <ip-addr>
Required destination IP address for the far side of the tunnel. This can be a multicast address, but if
it is, then the multicast interface must also be defined.

encapsulation route-table <rt-table-name>
Routing table used for VXLAN encapsulation.

multicast interface <if-name>
Interface used for multicast. Required if the destination address is a multicast address. If defined,
the destination address must be multicast.

Note: The source IP address, destination IP address and encapsulation route table must all be of the same
address family, either IPv4 or IPv6.

VXLAN Examples

The following examples demonstrate common ways that VXLAN interfaces can be used on TNSR.

VXLAN Bridging Example
VXLAN-Related Settings

When using VXLAN interfaces in combination with bridging, there are related settings in bridges and interfaces which
supplement the settings placed directly on VXLAN interfaces.

In config-bridge mode, the arp termcommand to enable ARP termination is needed for bridges used with VXLAN
tunnels.

In config-interface mode, when adding an interface to a bridge, the shg (Split Horizon Group) parameter is
required for VXLAN tunnels. This number must be non-zero and the same number must be used on each VXLAN
tunnel added to a bridge domain. This prevents packets from looping back across VXLAN interfaces which are meshed
between peers.

VXLAN Bridge Configuration

First, create the bridge with the desired set of options:

tnsr(config)# interface bridge domain 10
tnsr(config-bridge)# arp term
tnsr(config-bridge)# flood
tnsr(config-bridge)# uu-flood
tnsr(config-bridge)# forward
tnsr(config-bridge)# learn
tnsr(config-bridge)# exit

Add host interface to bridge domain:

© Copyright 2025 Rubicon Communications LLC 101

Product Manual TNSR v21.03

tnsr(config)# int GigabitEthernet3/0/0
tnsr(config-interface)# bridge domain 10 shg 1
tnsr(config-interface)# exit

Create the VXLAN tunnel:

tnsr(config)# vxlan xmpl

tnsr(config-vxlan)# instance 0
tnsr(config-vxlan)# vni 10
tnsr(config-vxlan)# source 203.0.110.2
tnsr(config-vxlan)# destination 203.0.110.25
tnsr(config-vxlan)# exit

Add the VXLAN tunnel to bridge domain:

tnsr(config)# int vxlan_tunnel®
tnsr(config-interface)# bridge domain 10 shg 1
tnsr(config-interface)# exit

VXLAN SPAN Example

VXLAN can be used to transport traffic in a manner similar to GRE, which can be useful in environments incompatible
with GRE. For example, this type of setup can be used in place of the ERSPAN/GRE recipe example for use on Azure
which does not allow GRE.

On TNSR, setup a VXLAN tunnel to the remote peer

tnsr(config)# vxlan vxlanl
tnsr(config-vxlan)# instance 1
tnsr(config-vxlan)# vni 13
tnsr(config-vxlan)# source 203.0.110.2
tnsr(config-vxlan)# destination 203.0.110.27
tnsr(config-vxlan)# exit

Now setup a SPAN on TNSR between a local interface and the newly created VXLAN

tnsr(config)# span GigabitEthernet3/0/0
tnsr(config-span)# onto vxlan_tunnell hw both
tnsr(config-span)# exit

On the remote peer, which in this example is a CentOS host acting as a VXLAN tunnel endpoint, configure a matching
VXLAN interface:

$ sudo ip link add vxlanl type vxlan id 13 dev ens192 remote 203.0.110.2 dstport 4789
$ sudo ip link set dev vxlanl up

© Copyright 2025 Rubicon Communications LLC 102

Product Manual TNSR v21.03

VXLAN Status

To view the status of VXLAN tunnels, use the show vxlan command:

tnsr# show vxlan
Name Instance Source IP Dest IP Encap Rt Decap Node IF Name Mcast IF VNI

xmpl O 203.0.110.2 203.0.110.25 ipv4-VRF:0 1 vxlan_tunnel® 10

9.3.10 Host Interfaces

Host interfaces are interfaces which have not been allocated to the dataplane. As such, these exist separate from other
types of TNSR interfaces. As the name implies, they are available for use by the host operating system. These interfaces
are primarily used for host OS management.

Host interfaces may be managed from TNSR as described in this section, or using another mechanism in the host OS,
such as Network Manager.

Warning: To be used as a host interface, an interface must not be used by the dataplane. To return an interface
from dataplane to host control, see Remove TNSR NIC for Host Use.

Host Interface Configuration

To configure a host interface, from config mode, use the host interface <name> command to enter
config-host-if mode. The <name> parameter is the name of the interface in the host operating system. To see
a list of available interfaces, use show host interface.

config-host-if mode contains the following commands:

description <text>
A brief text description of this interface, such as Management.

enable|disable
Enables or disables the interface.

ip address <ipv4-prefix>
Sets a static IPv4 address and CIDR mask to use on the interface.

ipv6 address <ipv6-prefix>
Sets a static IPv6 address and prefix to use on the interface.

mtu <mtu-value>
Sets the maximum transmission unit size for the interface.

© Copyright 2025 Rubicon Communications LLC 103

Product Manual TNSR v21.03

Host Interface Example

This example configures the host OS interface enp8s0£1 with an IP address of 10.2.178.2/24 and an MTU of 1500:

tnsr# configure

tnsr(config)# host int enp8s0fl
tnsr(config-host-if)# ip address 10.2.178.2/24
tnsr(config-host-if)# mtu 1500
tnsr(config-host-if)# enable
tnsr(config-host-if)# exit

tnsr(config)# exit

To confirm that the settings were applied to the interface, use show host interface:

tnsr# show host interface enp8s0fl
Interface: enp8s0fl
Link up
Link MTU: 1500 bytes
MAC address: 00:90:0b:7a:8a:6a
IPv4 addresses:
10.2.178.2/24

As additional confirmation, check how the interface looks in the host operating system using a shell command:

tnsr# host shell ip addr show enp8s0fl
7: enp8s0fl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc mg state UP group default..
—qlen 1000
link/ether 00:90:0b:7a:8a:6a brd ff:ff:ff:ff:ff:ff
inet 10.2.178.2/24 scope global enp8s0fl
valid_l1ft forever preferred_lft forever

Host Interface Status

The show host interface (<name>|ipv4|ipv6]|1link) command shows the current status of host interfaces.
When run without parameters, show host interface will print the status of all host interfaces.

The command also supports the following parameters:

<name>
The name of an interface. Restricts the output to only the single given interface.
ipvd
Restricts the output to include only interface IPv4 addresses.
ipv6
Restricts the output to include only interface IPv6 addresses.
link
Restricts the output to include only interface link status information, including the MTU and MAC
address.

Any subset of these parameters may be given in the same command to include the desired information.

© Copyright 2025 Rubicon Communications LLC 104

CHAPTER
TEN

STATIC ROUTING

A route is how TNSR decides where to deliver a packet. Each route is comprised of several components, including:

VRF/Route Table
A discrete collection of routes to be consulted by TNSR or its services.

Destination
The network/prefix to which clients or TNSR services will send packets.

Next Hop Address
The neighboring router which can accept traffic for the destination network.

Next Hop Interface
The interface through which TNSR can reach the neighboring router

10.1 Virtual Routing and Forwarding

Virtual Routing and Forwarding (VRF) is a feature which uses isolated L3 domains with alternate routing tables for
specific interfaces and dynamic routing purposes.

When a VRF route table is created and assigned to interfaces, those interfaces effectively belong to a separate virtual
“router” on its own layer 3 domain. A VRF entry may also be assigned to dynamic routing instances (e.g. BGP, OSPF)
so that they may handle routing for that VRF.

When routing packets, TNSR consults the contents of the VRF route table for the interface the packet enters (ingress).
The VRF route table may contain entries which direct traffic to egress through an interface in the same VRF or even a
different VRF.

Note: To egress through a different VRF, add entries to the VRF route table which use a next-hop located in a different
VRFE.

If an interface or routing daemon is not configured for a specific VRF, TNSR uses the default VRF. For IPv4, the default
VREF routing table is ipv4-VRF: 0. For IPv6, the default is ipv6-VRF : 0. Though this default VRF has separate tables
for IPv4 and IPv6, user-defined VRF route tables use the same name for IPv4 and IPv6.

Identical routes can have different destination paths in separate VRFs, and identical networks can even be directly
connected to multiple interfaces in different VRFs, provided that the route table entries do not result in traffic crossing
into a conflicting VRF.

105

Product Manual TNSR v21.03

10.1.1 Managing VRFs

A VRF must be created before it can be used by TNSR. To create a VREF, start in config mode and use the route
table <name> command, which enters config-route-table mode. The VRF name must be between 2 and 15
characters in length. From within config-route-table mode, the new route table requires a non-zero ID.

tnsr(config)# route table myroutes
tnsr(config-route-table)# id 10
tnsr(config-route-table)#

For more information about options available in this mode, see Managing Routes.

10.1.2 Utilizing VRFs

To utilize VRFs, specify them on interfaces and in dynamic routing daemons as needed.

Interfaces

To set a VRF on an interface, use the vrf <vrf-name> command from within config-interface mode.

tnsr(config)# interface LAN
tnsr(config-interface)# vrf myroutes
tnsr(config-interface)#

See also:
See Interface Configuration Options for more on configuring interface options.
Dynamic Routing

Use of VRF entries varies by dynamic routing types. Look in the type-specific sections of Dynamic Routing for details
about using VRFs.

10.1.3 VRF Example

This brief example demonstrates the basics of creating and using a VRF with static routing.

First, create a new route table for the VRF:

tnsr(config)# route table myroutes
tnsr(config-route-table)# description My VRF
tnsr(config-route-table)# id 10
tnsr(config-route-table)# exit

Next, add a default route to the new table:

tnsr(config)# route table myroutes
tnsr(config-route-table)# route 0.0.0.0/0
tnsr(config-rttbl4-next-hop)# next-hop 0 via 203.0.113.1
tnsr(config-rttbl4-next-hop)# exit
tnsr(config-route-table)# exit

Finally, assign the route table to an interface as a VRF:

© Copyright 2025 Rubicon Communications LLC 106

Product Manual TNSR v21.03

tnsr(config)# interface LAN
tnsr(config-interface)# vrf myroutes
tnsr(config-interface)# exit
tnsr(config)#

Traffic entering the LAN interface will now use the default route specified in this VRF route table instead of the default
route in the default VRF route table.

10.2 Neighbors

For directly connected networks which operate at layer 2, TNSR will attempt to locate neighboring hosts via Address
Resolution Protocol (ARP) for IPv4 or Neighbor Discover Protocol (NDP) for IPv6. In this way, TNSR can discover
the hardware MAC address to which a packet will be delivered in these networks.

10.2.1 Static Neighbors

Static neighbor entries can override this dynamic behavior so that a specified IPv4 or IPv6 address is always associated
with the same MAC address.

The command to specify a static neighbor takes the following form:

tnsr(config)# neighbor <interface> <ip-address> <mac-address> [no-adj-route-table-entry]
The parameters for this command are:

<interface>
The interface on which this static entry will be placed.

Note: This interface must support layer 2 (L2) data. Neighbors cannot be configured on interfaces
which only support layer 3 (L3), such as ipip or gre interfaces.

<ip-address>
The IPv4 or IPv6 address for the static neighbor entry.

<mac-address>
The MAC address to associate with the given IP address.

no-adj-route-table-entry
Do not create an adjacency route table entry.

For example, to add a static entry to map 1.2.3.4 to a MAC address of 00:11:22:33:44:55 on the interface
GigabitEthernet3/0/0, run this command from config mode:

[tnsr(config)# neighbor GigabitEthernet3/0/0 1.2.3.4 00:11:22:33:44:55

© Copyright 2025 Rubicon Communications LLC 107

Product Manual

TNSR v21.03

10.2.2 View Neighbors

To see the current table of known IPv4 and IPv6 neighbors, use the show neighbor [interface <if-name>]

command.

Note: In other products, this information may be referred to as the ARP table or NDP table.

tnsr# show neighbor

GigabitEthernet®/14/0
GigabitEthernet®/14/0
GigabitEthernet3/0/0
GigabitEthernet3/0/0

Interface S/D IP Address MAC Address

D 203.0.113.1 00:90:0b:37:a3:24
D 203.0.113.14 00:0d:b9:33:0f:71
S 1.2.3.4 00:11:22:33:44:55
D 10.2.0.129 00:0c:29:4c:b3:9b

This output can optionally be filtered by interface name.

The S/D column shows if the entry is static (S) or dynamic (D).

10.3 Viewing Routes

To view the contents of all route tables:

[tnsr# show route

To view the contents of a single route table:

[tnsr# show route table <table name>

For example, to view the default IPv4 route table only, use:

[tnsr# show route table ipv4-VRF:0

10.3.1 Route Lookup

To find a route which will be used for a given destination, use:

[tnsr# show route table <table name> <prefix> [exact]

)

This command looks in a route table to find an entry which would be used by TNSR to deliver traffic to the given

destination prefix. In other words: It answers the question “How will a packet get from here to there?”.

Note: This command does not filter the route table contents or search for routes with longer prefixes within a given

range.

The command supports the following modifiers:

exact

Restricts results to those which exactly match the given prefix.

© Copyright 2025 Rubicon Communications LLC

108

Product Manual TNSR v21.03

Route Lookup Example

For example, to find the route TNSR will use to deliver traffic for 10.4.0.1/32, use:

tnsr# show route table ipv4-VRF:0 10.4.0.1/32

10.4.0.0/24 via 10.2.222.2 ipipl weight 1 preference 20

10.3.2 Route Flags

In the route display, the flags: row may contain the following:

no flags
If the flags line is empty, this is a normal route with no special actions.

local
This network is local to TNSR and packets to this destination will not leave the TNSR host.

drop
Packets matching this route will be dropped by TNSR. Commonly seen with null routes for subnets
or for traffic which must not leave a subnet.

unreachable
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP “Destination
unreachable” message back to the source address.

prohibit
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP “Destination
administratively prohibited” message back to the source address.

10.3.3 Common Routes

Routing tables on TNSR may include unexpected entries by default or even after adding and configuring interfaces and
other services. The following list covers several of these types of routes that may be present and what they mean:

0.0.0.0/32 (drop)
Null route to drop traffic with an empty address.

0.0.0.0/0 or ::/0
Default route for packets that do not match any other route, such as for Internet hosts or other remote
destinations.

224.0.0.0/4 (drop)
Multicast that must not be routed.

224.0.0.0/24
Local subnet multicast.

240.0.0.0/4 (drop)
Reserved network that must not be routed.

255.255.255.255/32 (local)
Special broadcast address for networks local to TNSR.

fe80::/10
IPv6 link local.

© Copyright 2025 Rubicon Communications LLC 109

Product Manual TNSR v21.03

x.x.x.<first>/32 (drop)
Null route for subnet configured on an interface. Last octet will vary depending on subnet size and
network address. For example, this is .® in a /24 subnet.

x.x.x.<last>/32 (drop)
Broadcast address for subnet configured on an interface. Last octet will vary depending on subnet
size and network address. For example, this is .255 in a /24 subnet.

X.X.X.X/32 (via Xx.X.X.X, local)
Internal route for an IPv4 address present on a TNSR interface.

x:x:x::x/128 (via x:x:x::x, local)
Internal route for an IPv6 address present on a TNSR interface.

Routes can also be added to the table dynamically by other processes such as via BGP or if an interface is configured
as a DHCP client. Check the status or other associated logs for configured features to find the origins of these routes.

10.4 Managing Routes

Routes are entered into TNSR using the route table <name> command in configuration mode. When using the
route command for this purpose, the table name must be specified in order to establish the routing context. This
command enters config-route-table mode. From there, individual routes can be managed.

Inside config-route-table mode, the following commands are available:

description
Sets a description for the route table.

id <id>
A required numeric ID associated with this route table. It must be an unsigned 32-bit integer, greater
than ® (1-4294967295) and cannot overlap any other VRF ID.

Note: The ID 0 is reserved for use by the default route tables.

route <destination-prefix>
Configures aroute to the specified destination network. This enters config-rttbl-next-hop mode
where the remaining parameters for the route are set.

Tip: For a single address, use a /32 mask for IPv4 or /128 for IPv6.

Inside config-rttbl-next-hop mode, the following commands are available:

description
Sets a description for this route.

next-hop <hop-id> via <action|gateway>
Configures how TNSR will handle traffic to this destination. This may be repeated multiple times
with unique hop-id values to specify multiple destinations.

Note: Take care when crafting next-hop entries for VRF route tables. Traffic matching this route
will exit this VRF if the next hop is in a different VRF.

The following parameters are available to control the route behavior:

© Copyright 2025 Rubicon Communications LLC 110

Product Manual TNSR v21.03

hop-id
The ID of the next hop. Must be unique between entries in the same route.

via <ip-address>
Sets the next hop for this route as an IP address. Additional modifiers are possible for
any via form using an IP address destination, see Route modifiers.

via <ip-address> <interface>
Configures both the IP address and interface for the next hop. May use modifiers, see
Route modifiers.

via <ip-address> next-hop-table <route-table-name>
Configures a recursive route lookup using a different route table. May use modifiers,
see Route modifiers.

via classify <classify-name>
Reserved for future use.

via drop
Drops traffic to this destination (null route).

via local
The destination is local to TNSR, such as an interface address or loopback.

via null-send-prohibit
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP
“Destination administratively prohibited” message back to the source address.

via null-send-unreach
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP
“Destination unreachable” message back to the source address.

priority
Sets the administrative distance priority for this route. This value Helps routing protocols choose
between multiple possible destinations. This is only a local value, and a lower value is taken as being
more reliable (closer). The same priority is used for all next-hop entries.

10.4.1 Route modifiers

For routes set with a next hop using via <ip-address>, additional modifiers control how TNSR resolves the route
destination.

weight
The weight of routes to the same destination. Acts as a ratio of packets to deliver to each next hop.
Value must be from 1 to 255.

Tip: Equal weights will deliver the same amount of traffic to all next hops for this destination prefix,
uneven weights will deliver more traffic via the higher weighted connection. If one path has a weight
of 1, and the other has a weight of 3, then the first path will receive 25% (1/(1+3)) of the traffic and
the other will receive 75% (3/(1+3)).

resolve-via-attached
Sets a constraint on recursive route resolution via attached network. The next hop is unknown, but
destinations in this prefix may be located via ARP.

resolve-via-host
Sets a constraint on recursive route resolution via host. The next hop is known, but the interface is
not.

© Copyright 2025 Rubicon Communications LLC 111

Product Manual TNSR v21.03

Tip: Multiple modifiers may be used together, but when doing so, weight and priority must be set first.

Example

IPv4 example:

tnsr(config)# route table ipv4-VRF:0
tnsr(config-route-table)# route 10.2.10.0/24
tnsr(config-rttbl4-next-hop)# next-hop 0 via 10.2.0.2

IPv6 Example:

tnsr(config)# route table ipv6-VRF:0
tnsr(config-route-table)# route fc07:b337:c4£3::/48
tnsr(config-rttbl6-next-hop)# next-hop O via 2001:db8:1::2

Breaking down the examples above, first the route table is specified. Within that context a destination network route is
given. The destination network establishes a sub-context for a specific route. From there, the next hop configuration is
entered.

To specify more than one route, exit out of the next-hop context so that TNSR is in the correct context for the route
table itself, then enter an additional destination and next-hop.

10.5 Default Route

In TNSR, the default route, sometimes called a default gateway, is the gateway of last resort. Meaning, traffic that is
not local and does not have any other route specified will be sent using that route. There is no default keyword in
TNSR; Instead, the special network 8.0.0.0/0 is used for [Pv4 and : : /0 is used for IPv6.

In this example, the gateway from Example Configuration is added using the WAN interface:

IPv4 Default Route Example:

tnsr(config)# route table ipv4-VRF:0
tnsr(config-route-table)# route 0.0.0.0/0
tnsr(config-rttbl4-next-hop)# next-hop 0 via 203.0.113.1
tnsr(config-rttbl4-next-hop)# exit
tnsr(config-route-table)# exit

IPv6 Default Route Example:

tnsr(config)# route table ipv6-VRF:0
tnsr(config-route-table)# route ::/0
tnsr(config-rttbl6-next-hop)# next-hop 0 via 2001:db8:0:2::1
tnsr(config-rttbl6-next-hop)# exit
tnsr(config-route-table)# exit

© Copyright 2025 Rubicon Communications LLC 112

CHAPTER
ELEVEN

DYNAMIC ROUTING

Dynamic routing refers to routes that are capable of changing, generally due to routing protocols exchanging routing
information with neighboring routers.

Unlike static routes, dynamic routing does not require remote network destinations and gateways to be hardcoded in
the configuration. Routes and gateways are automatically determined by the protocol instead.

Currently TNSR supports multiple dynamic routing protocols:

Border Gateway Protocol (BGP)
BGP routes between autonomous systems, connecting to defined neighbors to exchange routing and
path information. BGP supports IPv4 and IPv6.

Open Shortest Path First v2 (OSPF)
OSPF is a link-state routing protocol that automatically locates neighboring IPv4 routers within an
autonomous system, typically with multicast, and exchanges routing information for networks reach-
able through each neighbor. OSPF v2 only supports IPv4.

Open Shortest Path First v3 (OSPF6)
Similar to OSPF v2, but for IPv6 networks.

Routing Information Protocol (RIP)
A routing protocol where each router broadcasts its routing table to peers on connected segments.
Simple and widely supported, but not as fast or efficient as other protocols.

Each dynamic routing type supports Virtual Routing and Forwarding (VRF) and can have multiple server instances in
different VRFs.

Dynamic routing on TNSR is handled by FRR.

11.1 Dynamic Routing Manager

The dynamic routing manager, currently the Zebra daemon from FRR, controls aspects of dynamic routing which
are relevant to multiple types of dynamic routing. These include Access Lists, Prefix Lists, and Route Maps. These
mechanisms allow for fine-tuning dynamic routing behavior.

113

https://frrouting.org/

Product Manual TNSR v21.03

11.1.1 Dynamic Routing Manager Configuration

Configuration of the dynamic routing manager itself is performed from within config-route-dynamic-manager
mode, which is entered as follows:

tnsr(config)# route dynamic manager
tnsr(config-route-dynamic-manager)#

That mode offers logging and debugging commands, described next.

Logging

The dynamic routing manager daemon can send log messages to a file, via syslog, or both.

log file <filename> [<level>]
Instructs the dynamic routing manager daemon to send log messages to the specified file. The op-
tional level parameter determines the verboseness of the logged data. See Log levels for details.

Warning: This command requires an absolute path to a log file, not a relative path. For example:
/var/log/frr/routing.log. This file must be writable by the frr user.

log syslog [<level>]
Instructs the dynamic routing manager daemon to send log messages to syslog. The optional 1level
parameter determines the verboseness of the logged data. See Log levels for details.

Log levels

Log levels set the verboseness of the logging recorded by the dynamic routing manager. Each level includes messages
from higher priority levels. The default level is debugging, which will log as much detail as possible.

Note: Even if the log level is set to debugging, actual debugging messages may not appear unless specific debug
entries are set. See Debugging for details.

In order of verboseness, from low to high, the available 1evel values are:
* emergencies
e alerts
e critical
e errors
* warnings
e notifications
e informational
¢ debugging

For example, if the log level is set to errors, then the logs will contain messages with a level of emergencies,
alerts, critical, and errors, and will exclude the rest.

© Copyright 2025 Rubicon Communications LLC 114

Product Manual TNSR v21.03

Debugging

The debug command controls which debugging messages will be logged by the dynamic routing manager. These
include:

debug events
General events.

debug fpm
Forwarding Plane Manager events.

debug kernel
Kernel messages.

debug kernel msgdump [send|receive]
Raw netlink messages, optionally limited to send or receive messages.

debug nht
Next-Hop tracking events

debug packet [send|receive] [detailed]
Information about each packet seen by the dynamic routing manager. Optionally limited to send or
receive packets. The detailed keyword will log additional information for each packet.

debug rib [detailed]
Routing Information Base events, optionally with more detailed information.

Note: Debugging messages will only appear in logs if the logs are set to include debugging messages. See Log levels
for details.

11.1.2 Dynamic Routing Access Lists

Access List entries determine if networks are allowed or denied in specific contexts used in various routing daemons.
For example, an access list may be used to determine if a route is accepted or rejected, or for limiting routes distributed
to neighbors.

The order of entries inside access lists is important, and this order is determined by a sequence number.
Access List Configuration

To create a new access list, use the route dynamic access-list <name> command, which enters
config-access-1list mode:

tnsr(config)# route dynamic access-list myacl
tnsr(config-access-list)#

config-access-1ist mode contains the following commands:

remark <text>
A text comment to describe this access list.

sequence <sequence-number> (permit|deny) <ip-prefix>
Creates a new rule with the specified sequence number to permit or deny a given prefix.

sequence <sequence-number>
The sequence number for this rule, which controls the order in which rules are matched

© Copyright 2025 Rubicon Communications LLC 115

Product Manual TNSR v21.03

inside this access list. Each rule in an access list must have a unique sequence number.
Best practice is to leave gaps in the sequence to allow for adding rules in the future. For
example, use 10, 20, 30, rather than 1, 2, 3.

(permit|deny)
The action to take for this rule, either permit or deny.

<ip-prefix>
The IP prefix to match for this rule, given in network/prefix notation. For example,
192.168.0.0/16.

Access List Example

For example, the following ACL would deny 192.168.0.0/16 but permit all other networks:

tnsr(config)# route dynamic access-list myacl
tnsr(config-access-1list)# sequence 10 deny 192.168.0.0/16
tnsr(config-access-list)# sequence 20 permit 0.0.0.0/0
tnsr(config-access-list)# exit

tnsr(config)#

This access list would then be used in another context, such as with a route map, to match routes for anything except
192.168.0.0/16 when taking other actions.

Access List Status

To view access lists, use the show route dynamic access-1list [name] command. Add the name of an access
list to restrict the output to a single access list.

tnsr# show route dynamic access-list

Access List: myacl

Remark:
Seq Action Prefix
10 deny 192.168.0.0/16
20 permit 0.0.0.0/0

11.1.3 Dynamic Routing Prefix Lists

Prefix List entries determine parts of networks which can be allowed or denied in specific contexts used in routing
daemons. For example, a prefix list may be used to match specific routes in a route map.

The order of entries inside prefix lists is important, and this order is determined by a sequence number.

© Copyright 2025 Rubicon Communications LLC 116

Product Manual TNSR v21.03

Prefix List Configuration

To create a new prefix list, use the route dynamic prefix-list <name> command, which enters
config-prefix-1ist mode:

tnsr(config)# route dynamic prefix-list mypl
tnsr(config-prefix-list)#

config-prefix-1ist mode contains the following commands:

description <text>
A text comment to describe this prefix list.

sequence <sequence-number> (permit|deny) <prefix> [ge <lower-bound>] [le <upper-bound>]
Creates a new rule with the specified sequence number to permit or deny a given prefix. This may
optionally be bound by an upper or lower prefix size limit. When no upper or lower bound is set, the
prefix will be matched only exactly as given. Setting bounds allows a prefix list to also match more
specific routes which are a part of the specified network.

sequence <sequence-number>
The sequence number for this rule, which controls the order in which rules are matched
inside this prefix list. Each rule in a prefix list must have a unique sequence number.
Best practice is to leave gaps in the sequence to allow for adding rules in the future. For
example, use 10, 20, 30, rather than 1, 2, 3.

(permit|deny)
The action to take for this rule, either permit or deny.

<ip-prefix>
The IP prefix to match for this rule, given in network/prefix notation. For example,
192.168.0.0/16.

ge <lower-bound>
Sets a lower bound for the prefix length. This must be greater than the prefix length
given in <prefix>, and less than or equal to the value of le <upper-bound>, if
present.

le <upper-bound>
Sets an upper bound for the prefix length. This must be greater than the prefix length
given in <prefix>, and greater than or equal to the value of ge <upper-bound>, if
present.

Prefix List Examples

For example, the following prefix list will match any of the RFC1918 networks:

tnsr(config)# route dynamic prefix-list RFC1918

tnsr(config-prefix-list)# description List of RFC1918 private address space
tnsr(config-prefix-list)# sequence 10 permit 10.0.0.0/8 le 32
tnsr(config-prefix-list)# sequence 20 permit 172.16.0.0/12 le 32
tnsr(config-prefix-list)# sequence 30 permit 192.168.0.0/16 le 32

For each of these entries, the prefix list will match based on the bits specified in the prefix. A match will occur for
any network included in the specified range. For example, 10.0.0.0/8 le 32 means a route for any smaller network
inside 10.0.0.0/8 will also match, so long as the prefix length is less than 32. So 10.2.0.0/16 will also match this
entry, as will 10.34.157.82/32. Taken as a whole, this prefix list will match not only the list of RFC1918 networks
exactly, but any smaller network wholly contained inside.

© Copyright 2025 Rubicon Communications LLC 117

Product Manual TNSR v21.03

As another example, consider this rule instead:

[tnsr(config—prefix—list)# sequence 10 deny 10.0.0.0/8 ge 24 le 32

This matches routes for networks inside of 10.0.0.0/8 with a prefix length greater than or equal to 24 but less than or
equal to 32. Meaning it will not match larger networks such as 10.2.0.0/16 but it will match more specific networks
such as 10.2.56.128/29 anywhere inside the 10.0.0.0/8 address space. This type of rule can be used to exclude
small prefixes from being matched by a route map, for example.

Prefix lists are then used in another context, such as with a route map, to match routes any of the specified networks
when taking other actions.

Prefix List Status

To view prefix lists, use the show route dynamic prefix-list [name] command. Add the name of a prefix list
to restrict the output to a single prefix list.

tnsr(config)# show route dynamic prefix-list

Prefix Name: RFC1918
Description: List of RFC1918 private address space
Seq Action Prefix LE Len GE Len
10 permit 10.0.0.0/8 32
20 permit 172.16.0.0/12 32
30 permit 192.168.0.0/16 32

Prefix Name: mypl
Description:
Seq Action Prefix LE Len GE Len

10 deny 192.168.0.0/16

11.1.4 Dynamic Routing Route Maps

Route maps are a powerful mechanism which can match or set various values for use by routing daemons, especially
BGP. A route map can match based on criteria such as those set by Dynamic Routing Access Lists and Dynamic Routing
Prefix Lists, among others. Route maps can control, for example, whether or not specific routes are accepted from
neighbors, or whether or not specific routes are distributed to neighbors. They can also adjust various properties of
routes, which largely depends upon the context in which they are used, such as for BGP or OSPF.

Route Map Configuration

To create a new route map, use the route dynamic route-map <route-map-name> command, which enters
config-route-map mode for the route map named <route-map-name>:

tnsr(config)# route dynamic route-map <route-map-name>
tnsr(config-route-map)#

Once in this mode, there are additional commands:

description <string>
A text description of this route map.

© Copyright 2025 Rubicon Communications LLC 118

Product Manual TNSR v21.03

sequence <sequence>
The sequence number of this route map. Enters config-route-map-rule mode.

The sequence command may be repeated with different sequence numbers to setup additional rule
entries in the same route map.

config-route-map-rule mode offers a variety of commands, which have been broken up into sections.

Route Map General Parameters

description <string>
A text description of this route map rule.

policy (permit|deny)
The action taken by this route map.

permit
When an entry is matched and permitted, the Route Map Set Operations portions of the
route map are carried out, if present, and then Route Map Control Operations entries,
if present, are performed. The route will be allowed unless the control flow ultimately
prevents that from happening.

deny
When an entry is matched and denied, the route is not allowed.

Route Map Matching Criteria

match as-path <as-path-name>
Match based on BGP AS Path Access Lists.

match community <comm-list-name> [exact-match]
Match based on BGP Community Lists.

match extcommunity <extcomm-list-name>
Match based on Extended BGP Community Lists.

match interface <if-name>
Match based on a specific interface name.

match ip address access-list <access-list-name>
Match IPv4 route content based on Dynamic Routing Access Lists.

match ip address prefix-list <prefix-list-name>
Match IPv4 route content based on Dynamic Routing Prefix Lists.

match ip next-hop access-list <access-list-name>
Match the next-hop of IPv4 routes based on Dynamic Routing Access Lists.

match ip next-hop <ipv4-address>
Match the next-hop of IPv4 routes based on IPv4 address.

match ip next-hop prefix-list <prefix-list-name>
Match the next-hop of IPv4 routes based on Dynamic Routing Prefix Lists.

match ipv6 address access-list <access-list-name>
Match IPv6 route content based on Dynamic Routing Access Lists.

match ipv6 address prefix-list <prefix-list-name>
Match IPv6 route content based on Dynamic Routing Prefix Lists.

© Copyright 2025 Rubicon Communications LLC 119

Product Manual TNSR v21.03

match large-community <large-comm-list-name>
Match based on Large BGP Community Lists.

match local-preference <preference-uint32>
Match based on configured local preference of a route.

match metric <metric-uint32>
Match based on the metric of a route.

match origin (egpligplincomplete)
Match based on the origin (source) of a route. It can be one of egp (exterior gateway protocols), igp
(interior gateway protocols), or incomplete.

match peer <peer-ip-address>
Match based on the IP address of the neighbor associated with a route.

match probability <percent>
Match a subset of routes based on the given percent value. For example, a value of 60 would match
60% of routes.

match source-protocol <src-protocol>
Matches based on the routing protocol for this route (For a list, see Dynamic Routing Protocol Lists.)

match tag <value>
Match a tag value set by another route map rule. This value is an integer from 1-4294967295.

Route Map Set Operations

set aggregator as <asn> ip address <ipv4-address>
Sets the AS of an aggregated route to the specified AS number and its origin to the specified IP
address.

set as-path exclude <string-of-as-numbers>
Excludes the specified AS numbers from the path of the route.

set as-path prepend <string-of-as-numbers>
Prepends the specified AS numbers to the AS path

set as-path prepend last-as <asn>
Prepends the specified AS number to the leftmost end of the path.

set atomic-aggregate
Sets the BGP “atomic aggregate” attribute for the route. This informs BGP peers that some routing
information may not be present due to route aggregation.

set community none
Removes information about BGP Community Lists from the route.

set community <community-value> [additive]
Sets the BGP community to the supplied list. The optional additive keyword causes the community
value to be added to the route without replacing the existing values.

Note: To specify multiple communities, enclose a space-separated list of community values in
double quotes. For example: set community "100:200 100:300 100:400"

set comm-list <community-list-name> delete
Removes specific values from BGP Community Lists lists.

© Copyright 2025 Rubicon Communications LLC

120

Product Manual TNSR v21.03

set extcommunity rt <extcommunity-list-name>
Sets the route target to the given extended community list.

set extcommunity soo <extcommunity-list-name>
Sets the site of origin for the route to the given extended community list.

set forwarding-address <ipv6-address>
Sets the OSPF forwarding address for this route to the given IPv6 address.

set ip next-hop <ipv4-address>
Sets the next-hop for an IPv4 route to this specific address.

set ip next-hop peer-address
For inbound IPv4 routes received from a neighbor, sets the next-hop to the address of the neighbor.
For outgoing routes this is the local address used to establish an adjacency with the neighbor.

set ip next-hop unchanged
Do not change the next-hop on the route.

set ipv4 vpn next-hop (<ipv4-address>|<ipv6-address>)
Sets IPv4 VPN next-hop address to the given value.

set ipv6 next-hop global <ipv6-address>
Sets IPv6 next-hop address to the given globally routable IPv6 address.

set ipv6 next-hop local <ipv6-address>
Sets IPv6 next-hop address to the given link-local IPv6 address.

set ipv6 next-hop peer-address
For inbound IPv6 routes received from a neighbor, sets the next-hop to the address of the neighbor.
For outgoing routes this is the local address used to establish an adjacency with the neighbor.

set ipv6 next-hop prefer-global
For inbound routes with both a global and link-local next-hop available, prefer to use the global
address.

set ipv6 vpn next-hop (<ipv4-address>|<ipv6-address>)
Sets IPv6 VPN next-hop address to the given value.

set large-community none
Removes information about Large BGP Community Lists from the route.

set large-community <large-community-value> [additive]
Sets the Large BGP community to the supplied list. The optional additive keyword causes the large
community value to be added to the route without replacing the existing values.

set large-comm-list <large-comm-list-name> delete
Removes specific values from Large BGP Community Lists lists.

set local-preference <preference>
Sets the BGP local preference for the route to the supplied value.

set metric [+]<metric>
Sets the MED value for routes. When this router has multiple links to the same AS, the MED value
influences which path the router will prefer. The router will prefer to use links with a lower MED
value. Adding a + before the metric value will result in a relative adjustment instead of setting an
absolute value.

set origin (egpligplunknown)
Sets the origin (source) of a route. It can be one of egp (exterior gateway protocols), igp (interior
gateway protocols), or incomplete.

© Copyright 2025 Rubicon Communications LLC 121

Product Manual TNSR v21.03

set originator <ipv4-addr>
Sets the originator ID to the supplied address.

set src <ip-address>
Sets the route source to the supplied address.

set tag <tag>
Set a tag value to be matched by another route map rule. This value is an integer from 1-4294967295.

set weight <weight>
Sets the weight of the route to the supplied value. When a remote AS is reachable via multiple paths
through other intermediate AS neighbors, the router will prefer to use a higher weight path to reach
it.

Route Map Control Operations

call <rt-map-name>
Will immediately process the named route map. If the called route map returns deny, then processing
is stopped and the route is denied.

on-match next
Proceeds to the next rule in the route-map

on-match goto <sequence>
Skips to the rule with the given sequence number in this route map.

Route Map Examples

This example creates a route map to control which routes will be sent to peers via BGP. The first rule prevents any route
from sending if it matches entries in the RFC1918 prefix list. The second rule allows routes that match networks listed
in the MY-ROUTES prefix list. This ensures that even if other mechanisms would try to export routes to peers, that no
routes to private networks are leaked.

tnsr(config)# route dynamic route-map EBGP-OUT
tnsr(config-route-map)# sequence 10

tnsr(config-route-map-rule)# policy deny
tnsr(config-route-map-rule)# match ip address prefix-list RFC1918
tnsr(config-route-map-rule)# exit

tnsr(config-route-map)# sequence 20

tnsr(config-route-map-rule)# policy permit
tnsr(config-route-map-rule)# match ip address prefix-list MY-ROUTES
tnsr(config-route-map-rule)# exit

tnsr(config-route-map)# exit

This route map is to be used with incoming routes from peers. The first rule prevents routes for local networks from
being received and processed. The second rule applies attributes to all other received routes.

tnsr(config)# route dynamic route-map PEERS-IN
tnsr(config-route-map)# sequence 10
tnsr(config-route-map-rule)# policy deny
tnsr(config-route-map-rule)# match ip address prefix-list RFC1918
tnsr(config-route-map-rule)# exit
tnsr(config-route-map)# sequence 20
tnsr(config-route-map-rule)# policy permit
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 122

Product Manual TNSR v21.03

(continued from previous page)

tnsr(config-route-map-rule)# set metric 5000
tnsr(config-route-map-rule)# set local-preference 100
tnsr(config-route-map-rule)# set community no-export
tnsr(config-route-map-rule)# exit
tnsr(config-route-map)# exit

See also:

For more examples, see the following recipes:
e Service Provider Route Reflectors and Client for iBGP IPv4
* TNSR IPsec Hub for pfSense

Route Map Status

To view route maps, use the show route dynamic route-map [name] command. Add the name of a route map to
restrict the output to a route map.

tnsr(config)# show route dynamic route-map
route-map EBGP-OUT deny 10

match ip address prefix-list RFC1918
route-map EBGP-OUT permit 30

match ip address prefix-list MY-ROUTES
route-map PEERS-IN deny 10

match ip address prefix-list RFC1918
route-map PEERS-IN permit 20

set community no-export

set local-preference 100

set metric 5000

11.1.5 Dynamic Routing Manager Status

TNSR supports several commands to display information about the dynamic routing manager daemon configuration
and its status.

See also:
For more specific dynamic routing daemon status information, see BGP Status, OSPF Status, and OSPF6 Status

Configuration Information

To view the current configuration file for the dynamic routing manager daemon, use show route dynamic manager:

tnsr# show route dynamic manager
debug zebra events

log file /tmp/zebra-crit.log critical
log syslog warnings

To view other individual sections of the configuration:

© Copyright 2025 Rubicon Communications LLC 123

Product Manual TNSR v21.03

tnsr# show route dynamic access-list [<access-list-name>]
tnsr# show route dynamic prefix-list [<prefix-list-name>]
tnsr# show route dynamic route-map [<route-map-name>]

Additional Information

Additional status information can be obtained by using the vtysh program outside of TNSR.

The vtysh program must be run as root:

[sudo vtysh J

The vtysh interface offers numerous commands. Of particular interest for BGP status are the following:

show ip route
The IP routing table managed by the FRR Zebra daemon, which marks the origin of routes to see
which entries were obtained via BGP.

11.2 Border Gateway Protocol

Border Gateway Protocol (BGP) is a dynamic routing protocol used between network hosts. BGP routes between
autonomous systems, connecting to defined neighbors to exchange routing information.

BGP can be used for exterior routing (ebgp) or interior routing (ibgp), routing across Internet circuits, private links, or
segments of local networks.

11.2.1 BGP Required Information

Before starting, take the time to gather all of the information required to form a BGP adjacency to a neighbor. At a
minimum, TNSR will need to know these items:

VRF Name
The name of the Virtual Routing and Forwarding instance for which this BGP instance will manage
routes, or default for the default route table.

Local AS Number
The autonomous system (AS) number for TNSR. This is typically assigned by an upstream source,
an RIR, or mutually agreed upon by internal neighbors.

Local Router ID
Typically the highest numbered local address on the firewall. This is also frequently set as the internal
or LAN side IP address of a router. It does not matter what this ID is, so long as it is given in IPv4
address notation and does not conflict with any neighbors.

Local Network(s)
The list of networks that are advertised over BGP as belonging to the Local AS. For external BGP,
this is typically the IP address block allocated by the RIR. For internal BGP, this may be a list of local
networks or a summarized block.

Neighbor AS Number
The autonomous system number of the neighbor.

Neighbor IP Address
The IP address of the neighboring router.

© Copyright 2025 Rubicon Communications LLC 124

Product Manual

TNSR v21.03

The example in this section uses the following values:

Table 1: Example BGP Configuration

ltem Value

VRF Name default
Local AS Number 65002

Local Router ID 10.2.0.1
Local Network(s) 10.2.0.0/16
Neighbor AS Number 65005
Neighbor IP Address ~ 203.0.113.14

See NAT Forwarding.

Warning: If NAT is active on the same interface acting as a BGP peer, then NAT forwarding must also be enabled.

11.2.2 BGP Example Configuration

The following example configures a BGP adjacency to a neighbor using the settings from Example BGP Configuration:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server vrf default
tnsr(config-bgp)# as-number 65002
tnsr(config-bgp)# router-id 10.2.0.1
tnsr(config-bgp)# neighbor 203.0.113.14
tnsr(config-bgp-neighbor)# remote-as 65005
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# network 10.2.0.0/16
tnsr(config-bgp-ipduni)# exit
tnsr(config-bgp)# exit

tnsr(config-frr-bgp)# enable
tnsr(config-frr-bgp)# exit

BGP Example with Loopback

BGP on TNSR can also be used with loopback interfaces for more advanced routing scenarios. Using a loopback for
a BGP update source allows the path to the routing peer to be handled in some other way. It may be static, or it may

involve multiple paths to the peer, for example.

This scenario is based on the previous example, but uses a loopback interface for the update source.

© Copyright 2025 Rubicon Communications LLC

125

Product Manual TNSR v21.03

Configure Loopback

First, setup the loopback interface and address:

tnsr(config)# interface loopback bgploop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit

tnsr(config)# interface loopl
tnsr(config-interface)# ip address 10.5.222.1/32
tnsr(config-interface)# enable
tnsr(config-interface)# exit

Since the loopback is not on an interface, the 18.5.222. 1 address must be routed to TNSR somehow. This could be
an address in a routed block, or there could be another method of handling routes between the peers.

Route to Peer

Likewise, TNSR must know how to reach the remote peer, 10.5.222.2, which in this case the example also assumes
is a loopback address configured in a similar manner. In this example, the peer is reachable at 203.0.113. 14 which
is in a network directly connected to TenGigabitEthernet6/0/0. For simplicity, this will only be a static route:

tnsr(config)# route table ipv4-VRF:0
tnsr(config-route-table)# route 10.5.222.2/32
tnsr(config-rttbl4-next-hop)# next-hop 0 via 203.0.113.14

Setup BGP with Loopback Address

Now setup the BGP service, using the new neighbor address and with the loopback address as an update source:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server vrf default
tnsr(config-bgp)# as-number 65002
tnsr(config-bgp)# router-id 10.2.0.1
tnsr(config-bgp)# neighbor 10.5.222.2
tnsr(config-bgp-neighbor)# remote-as 65005
tnsr(config-bgp-neighbor)# update-source 10.5.222.1
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# network 10.2.0.0/16
tnsr(config-bgp-ipduni)# exit
tnsr(config-bgp)# exit

tnsr(config-frr-bgp)# enable
tnsr(config-frr-bgp)# exit

© Copyright 2025 Rubicon Communications LLC 126

Product Manual TNSR v21.03

11.2.3 BGP Configuration
The BGP service on TNSR contains numerous methods to configure and fine-tune BGP routing behavior. Due to this

complexity, the topic has been split into several sections. Read through each section before attempting to create a new
BGP configuration.

Enabling BGP

The BGP service has a master enable/disable toggle that must be set before BGP will operate. Enable BGP using the
enable command in config-frr-bgp mode:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# bgp enable

To disable the service, use no enable or disable.

The BGP service is managed as described in Service Control.

Warning: After starting or restarting TNSR, restart the BGP service from within the TNSR configuration mode
CLI to ensure that the routes from BGP neighbors are fully populated throughout TNSR:

[tnsr(config)# service bgp restart J

BGP Router Configuration

This statement enters BGP server mode for the specified VRF and enters config-bgp mode.

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server vrf default
tnsr(config-bgp) #

Warning: Older versions of TNSR specified the ASN here, rather than a VRF name. That format has been
deprecated. The ASN is still mandatory, but is now set by the as-number <asn> command within config-bgp
mode.

BGP mode defines the main behaviors of the BGP daemon, as well as the neighbors and behavior of BGP for different
address families, among other possibilities.

From within config-bgp mode, the following commands are available:

as-number <asn>
Mandatory. Sets the autonomous system number for this BGP instance.

address-family (ipv4|ipv6) (unicast/multicast)
Enter BGP Address Family Configuration mode.

always-compare-med
Instructs the BGP daemon to always consult MED values in routes, no matter which AS the routes
were received through.

bestpath as-path (confed|ignore|multipath-relax|as-set|no-as-set)
Controls how the BGP daemon determines the best path to a destination. May be one of:

© Copyright 2025 Rubicon Communications LLC 127

Product Manual TNSR v21.03

confed
Considers the length of confederation path sets and sequences.

ignore
Ignores AS path lengths when computing the route to a destination.

multipath-relax
Consider paths of equal length when choosing between multiple paths to a destination,
rather than looking for an exact match. This allows load sharing across different AS
paths, so long as they are of equal length.

as-set
For use with multipath-relax, it adds AS set information for aggregate routes.

no-as-set
For use with multipath-relax, it prevents AS set generation.

bestpath compare-routerid
Uses the router ID of peers (or originator ID, if present) to break ties when computing paths to a
destination based on other information. A lower router ID will win in a tie.

bestpath med confed
Compare confederation path MEDs

bestpath med missing-as-worst
If a route is missing MED information, it will be considered least preferred.

client-to-client reflection
Enables reflection of routes from one client to another client.

cluster-id (<ipv4>|<value>)
Configures the BGP daemon to participate in route reflection with the given cluster ID. The ID may
be given in IP address (dotted quad) notation or as an unsigned 32-bit integer (1-4294967295).

coalesce-time <value>
Configures the Subgroup coalesce timer, in milliseconds (1-4294967295).

confederation identifier <ASN>
Configures an AS number for the entire group of IBGP routers participating in confederation.

confederation peer <ASN>
Configures the sub-AS number for the subset of peers inside a group of IBGP routers participating
in confederation.

dampening [penalty <val> [reuse <val> [suppress <val> [maximum <max>]]]]
This command enables BGP route flap dampening (RFC 2439) to prevent unstable routers from
adversely affecting routing behavior.

penalty <penalty-val>
The time duration during which the stability value will be reduced by half if the route
is unreachable.

reuse <reuse-val>
Stability threshold that must be crossed for a route to be reused.

suppress <suppress-val>
Stability threshold that, when crossed, a route will be suppressed.

maximum <suppress-max>
Maximum time to suppress a route considered stable.

© Copyright 2025 Rubicon Communications LLC 128

https://tools.ietf.org/html/rfc2439.html

Product Manual TNSR v21.03

deterministic-med
Determine route selection locally, even when MED values are present. Picks the best MED path from
neighbor advertisements.

disable-ebgp-connected-route-check
Disable checking if nexthop is an eBGP session.

ipv4-unicast-enabled
Controls whether or not BGP will advertise IPv4 unicast routes. By default, BGP will advertise both
IPv4 and IPv6 unicast routes. Using no with this command will limit BGP such that it only advertises
IPv6 unicast routes.

listen limit <value>
Maximum number of dynamic neighbors from 1-5000.

listen range (<ip4-prefix>|<ip6-prefix>) peer-group <peer-group-name>
Listen range for dynamic neighbors.

max-med administrative [<med>]
Sends the defined MED value, or 4294967294 when unset, at all times.

max-med on-startup period <seconds> [<med>]
Sends the defined MED value, or 4294967294 when unset, only at startup for the defined period in
seconds, from 5-86400.

neighbor <peer>
Enter BGP Neighbor Configuration mode.

network import-check
Checks if a BGP network route exists in IGP before creating BGP table entries.

route-reflector allow-outbound-policy
Allows attributes modified by route maps to be reflected.

router-id <A.B.C.D>
Sets the router ID for the BGP daemon. This is typically set to an IP address unique to this router,
and commonly is set to a local private address.

timers keep-alive <interval> hold-time <hold-time>
Configures the intervals between keep alive messages and how long to wait for a response before
considering the peer unreachable.

update-delay <delay>
Keeps BGP in a read-only mode for the specified time after the daemon restarts or peers are cleared.

write-quanta <packets>
Controls the size of peer update transmissions.

BGP Neighbor Configuration

From within config-bgp mode, the neighbor statement can take either an IP address to setup a single neighbor or it
can take a name which configures a peer group. The command then changes to config-bgp-neighbor mode.

tnsr(config-bgp)# neighbor 203.0.113.14
tnsr(config-bgp-neighbor)#

Peer groups work nearly identical to neighbors, and they define options that are common to multiple neighbors.

© Copyright 2025 Rubicon Communications LLC 129

Product Manual TNSR v21.03

Warning: A neighbor or peer group must first be defined here before it can be used inside an address family (BGP
Address Family Neighbor Configuration).

config-bgp-neighbor mode contains the following commands:

advertisement-interval <interval-sec>
Minimal time between sending routing updates to this neighbor. Expressed in seconds between
0-600.

bfd enabled (truelfalse)
Enable Bidirectional Forwarding Detection for this BGP neighbor.

capability dynamic
Enables negotiation of the dynamic capability with this neighbor or peer group.

capability extended-nexthop
Enables negotiation of the extended-nexthop capability with this neighbor or peer group. This ca-
pability can set [Pv6 next-hops for IPv4 routes when peering with IPv6 neighbors on interfaces with-
out IPv4 connectivity. This is automatically enabled when peering with IPv6 link-local addresses.

disable-connected-check
Disables a check that normally prevents peering with eBGP neighbors which are not directly con-
nected. This enables using loopback interfaces to establish adjacencies with peers.

description <string>
A brief text description of this neighbor.

dont-capability-negotiate
Disables dynamic capability negotiation with the peer. When set, the router does not advertise capa-
bilities, nor does it accept them. This results in using only locally configured capabilities.

ebgp-multihop [hop-maximum <hops>]
The maximum allowed hops between this router and the neighbor, in the range 1-255. When enabled
without a specific value, the default is 1. This value cannot be set if ttl-security is set.

(enable|disable)
The default state of a neighbor is disabled. To enable the neighbor, use the enable command. To
disable the neighbor, run disable or no enable.

enforce-first-as
When set, enforces the first AS for eBGP routes.

local-as <asn> [no-prepend [replace-as]]
Sets the local AS number sent to this neighbor, which replaces the AS number configured on the
BGP server itself. By default, this value is prepended to the AS path for routes received from this
neighbor or peer group, and is added to the AS path for routes sent to this neighbor or peer group
after the AS number from the BGP sever.

no-prepend
Suppresses prepending this AS number to the AS path for received routes.

replace-as
Suppresses prepending the BGP server AS to transmitted routes, so that only this value
is present.

override-capability

Ignores capabilities sent by the peer during negotiation and uses locally configured capabilities in-
stead.

© Copyright 2025 Rubicon Communications LLC 130

Product Manual TNSR v21.03

passive
When set, this router will not issue requests to the neighbor on its own. The BGP daemon will only
respond to remote requests from this neighbor.

password <line>
A password used by BGP for TCP-MD5 (RFC 2385) authentication of communications with the
neighbor, up to 64 characters in length.

peer-group [<peer-group-name>]
Configure this neighbor as a member of the given peer group. Only valid for use in neighbors defined
by address, not on peer groups.

port <port>
An alternate port number used by this daemon for BGP messages, if it uses a value other than TCP
port 179.

remote-as <asn>
The remote AS number of this neighbor.

solo
Instructs the router to prevent reflection of routes received from this neighbor back to this neighbor.
This command is not useful in peer groups with multiple members.

strict-capability-match
When set, enforces the comparison between the set of capabilities sent by the peer during negotiation
and the set of capabilities present in the local configuration. If there is a mismatch, an error is
transmitted to the peer.

timers keepalive <interval> holdtime <hold>
Configures the intervals between keep alive messages and how long to wait for a response from this
neighbor before considering the peer unreachable. This overrides the default values set on the BGP
server itself. Both values must be in the range ®-65535, in seconds.

timers connect <seconds>
The amount of time, in seconds from 1-65535, in which a connection to this peer must be established
or else it is considered unsuccessful.

ttl-security hops <hops>
Similar to ebgp-multihop but sets a specific hop count at which neighbors must be reached, rather
than the maximum value set by ebgp-multihop. This command cannot be set if ebgp-multihop
is set.

update-source (<ifname>|<ip-address>)
Configures a specific interface or IP address to use when sending messages to this peer.

Note: Within BGP neighbor mode, the most important directives are remote-as to set the AS number of the neighbor
and enable. The majority of other neighbor configuration is handled by the neighbor definition for a specific address
family (BGP Address Family Neighbor Configuration).

© Copyright 2025 Rubicon Communications LLC 131

Product Manual TNSR v21.03

BGP Address Family Configuration

The TNSR BGP implementation is capable of handling routing information for IPv4 and IPv6 independently, among
other network layer protocols. The address-family <family> <type> command defines BGP behavior for each
specific supported case. The most common address families are ipv4 unicast and ipv6 unicast. The other pos-
sible choices supported in this version are ipv4 multicast and ipv6 multicast.

The address-family command changes to BGP address family mode, which contains settings specific to each address
family. The prefix for this mode varies depending on the address family command which entered the mode. For
example, when configuring settings for the IPv4 unicast address family, the prompt indicates config-bgp-ip4uni.

tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)#

Each resulting mode, such as config-bgp-ip4uni or config-bgp-ip6uni, contains its own set of commands. As
these may differ, they are split up in multiple sections here.

IPv4 or IPv6 Unicast

The following commands are available in config-bgp-ip4uni and config-bgp-ip6uni modes:

aggregate-address <ip-prefix> [as-set] [summary-only]
This command configures route aggregation using the specified prefix. More specific routes con-
tained within the specified prefix will be aggregated into the larger prefix, minimizing the set of
networks advertised to peers.

as-set
When present, routes for the specified prefix will include an AS set. An AS set is a
collection of AS numbers for which routes have been aggregated. This allows peers to
detect routing loops, duplicate routes, and so on.

summary-only
When present, aggregated routes for this prefix will not be announced, so peers only
see the aggregate prefix and not the component networks.

distance external <extern> internal <intern> local <local>
Configures distance values which control how BGP will treat routes based on the length of their AS
path.

external <extern>
The distance at which routes are considered external, from 1-255.

internal <intern>
The distance at which routes are considered internal, from 1-255.

local <local>
The distance at which routes are considered local, from 1-255.

distance administrative <dist> prefix <ip-prefix> [access-list <access-list-name>]
This command manually configures the administrative distance for a given prefix, with the following
required parameters:

administrative <dist>
The administrative distance for this prefix, from 1-255.

prefix <ip-prefix>
The IP prefix to which this distance will be applied.

© Copyright 2025 Rubicon Communications LLC 132

Product Manual TNSR v21.03

access-list <access-list-name>
An access list which can be used to apply the distance to only a subset of the configured
prefix.

maximum-paths <non-ibgp-paths> [igbp <ibgp-paths> [equal-cluster-length]]
Configures the maximum number of paths for multi-path eBGP forwarding. This is enabled by default
with a value of 64. This allows the router to utilize multiple equal identical paths via different routers.

Paths for prefixes advertised by multiple eBGP peers in the same AS are considered equal cost and
result in a multi-path route.

Note: As this feature is enabled by default, to disable this behavior, set the value to 1 which limits
routes to only a single path.

igbp <ibgp-paths>
Configures a value for multi-path forwarding in iBGP roles.

equal-cluster-length
Only consider paths as matching when cluster lengths are also equal.

neighbor <existing-neighbor>
Specifies an existing neighbor address or peer group to use with this address family, and enters BGP
Address Family Neighbor Configuration mode.

Warning: This command cannot define a new neighbor. A neighbor or peer group must first
be defined using the neighbor command from within config-bgp mode before it can be used
here.

network <ip-prefix> [route-map <route-map>]
Configures a prefix to be advertised to peers in this address family.

route-map <route-map>
Specifies a route map used to limit advertisements of this prefix.

redistribute <route-source> [metric <val>|route-map <route-map-name>]
Enables redistribution of routes from another source. Available route sources are listed in Dynamic
Routing Protocol Lists.

metric <val>
A MED value to apply to redistributed routes.

route-map <route-map-name>
Specifies a route map used to limit redistributed route advertisements.

redistribute ospf [metric <val>[route-map <route-map-name>]
Configure redistribution of routes from OSPF.

metric <val>
A MED value to apply to redistributed routes.

route-map <route-map-name>
Specifies a route map used to limit redistributed route advertisements.

redistribute table id <kernel-table-id> [metric <val>|route-map <route-map-name>]
Configure redistribution of routes only from a specific kernel routing table, rather than all tables.

metric <val>
A MED value to apply to redistributed routes.

© Copyright 2025 Rubicon Communications LLC 133

Product Manual TNSR v21.03

route-map <route-map-name>
Specifies a route map used to limit redistributed route advertisements.

table-map <route-map-name>
Uses the specified route map to control how routes received from BGP peers are passed to the dynamic
routing manager process, and thus, into routing tables.

IPv4 Multicast

The following commands are available in config-bgp-ip4multi mode. See /Pv4 or IPv6 Unicast for descriptions
of the commands and parameters:

e aggregate-address

e distance external

e distance administrative
* neighbor

* network

e table-map

IPv6 Multicast

The following commands are available in config-bgp-ip6multi mode See /Pv4 or IPv6 Unicast for descriptions of
the commands and parameters:

e distance external
e distance administrative
¢ neighbor

¢ network

BGP Address Family Neighbor Configuration

From within a BGP address family configuration mode, the neighbor <existing-neighbor>command specifies an
existing neighbor defined in BGP Neighbor Configuration mode. This command then enters an address-family-specific
neighbor mode. Like address families, the prefix for this mode varies based on the family and type of address family it
is run within. For example, with IPv4 unicast mode, the prompt is config-bgp-ip4uni-nbr.

tnsr(config-bgp-ip4uni)# neighbor 203.0.113.14
tnsr(config-bgp-ip4uni-nbr)#

The following commands are available in config-bgp-<familytype>-nbr modes:

activate
Activate this neighbor for use by BGP.

addpath-tx-all-paths
Adbvertise all known paths to this peer, instead of only advertising the base path.

addpath-tx-bestpath-per-as
Advertise only the best known base paths for each AS.

© Copyright 2025 Rubicon Communications LLC 134

Product Manual TNSR v21.03

allowas-in [<occurrence>|origin]
Allows routes to be received from this peer which are from the same AS of this router, but through a
different path.

<occurrence>
Allowed number of AS occurrences, from 1-10.

origin
Accept the AS of this router in an AS-path if the route originated in the AS of this
router.

as-override
Override ASNs in outbound updates to this peer if the AS path is identical to the remote AS.

attribute-unchanged [as-path|next-hop|med]
Propagates route attributes to this peer unchanged. This behavior can be optionally restricted to only
specific attributes, including the as-path, next-hop, and med attributes.

capability orf prefix-list (send|receive|both)
Advertise outbound route filtering capability to this peer. This behavior can be restricted by direction,
send, receive, or both.

default-originate [route-map <route-map>]
Enables advertisement of a default route to this peer.

route-map <route-map>
Restricts this behavior based on the specified route map.

distribute-list <access-list-name> (in|out)
Defines an access list which is used by BGP to filter route updates for this peer, in either the in or
out direction.

filter-list <aspath-name> (injout)
Defines a list which is used by BGP to filter route updates by AS path, rather than prefix.

maximum-prefix [(limit|restart|threshold) <value>|warning-only]
Defines the maximum number of prefixes this router will accept from the peer before tearing down
the BGP session.

Note: This action is considered harsh and the best practice is to filter received prefixes by other
mechanisms such as a prefix-1ist rather than to abruptly break contact in this way.

limit <val>
The maximum number of prefixes to allow from the peer, from 1-4294967295.

restart <val>
Restarts the connection after limits are exceeded. The restart is performed at the defined
interval, in minutes, from 1-65535.

threshold <val>
Warning message threshold, from 1-100.

warning-only
Warn the peer when the limit is exceeded, rather than disconnecting.

next-hop-self [force]
Uses the address of this router as the next-hop in routes announced to this peer if they are learned via
eBGP.

© Copyright 2025 Rubicon Communications LLC

135

Product Manual TNSR v21.03

force
When present, also sets the next-hop to the address of this router on reflected routes.

prefix-list <prefix-list-name> (injout)
Defines a prefix list which is used by BGP to filter route updates for this peer, in either the in or out
direction.

remove-private-AS [all] [replace-AS]
Prevents the BGP daemon from sending routes with private AS numbers to this peer.

all
When present, this action applies to all ASNs.

replace-AS
When present, replaces private AS numbers with the AS number of this router.

route-map <name> (injout)
Defines a route map which is used by BGP to filter route updates for this peer, in either the in or out
direction.

route-reflector-client
Configures this peer as a route reflector client. This allows routes received from peers in the same AS
or using iBGP to be reflected to other peers, avoiding the need for a full mesh configuration between
all routing peers.

route-server-client
Configures this peer as a route server client. This enables transparent mode, which retains attributes
unmodified, and maintains a local RIB for this peer.

send-community (standard|large|extended)
Sends the community attribute to this peer, limited to the specified type (standard, large,
extended).

soft-reconfiguration inbound
Allows the peer to send requests for soft reconfiguration, to apply changes to routes or new attributes
without the need for a session reset.

unsuppress-map <route-map>
Configures a route map which BGP can use to unsuppress routes that would otherwise be suppressed
by other configuration settings.

weight <weight>
Applies the given weight to routes received from this peer.

BGP AS Path Access Lists

AS Path access lists entries determine if networks are allowed or denied in specific BGP configuration contexts. They
are primarily used in BGP route maps, but also can be used in other areas of BGP configuration which accept AS Path
lists as parameters.

The order of entries inside an AS Path list is important, and this order is determined by a sequence number. As with
other access lists, AS Path access lists implicitly deny anything not matched.

© Copyright 2025 Rubicon Communications LLC 136

Product Manual TNSR v21.03

BGP AS Path Configuration

To create a new AS Path list, from config-frr-bgp mode, use the as-path <name> command, which enters
config-aspath mode:

tnsr(config-frr-bgp)# as-path myasp
tnsr(config-aspath)#

config-aspath mode contains only the rule <seq> (permit|deny) <pattern>command which defines a new
AS Path rule with the following parameters:

<seq>
The sequence number for this rule, which controls the order in which rules are matched inside this
AS Path list. Each rule must have a unique sequence number. Best practice is to leave gaps in the
sequence to allow for adding rules in the future. For example, use 10, 20, 30, rather than 1, 2, 3.

(permit|deny)
The action taken when this AS Path rule is matched, either permit or deny.

<pattern>
A regular expression pattern which will match on the AS number.

Regular expression patterns support common pattern special characters for matching, but also a spe-
cial _ character. The _ character matches common AS delimiters such as start of line, end of line,
space, comma, braces, and parenthesis. The _ character can be used on either side of an AS number
to match it exactly, such as _65534_.

BGP AS Path Example

This AS Path could match an empty AS value or the specific value of 65002, and no others:

tnsr(config-frr-bgp)# as-path myasp
tnsr(config-aspath)# rule 10 permit A$
tnsr(config-aspath)# rule 20 permit _65002_
tnsr(config-aspath)# exit
tnsr(config-frr-bgp)#

This AS Path will match only when the path being compared starts with 65500. This is a common way to ensure that
routes from a peer contain the expected AS in the AS Path.

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# as-path R2-AS
tnsr(config-aspath)# rule 10 permit 265005
tnsr(config-aspath)# exit

tnsr(config-frr-bgp)# exit

tnsr(config)# route dynamic route-map CHECK-R2-AS
tnsr(config-route-map)# sequence 10
tnsr(config-route-map-rule)# policy permit
tnsr(config-route-map-rule)# match as-path R2-AS
tnsr(config-route-map-rule)# exit
tnsr(config-route-map)# exit

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server 65002
tnsr(config-bgp)# neighbor 10.2.222.2

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 137

https://en.wikipedia.org/wiki/Regular_expression

Product Manual TNSR v21.03

(continued from previous page)

tnsr(config-bgp-neighbor)# remote-as 65005
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# neighbor 10.2.222.2
tnsr(config-bgp-ip4uni-nbr)# route-map CHECK-R2-AS in
tnsr(config-bgp-ip4uni-nbr)# exit
tnsr(config-bgp-ip4uni)# exit

tnsr(config-bgp)# exit

tnsr(config-frr-bgp)# exit

tnsr(config)#

BGP AS Path Status

To view AS Path lists, use the show route dynamic bgp as-path [<name>] command. Add the name of an AS
Path list to restrict the output to a single entry.

tnsr(config)# show route dynamic bgp as-path

Name Seq Policy Pattern

R2-AS 10 permit 65005

myasp 10 permit A$
myasp 20 permit _65002_

BGP Community Lists

A BGP community, as defined in RFC 1997, is a group of destinations which share common properties. Community
Lists define sets of community attributes which the BGP daemon can use to match or set community values in routing
updates. BGP communities determine AS membership and priority values in BGP-specific contexts such as route-maps.

The order of entries inside a Community List is important, and this order is determined by a sequence number.

BGP Well-Known Communities

There are several “well-known” communities available for use in Community Lists. Each of these communities have
special meanings:

internet
A community value of 0, indicating the Internet as a destination.

no-export
Routes received carrying this attribute value must not be exported to routers outside of the current
confederation.

no-advertise
Routes received carrying this attribute value must not be advertised to any other BGP peer.

local-as
Also known as “No Export Subconfed”. Routes received carrying this attribute value must not be
advertised to any external BGP peer, even those in the same confederation.

© Copyright 2025 Rubicon Communications LLC 138

https://tools.ietf.org/html/rfc1997

Product Manual TNSR v21.03

blackhole
Routes received carrying this attribute should not be routed (e.g. null routed).

graceful-shutdown
Indicates support for RFC 8326 Graceful Shutdown, which allows BGP routers to indicate to peers
that specific paths can be gracefully shut down rather than abruptly terminated when performing an
intentional shutdown.

no-peer
Indicates that routes with this community value should not be readvertised to peers (RFC 3765).

BGP Community List Configuration

To create a new Community List, from config-frr-bgp mode, use the community-list <name>
(standard|expanded) [normal]|extended|large] command, with the following parameters:

<name>
The name of this BGP Community List.

(standard|expanded)
The type of Community List, either standard or expanded:

standard
Matches based on specific values for community attributes.

expanded
Matches based on an ordered list using a regular expression. Due to the use of regular
expression evaluation, these lists incur a performance penalty.

[normallextended|large]
The type of communities contained inside this Community List, either normal, extended, or large.

normal
Normal community values as described in RFC 1997.

extended
Extended BGP communities specified using 8-octet values as described in RFC 5668.
These communities also allow for IPv4-based policies.

large
Large BGP communities specified using 12-octet values as described in RFC 8092 and
RFC 8195.

The full community-1ist command enters config-community-1ist mode:

tnsr(config-frr-bgp)# community-list mycom standard normal
tnsr(config-community-list)#

config-community-1ist mode contains the following commands:

description
sequence <seq> (permit|deny) <community-value>

<seq>
The sequence number for this rule, which controls the order in which rules are matched
inside this Community List. Each rule must have a unique sequence number. Best
practice is to leave gaps in the sequence to allow for adding rules in the future. For
example, use 10, 20, 30, rather than 1, 2, 3.

© Copyright 2025 Rubicon Communications LLC 139

https://tools.ietf.org/html/rfc8326
https://tools.ietf.org/html/rfc3765
https://tools.ietf.org/html/rfc1997
https://tools.ietf.org/html/rfc5668
https://tools.ietf.org/html/rfc8092
https://tools.ietf.org/html/rfc8195

Product Manual TNSR v21.03

(permit|deny)
The action taken when this Community List rule is matched, either permit or deny.

<community-value>
The value of the community to match.

Standard Community Lists
This is a space-separated list of communities in AS:VAL format, or from the
BGP Well-Known Communities list.

Expanded Community Lists
A string containing a regular expression to match against.

Regular expression patterns support common pattern special characters for
matching, but also a special _ character. The _ character matches common AS
delimiters such as start of line, end of line, space, comma, braces, and paren-
thesis.

BGP Community List Example

This example sets up a Community List for the AS:VAL pair of AS 65002 and community value 10:

tnsr(config-frr-bgp)# community-list mycom standard normal
tnsr(config-community-list)# sequence 10 permit 65002:10
tnsr(config-community-list)# exit

tnsr(config-frr-bgp)#

This example sets up a Community List, used by a route map, to prevent distribution of routes marked with the well-
known community no-export:

tnsr(config)# route dynamic bgp

tnsr(config-frr-bgp)# community-1list POISON-ROUTES standard normal
tnsr(config-community-list)# sequence 10 permit no-export
tnsr(config-community-list)# exit

tnsr(config-frr-bgp)# exit

tnsr(config)# route dynamic route-map OUT

tnsr(config-route-map)# sequence 10

tnsr(config-route-map-rule)# policy deny
tnsr(config-route-map-rule)# match ip address prefix-list RFC1918
tnsr(config-route-map-rule)# exit

tnsr(config-route-map)# sequence 20

tnsr(config-route-map-rule)# policy deny
tnsr(config-route-map-rule)# match community POISON-ROUTES
tnsr(config-route-map-rule)# exit

tnsr(config-route-map)# sequence 30

tnsr(config-route-map-rule)# policy permit
tnsr(config-route-map-rule)# match ip address prefix-list MY-ROUTES
tnsr(config-route-map-rule)# exit

tnsr(config-route-map)# exit

tnsr(config)#

Note: In this example, note the use of permit in the Community List, which will succeed on a positive match. The
route map then uses deny when a positive match is made on the community value.

© Copyright 2025 Rubicon Communications LLC 140

Product Manual TNSR v21.03

BGP Community List Status

To view Community Lists, use the show route dynamic bgp community-list [<name>] command. Add the
name of a Community List to restrict the output to a single entry.

tnsr(config)# show route dynamic bgp community-list

Name Type Size Description

POISON-ROUTES standard normal
Seq Action Community

10 permit no-export

mycom standard normal
Seq Action Community

10 permit 65002:10

11.2.4 BGP Status

TNSR supports several commands to display information about the BGP daemon configuration and its status.
See also:
For more general dynamic routing status information, see Dynamic Routing Manager Status

Configuration Information

To view the BGP configuration:

[tnsr# show route dynamic bgp config [<as-number>]

To view other individual sections of the configuration:

tnsr# show route dynamic bgp as-path [<as-path-name>]
tnsr# show route dynamic bgp community-list [<community-list-name>]

Status Information

The general form of the command to view BGP non-configuration state information is show route dynamic bgp
<options>. Output includes all VRFs by default, but may be restricted to a single VRF by using show route
dynamic bgp vrf <vrf-name> <options> instead. The list of options is the same in both cases.

For a brief summary of BGP status information:

[tnsr# show route dynamic bgp [vrf <vrf-name>] (ipv4|ipv6) summary

For a list of configured BGP Neighbors and their status details:

tnsr# show route dynamic bgp [vrf <vrf-name>] (ipv4|ipv6) neighbors [[<peer>]
[advertised-routes|dampened-routes|flap-statistics|prefix-counts|
received|received-routes|routes]]

© Copyright 2025 Rubicon Communications LLC 141

Product Manual TNSR v21.03

For information about a specific BGP peer group:

[tnsr# show route dynamic bgp [vrf <vrf-name>] peer-group <peer-group-name>

For a list of valid BGP next hops:

[tnsr# show route dynamic bgp [vrf <vrf-name>] nexthop [detaill]

For details about an address or prefix in the BGP routing table:

[tnsr# show route dynamic bgp [vrf <vrf-name>] (ipv4|ipv6) network <prefix>

BGP Active Session Control

The session clear command can be used to reset active BGP sessions. This command is available from within

config-frr-bgp mode. The general form of the command is:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# session clear [vrf <vrf-name>] (*|<peer>|<asn>) [soft]

The first parameter after the optional VRF name controls what will be cleared, and values may be completed automat-

ically with tab:
&
Clears all open BGP sessions

<peer>
Clears all sessions to a specific peer IP address or peer group name

<asn>
Clears all sessions to a specific AS number

The second parameter, soft is optional and controls whether or not the command will trigger a soft reconfiguration.

Additional Information

Additional BGP status information can be obtained by using the vtysh program outside of TNSR.

The vtysh program must be run as root:

[sudo vtysh

The vtysh interface offers numerous commands. Of particular interest for BGP status are the following:

show bgp summary
A brief summary of BGP status information.

show bgp neighbors
Lists configured BGP Neighbors and their status details.

show ip bgp
A list of routes and paths for networks involved in BGP.

show ip route
The IP routing table managed by the FRR Zebra daemon, which marks the origin of routes to see
which entries were obtained via BGP.

© Copyright 2025 Rubicon Communications LLC

142

Product Manual TNSR v21.03

11.2.5 Working with Large BGP Tables

When working with a large set of routes, roughly exceeding 30,000 route table entries, TNSR may require additional
memory to be allocated for the VPP dataplane Forwarding Information Bases (FIB). Smaller routing tables do not
require special configuration.

Note: Changes in the dataplane memory behavior in TNSR 20.10.1 make most tuning unnecessary. Recommendations
from previous versions may no longer apply. Only make changes if a TNSR instance experiences problems with large
route tables.

This memory allocation can be performed in configuration mode using one of the following commands:
IPv4 now uses the main heap for memory instead of its own setting, and thus is unlikely to need tuning.

IPv6 (Memory) still uses its own separate heap:

tnsr# configure
tnsr(config)# dataplane ip6 heap-size <size>

The format of the size is <number>[KMG], for example: 512M or 1G for 512 Megabytes or 1 Gigabyte, respectively.

Additionally, the statistics segment heap size may also need to be increased (Statistics Segment):

tnsr# configure
tnsr(config)# dataplane statseg heap-size <size>

Note: The default size for dataplane statseg heap-size is 96MB, which is sufficient for approximately one
million routes when worker threads are not in use.

See also:

For more details about selecting an appropriate heap-size value, especially when worker threads are enabled, see
Statistics Segment.

The VPP dataplane service requires a restart to enable these configuration changes. Restart VPP from the TNSR
configuration mode CLI using the following command:

tnsr# configure
tnsr(config)# service dataplane restart

11.3 Open Shortest Path First v2 (OSPF)

Open Shortest Path First v2 (OSPF) is a link-state routing protocol defined by RFC 2328. OSPF automatically lo-
cates neighboring IPv4 routers within an autonomous system, typically with multicast, and exchanges IPv4 routing
information for networks reachable through each neighbor.

OSPF is an interior routing protocol (IGP), and facilitates routing between private links or segments of local networks.

© Copyright 2025 Rubicon Communications LLC 143

https://tools.ietf.org/html/rfc2328

Product Manual TNSR v21.03

11.3.1 OSPF Required Information

Before starting, take the time to gather all of the information required to form an OSPF adjacency to a neighbor. At a
minimum, TNSR will need to know these items:

VRF Name
The name of the Virtual Routing and Forwarding instance for which this OSPF instance will manage
routes, or default for the default route table.

Local Router ID
Typically the highest numbered local address on the firewall. This is also frequently set as the internal
or LAN side IP address of a router. It does not matter what this ID is, so long as it is given in IPv4
address notation and does not conflict with any neighbors.

OSPF Area
A designation for the set of networks to which this router belongs. Typically setto 0.0.0.0 for simple
internal deployments, but can be any number capable of being expressed in dotted quad notation (IPv4
address) or as a 32-bit unsigned integer.

OSPF Active Interfaces
The interfaces on this router upon which the OSPF daemon will advertise itself and look for neigh-
bors. These interfaces are connected to network segments with other routers. They may be con-
nected to local networks or remote point-to-point links. These interfaces must be configured with IP
addresses.

Warning: Outside NAT interfaces (ip nat outside) cannot be used as active interfaces in
OSPF! The presence of NAT prevents OSPF from properly communicating with neighbors to
form a full adjacency.

OSPF Active Interface Cost Values
OSPF calculates the most efficient way to route between networks based on the total cost of a path
from source to destination. Less desirable links (e.g. wireless) can be given a higher cost so that
paths over faster networks will be used by traffic unless the preferred path is unavailable. For single
connections to other networks, this value is not necessary and may be omitted or set to a simple
default such as 5 or 10.

OSPF Passive Interfaces
These interfaces contain networks which should be advertised as reachable through this router, but
do not contain other routers.

The example in this section uses the following values:

Table 2: Example OSPF Configuration

Item Value

VRF Name default

Local Router ID 10.2.0.1

OSPF Area 0.0.0.0

Active Interfaces (Cost) TenGigabitEthernet6/0/0 (10)
Passive Interfaces GigabitEthernet3/0/0

© Copyright 2025 Rubicon Communications LLC 144

Product Manual TNSR v21.03

11.3.2 OSPF Example

This example configuration implements an OSPF setup using the required information from Example OSPF Configu-
ration.

tnsr(config)# route dynamic ospf

tnsr(config-frr-ospf)# server vrf default
tnsr(config-ospf)# ospf router-id 10.2.0.1
tnsr(config-ospf)# passive-interface GigabitEthernet3/0/0
tnsr(config-ospf)# exit

tnsr(config-frr-ospf)# interface GigabitEthernet3/0/0
tnsr(config-ospf-if)# ip address * area 0.0.0.0
tnsr(config-ospf-if)# exit

tnsr(config-frr-ospf)# interface TenGigabitEthernet6/0/0
tnsr(config-ospf-if)# ip address * cost 5
tnsr(config-ospf-if)# ip address * area 0.0.0.0
tnsr(config-ospf-if)# exit

tnsr(config-frr-ospf)# enable

tnsr(config-frr-ospf)# exit

tnsr(config)#

A similar configuration may be applied to neighboring routers also connected to the same network as the
TenGigabitEthernet6/0/0 interface. Adjust the router ID and interface names as needed.

For a simple configuration such as this, a single area for all routers is typical.
See also:

For a more complex example involving multiple areas, see OSPF Router with Multiple Areas and Summarization.

11.3.3 OSPF Configuration

OSPF configuration on TNSR, as shown in the example, can be fairly straightforward. That said, there are a number of
ways to fine-tune the behavior and create complex OSPF routing configurations.

Read through each section before attempting to create a new OSPF configuration.
Enable OSPF

The OSPF service has a master enable/disable toggle that must be set before OSPF will operate. Enable OSPF using
the enable command in config-frr-ospf mode:

tnsr(config)# route dynamic ospf
tnsr(config-frr-ospf)# enable

To disable the service, use no enable or disable.

The OSPF service is managed as described in Service Control.

© Copyright 2025 Rubicon Communications LLC 145

Product Manual TNSR v21.03

OSPF Server Configuration

To configure an OSPF server, start in config-frr-ospf mode and run the server vrf <vrf-name> command,
where <vrf-name> is the name of a Virtual Routing and Forwarding instance or default for the default route table:

tnsr(config)# route dynamic ospf
tnsr(config-frr-ospf)# server vrf default
tnsr(config-ospf)#

This changes into config-ospf mode, which contains the following commands:

area <area-id>
Configures area-specific settings in OSPF Area Configuration mode.

auto-cost reference-bandwidth <bw>
A base value, in Mbit/s, which is used when OSPF automatically calculates cost values. The default
value is 100 which means that an interface with 100Mbit/s of bandwidth or greater will have a cost
of 1, with lower bandwidth values incurring higher cost values.

All routers in the same area should use the same value, otherwise automatic cost calculations would
fail to accurately represent total path costs between routers.

capability opaque-Isa
Enables support for Opaque LSAs, as described in RFC 2370.

compatible rfc-1583-compatibility
Enables compatibility with the older OSPF standard from RFC 1583, which has been obsoleted by
the newer RFC 2328. The specific change this option enables relates to external path preference
calculation and routing loop prevention. See RFC 2328 section G.2 for specific details.

default-information originate (always|metric <val>|type <type>|route-map <map>)
Enables origination of a Type 5 AS-External LSA containing default route information into all areas
capable of external routing.

always
Always advertise a default route, even when a default route is not present in the local
routing table.

metric <val>
Advertise the default route as having the given metric.

type <type>
The type of metric, either 1 or 2. See Metric Types for details about each type operates.

route-map <map>
Apply the given route map to the outbound route advertisement.

default-metric <val>
Uses the given metric value as the default metric for OSPF routes when no other metric information
is available.

distance [(externallinter-arealintra-area)] <dist>
Sets an administrative distance for routes obtained via OSPF. This can be configured globally as well
as for specific types of OSPF routes.

external <dist>
Sets the administrative distance for external OSPF routes.

inter-area <dist>
Sets the administrative distance for OSPF routes between areas.

© Copyright 2025 Rubicon Communications LLC 146

https://tools.ietf.org/html/rfc2370
https://tools.ietf.org/html/rfc1583
https://tools.ietf.org/html/rfc2328
https://tools.ietf.org/html/rfc2328

Product Manual TNSR v21.03

intra-area <dist>
Sets the administrative distance for OSPF routes inside an area.

distribution-list out <route-source> access-list <name>
Applies the given access list <name> to routes redistributed from the specified <route-source>.

Auvailable route sources are listed in Dynamic Routing Protocol Lists, with the exception of ospf
which cannot be used with this command.

log-adjacency-changes [detail]
Instructs the OSPF daemon to log changes in neighbor adjacencies. This is useful for tracking changes
to neighbor relationships, especially during initial configuration.

The optional detail parameter increases the verbosity of the resulting log messages.

max-metric router-lsa administrative
Sets the administrative distance of routes through this router to infinity, so that other routers will
avoid using this router to reach other networks. Networks on this router are still reachable. See RFC
3137 for more information.

max-metric router-lsa (on-shutdown|on-startup) <seconds>
Conditionally sets the administrative distance of routes through this router to infinity for a period of
time after startup or shutdown. This allows other routers in the area to avoid using routes through
this router until a full convergence is achieved.

neighbor <ip4-address> [(poll-interval <interval>|priority <prio>)]
Configures per-neighbor settings for polling and priority for non-multicast neighbors.

poll-interval <interval>
Time, in seconds, between sending OSPF Hello messages to neighbors in a down state.

priority <prio>
A priority value applied to neighbors in a down state.

ospf abr-type (ciscolibm|shortcut|standard)
Controls the behavior of Area Border Router (ABR) functionality.

ciscolibm
The default behavior of OSPF on TNSR, discussed in RFC 3509. This behavior allows
an ABR without a backbone connection to act as an internal router for all connected
areas.

shortcut
Discussed in draft-ietf-ospf-shortcut-abr-02, this behavior allows ABRs to consider
summary LSAs from all attached areas, rather than being forced to route through a
suboptimal path only because it is shorter.

standard
The ABR behavior described in the original OSPF standard. When set, a router attached
to multiple areas requires a connection to a backbone. If no backbone is available, traffic
attempting to cross areas will be dropped.

ospf router-id <router-id>
Sets the router ID for the OSPF daemon. This is typically set to an IP address unique to this router,
and commonly is set to a local private address.

ospf write-multiplier <write>
Number of interfaces processed per write operation, from 1-100. Default value is 20.

passive-interface <if-name> [<ip4-address>]
Configures the specified interface as passive. This prevents the interface from actively participat-
ing in OSPF, while still allowing OSPF to operate on networks connected to that interface. This is

© Copyright 2025 Rubicon Communications LLC 147

https://tools.ietf.org/html/rfc3137
https://tools.ietf.org/html/rfc3137
https://tools.ietf.org/html/rfc3509
https://tools.ietf.org/html/draft-ietf-ospf-shortcut-abr-02

Product Manual TNSR v21.03

commonly used for local interfaces without other routers attached. OSPF will announce networks
attached to passive interfaces as stub links.

pce address (<ip4-address>|domain <asn>|flags <bits>|neighbor <asn>|scope <bits>)
Configures RFC 5088 Path Computation Element (PCE) Discovery for OSPF. When active, this
router will advertise support for PCE to neighbors via router information (RI) announcements. Re-
quires router-info as to also be enabled.

<ip4-address>
The IP address used to reach the PCE

domain <asn>
AS numbers of domains controlled by the PCE, meaning it can compute paths for the
autonomous systems and has visibility into them.

flags <bits>
Capability flags for the PCE, expressed as a bit pattern. The bits meanings are defined
in RFC 5088 section 4.5:

Table 3: PCE Capability Flags

o

Capability

Path computation with GMPLS link constraints
Bidirectional path computation

Diverse path computation

Load-balanced path computation

Synchronized path computation

Support for multiple objective functions

Support for additive path constraints (max hop count, etc.)
Support for request prioritization

Support for multiple requests per message

03O kW= O

neighbor <asn>
AS numbers of neighboring domains for which the PCE can compute paths.

scope <bits>
Scope for path computation, such as intra-area, inter-area, inter-AS, or inter-layer, ex-
pressed as a bit mask. The bits meanings are defined in RFC 5088 section 4.2:

Table 4: PCE Scope

Bit Path Scope

L bit: Can compute intra-area paths.

R bit: Can act as PCE for inter-area TE LSP computation.

Rd bit: Can act as a default PCE for inter-area TE LSP computation.
S bit: Can act as PCE for inter-AS TE LSP computation.

Sd bit: Can act as a default PCE for inter-AS TE LSP computation.
Y bit: Can act as PCE for inter-layer TE LSP computation.

wm A WD = O

redistribute <route-source> [(metric <val>|route-map <map>|type <type>)]
Enables redistribution of routes from another source. Available route sources are listed in Dynamic
Routing Protocol Lists.

metric <val>
Advertise the default route as having the given metric.

© Copyright 2025 Rubicon Communications LLC 148

https://tools.ietf.org/html/rfc5088
https://tools.ietf.org/html/rfc5088
https://tools.ietf.org/html/rfc5088

Product Manual TNSR v21.03

type <type>
The type of metric, either 1 or 2. See Metric Types for details about each type operates.

route-map <map>
Apply the given route map to the redistributed route advertisements.

refresh timer <time>
Time, in seconds from 10-1800, between refreshing LSA information. Default value is 10.

router-info as
Enables advertisement of optional router capabilities to neighbors, as described in RFC 4970. This
adds information about enabled features, such as PCE, to Router Information (RI) LSA messages.

timers Isa min-arrival <min>
The minimum time allowed between advertisements by neighbors, from §-600000, in milliseconds.
Default is 1000.

timers throttle Isa all <delay>
Time between LSA transmissions from this router, in milliseconds, from 0-5000. Default is 5000.

timers throttle spf (delaylinitial-holdmaximum-hold) <val>
Controls timers that determine when the router will make SPF routing decisions.

delay <val>
Minimum time after an event occurs before allowing SPF calculation. Lower values will
react faster to changes, but can be less stable. Specified in milliseconds from 0-600000,
with a default value of 0.

initial-hold <val>
Lowest time allowed between SPF calculations. Specified in milliseconds from
0-600000, with a default value of 50.

maximum-hold <val>
Highest time allowed between SPF calculations. Specified in milliseconds from
0-600000, with a default value of 5000.

SPF calculations are adaptive, and if a new event occurs which would otherwise trigger a calculation
before the hold timer expires, then the hold is increased by the initial-hold value, up to the
specified maximum-hold. This avoids excessive consecutive recalculations.

OSPF Interface Configuration

OSPF must use one or more interfaces to announce itself to neighbors and to receive announcements from neighbors.
At least one interface must be configured and active in order to locate neighbors and form an adjacency.

Warning: Outside NAT interfaces (ip nat outside) cannot be used as active interfaces in OSPF!
The presence of NAT prevents OSPF from properly communicating with neighbors to form a full
adjacency.

To configure an interface for use with OSPF, start in config-frr-ospf mode and use the interface <if-name>
command to enter config-ospf-if mode.

tnsr(config)# route dynamic ospf
tnsr(config-frr-ospf)# interface <if-name>
tnsr(config-ospf-if)#

config-ospf-if mode contains the following commands:

© Copyright 2025 Rubicon Communications LLC 149

https://tools.ietf.org/html/rfc4970

Product Manual TNSR v21.03

bfd enabled (true|false)
Enable Bidirectional Forwarding Detection for OSPF on this interface.

ip address (¥*|<ip4-address>)
These commands specify how OSPF will behave for all addresses on an interface (*) for for a specific
IPv4 address on an interface. In most cases, the * form will be used here, but when there are multiple
addresses available on an interface, a specific choice may be necessary.

area <area-id>
This command defines the interface as a member of the given area. This is required to
activate an interface for use by OSPF.

authentication [message-digest/null]
Configures authentication for OSPF neighbors on this interface. All routers connected
to this interface must have identical authentication configurations. This can also be
enabled in the area settings.

When run without parameters, simple password authentication is used.

message-digest
When set, enables MD5 HMAC authentication for this interface.

null
When set, no authentication is used by OSPF on this interface. This is the de-
fault behavior, but may be explicitly configured with this command to override
the authentication configured for this area.

authentication-key <key>
Configures a simple password to use for authentication when that type of authentication
is active. This password may only have a maximum length of 8 characters.

Warning: This method of authentication is weak, and MDS5 HMAC authentication
should be used instead if it is supported by all connected routers.

cost <link-cost>
A manual cost value to apply to this interface, rather than allowing automatic cost cal-
culation to take place.

In situations where multiple paths are possible to the same destination, this allows OSPF
to prefer one path over another when all else is equal.

dead-interval <time>
Time, in seconds from 1-65535, without communication from a neighbor on this in-
terface before considering it dead. This is also known as the RouterDeadInterval
timer in OSPF. Default value is 40. This timer should be set to the same value for all
routers.

dead-interval minimal hello <multiplier>
When active, the dead-interval is forced to a value of 1 and OSPF will instead
send <multiplier> number of Hello messages each second. This allows for faster
convergence, but will consume more resources.

Note: When set, this overrides the values of both dead-interval and
hello-interval. Custom values configured with those commands will be ignored
by OSPF.

© Copyright 2025 Rubicon Communications LLC 150

Product Manual TNSR v21.03

hello-interval <interval>
The interval, in seconds from 1-65535, at which this router will send hello messages.
This is also known as the HelloInterval timer in OSPF. Default value is 10. This
timer should be set to the same value for all routers.

A lower value will result in faster convergence times, but will consume more resources.

message-digest-key key-id <id> md5-key <key>
Configures MD5 HMAC authentication for use with message-digest type authenti-
cation.

key-id <id>
An integer value from 1-255 which identifies the secret key. This value must
be identical on all routers.

mdS-key <key>
The content of the secret key identified by key-id, which is used to generate
the message digest. Given as an unencrypted string, similar to a password. The
maximum length of the key is 16 characters.

mtu-ignore
When present, OSPF will ignore the MTU advertised by neighbors and can still achieve
a full adjacency when peers do not have matching MTU values.

retransmit-interval <interval>
The interval, in seconds from 1-65535, at which this router will retransmit Link State
Request and Database Description messages. This is also known as the RxmtInterval
timer in OSPF. Default value is 5.

priority <priority>
A priority value, from 0-255, assigned to this router. When determining which router
will become the Designated Router (DR), the router with the highest priority is more
likely to be elected as the DR.

The default value is 1. The value 0 is special and will prevent this router from being
chosen as DR.

transmit-delay <delay>
The interval, in seconds from 1-65535, at which this router will transmit LSA mes-
sages. This is also known as the InfTransDelay timer in OSPF. Default value is 1.

ip network (broadcast|non-broadcast|point-to-multipoint|point-to-point)
Manually configures a specific type of network used on a given interface, rather than letting OSPF
determine the type automatically. This controls how OSPF behaves and how it crafts messages when
using an interface.

broadcast
Broadcast networks, such as typical Ethernet networks, allow multiple routers on a
segment and OSPF can use broadcast and multicast to send messages to multiple targets
at once. OSPF assumes that all routers on broadcast networks are directly connected
and can communicate without passing through other routers.

non-broadcast
Non-broadcast networks support multiple routers but do not have broadcast or multicast
capabilities. Due to this lack of support, neighbors must be manually configured using
the neighbor command. When using this mode, OSPF simulates a broadcast network
using Non-Broadcast Multi-Access (NMBA) mode, but transmits messages to known
neighbors directly.

© Copyright 2025 Rubicon Communications LLC 151

Product Manual TNSR v21.03

point-to-multipoint
Similar to non-broadcast mode, but connections to manually configured neighbors
are treated as a collection of point-to-point links rather than a shared network. Similar
to a point-to-point network, OSPF disables DR election.

point-to-point
A point-to-point network links a single pair of routers. The interface is still capable of
broadcast, and OSPF will dynamically discover neighbors. With this type of network,
OSPF disables election of a DR.

OSPF Area Configuration

To configure area-specific settings in OSPF, start in config-ospf mode and use the area <area-id> command to

enter config-ospf-area mode.

tnsr(config-ospf)# area <area-id>
tnsr(config-ospf-area)#

config-ospf-area mode contains the following commands:

authentication

Enables authentication for this area. Communication from peers must contain the expected authenti-
cation information to be accepted, and outgoing packets will have authentication information added.

When present on its own, the authentication mechanism used is simple passwords. Authentication
passwords are configured in OSPF Interface Configuration mode using the authentication-key

command.

message-digest
When present, enables MD5 HMAC authentication for this area. Much stronger authen-
tication than simple passwords. The key is configured in OSPF Interface Configuration
mode using the message-digest-key command.

default-cost <cost>
Sets the cost applied to default route summary LSA messages sent to stub areas.

export-list <acl-name>

Uses the given ACL to limit Type 3 summary LSA messages for intra-area paths that would otherwise

be advertised. This behavior only applies if this router is the ABR for the area in question.

filter-list (inlout) prefix-list <prefix-list-name>

Similar to export-list and import-list but uses prefix lists instead of ACLs, and can work in

either direction.

import-list <acl-name>
Similar to export-1ist, but for routes announced by other routers into this area.

nssa [(no-summary|translate (always|candidate|never))]

Configures this area as a Not-so-Stubby Area (NSSA), which does not contain external links but may
contain static routes to non-OSPF destinations (See Area Types for more information on area types

and behaviors.

no-summary
When present, the area will instead of considered an NSSA Totally Stub area (Area
Types).

translate (always|candidate|never)
Configures NSSA-ABR translations, for converting between Type 5 and Type 7 LSAs.

© Copyright 2025 Rubicon Communications LLC

152

Product Manual TNSR v21.03

always
Always translate messages.

candidate
Participate in NSSA-ABR candidate elections. Currently the default behavior.

never
Never translate messages.

range <prefix> [cost <val>|not-advertise|substitute <sub-prefix>]
Configure summarization of routes inside the given prefix. Instead of Type 1 (Router) and Type 2
(Network) LSAs, it creates Type 3 Summary LSAs instead.

cost <val>
Apply the specified cost to summarized routes for this prefix.

not-advertise
Disable advertisement for this prefix.

substitute <sub-prefix>
Instead of advertising the first prefix, advertise this prefix instead.

shortcut (default|disable|enable)
For use with abr-type shortcut (OSPF Server Configuration), this advertises the area as capable
of supporting ABR shortcut behavior (draft-ietf-ospf-shortcut-abr-02).

stub [no-summary]
Configure this area as a Stub Area (Area Types).

no-summary
When present, the area will instead be considered a Totally Stub Area (Area Types).

virtual-link <router-id>

Configures a virtual link in this area between this router and the specified router. Both this router and
the target router must be ABRs, and both must have a link to this (non-backbone) area. Additionally,
the virtual link must be added on both ends. This command enters config-ospf-v1link mode which
has a subset of commands available similar to OSPF Interface Configuration. The available com-
mands are authentication-key, dead-interval, hello-interval, message-digest-key,
retransmit-interval, and transmit-delay. The usage of these commands is explained in
OSPF Interface Configuration.

The virtual link is used to exchange routing information directly between the routers involved, and
can be used to deliver traffic via the peer if necessary. Such a relationship may be necessary to nudge
traffic from an ABR with a single undesirable link to another ABR with a faster link to a common
remote destination, when the path would otherwise be selected because it is shorter.

OSPF Debugging Information
The following debugging commands are available in config-frr-ospf mode. Messages will be logged in accordance
with the settings in Logging.

debug event
Enable debugging information for OSPF events.

debug nssa
Enable debugging information for OSPF Not-So-Stubby Area information.

debug sr
Enable debugging information for OSPF Segment Routing information.

© Copyright 2025 Rubicon Communications LLC 153

https://tools.ietf.org/html/draft-ietf-ospf-shortcut-abr-02

Product Manual TNSR v21.03

debug te
Enable debugging information