-} hetgate

Product Manual
TNSR v19.05

© Copyright 2025 Rubicon Communications LLC

Aug 08, 2025

CONTENTS

Introduction 2
1.1 TNSR Secure Networking e 2
1.2 TNSR Trial e e 2
1.3 TNSR Architecture o o i e e e e e e e e e e e e 2
1.4 Technology Stack o e e e e e e 4
1.5 Basic ASSUMPLONS v v o i e 4
Installation 5
Default Behavior 10
3.1 Default Accounts and Passwords e e e 10
3.2 Default TNSR Permissions o 0 0 i e e e e e e e e e e 11
3.3 Default Allowed Traffic e 11
Zero-to-Ping 13
4.1 FirstLogin L e e e e e e e e e e e 13
4.2 Interface Configuration L L e e e e e e e e e e 14
43 TNSRInterfaces o o i e e e e e e e 15
4.4 NAT . . e 16
45 DHCPServer e 16
4.6 DNS SErver. e 17
AT PINZ . . o o e e e e e e e e e e e e 17
4.8 Save the TNSR Configuration 0 i e e e e e e e 18
49 NeXtSIEPS .« & v v o o e e e e e e e e e e e e e e 19
Command Line Basics 20
5.1 Workinginthe TNSRCLI e e 20
52 FindingHelp e 21
5.3 Starting TNSR . . . o L o e e e 22
54 Enteringthe TNSR CLI e e s 23
5.5 Configuration Database e e e e e e e 24
5.6 Configuration Mode L L e e e e e e e e 26
5.7 Configuration Backups e 29
5.8 Viewing Status Information Lo 29
5.9 Service Control L. e e e e e e e e e 30
5.10 Diagnostic Utilities o o e e e e e e e e e e 31
5.11 Basic System Information L e e e 32
Basic Configuration 34
6.1 Setup Interfaces L e e e e e e e e e 34
6.2 Disable Host OS NICs for TNSR e et 35

6.3 SetupNICsinDataplane e e e e e e e
6.4 Setup QAT Compatible Hardware ot e
6.5 Remove TNSR NIC for Host Use ittt e e e

7 Updates and Packages

7.1 Generatea Key Pair e e
7.2 Generate a Certificate Signing Request oL
7.3 Submit the Certificate Signing Request L
7.4 Retrieve the signed certificate L
7.5 Inmstall the certificate e e e
7.6 Package Management e e e e e e e e e e e e e e e e e
7.7 Package Information Commands L. e e e
7.8 Package Installation
7.9 Updating TNSR 0 0 e
8 Interfaces
8.1 Locate Interfaces L e e e e
8.2 Configure Interfaces L e e
8.3 Monitoring Interfaces L L e
84 TypesoflInterfaces e e e e e e e e
9 Routing Basics
9.1 RouteTables e
0.2 Neighbors o o e e e e e e e e e
9.3 Viewing Routes. L e e e e e
9.4 ManagingRoutes L e
9.5 DefaultRoute e e

10 Access Lists
10.1 Standard ACLS e e e e e e
10.2 MACIP ACLS . . . o o e e e e e e e e e e e e e e e
10.3 Viewing ACL and MACIP Information
10.4 ACL and NAT Interaction 0 i i i it e et e e e e e e e e e
10.5 Host ACLS o e e e e e e e

11 Border Gateway Protocol
11.1 Required Information. o e e e e e e e
11.2 Enabling BGP e e e
11.3 Example BGP Configuration 0 e e e e e
11.4 Advanced Configuration L e e e e
11.5 BGP Information e e e
11.6 Working with Large BGP Tables e it e

12 TPsec
12.1 Required Information. e e e e e e e e e
12.2 TPsec Example e e e e e e e e
12.3 IPsec Configuration i i e e e e
12.4 TIPsec Status Information L L e e e
12.5 [IPsec Cryptographic Acceleration o . o e

13 Network Address Translation
13.1 Dataplane NAT Modes o o i o e e e e e e e e e e
132 NATOPLONS o o ot e e e e e e e e e e e e e e e e
13.3 NAT Pool Addresses ot ot o e e e e e e e e e e e e e e e e e e e
13.4 Outbound NAT e e

46
46
47
48
50
51
52
52
53
53

56
56
57
60
63

85
85
86
87
88
90

91
91
93
95
95
96

99

99
100
100
103
103
105

107
107
108
110
121
123

124
124
126
126
126

14

15

16

17

18

19

20

21

22

13.5 Static NAT o e e e e
13.6 NAT Reassembly o o e e e e e e e e e e e e e
13.7 Dual-Stack Lite e e e e
13.8 Deterministic NAT e e e e e
13.9 NAT Status o e e e e e e e e e e e
13.10 NAT Examples o o oo e e e e e e e e e e e e e

MAP (Mapping of Address and Port)
14.1 MAP Configuration e e e e e e e
142 MAPParameters o o it e e e e e e e e e e e e e e e

Dynamic Host Configuration Protocol

15.1 DHCP Configuration v i i e e e e e e e e e e e e e e e e
15.2 DHCP Service Control and Status e
15.3 DHCP Service Example o e e e e e

DNS Resolver

16.1 DNS Resolver Configuration o i e e
16.2 DNS Resolver Service Control and Status
16.3 DNS Resolver Examples e e

Network Time Protocol

17.1 NTP Configuration o . i e e e e e e e e e e e
17.2 NTP Service Control and Status 0 e e e e e e e e e e
17.3 NTP Service Example o e e e e e e e e e
17.4 NTP BestPractices o e e e e e

Link Layer Discovery Protocol
18.1 Configuringthe LLDP Service i it e e e e e e e e e

Public Key Infrastructure

19.1 Key Management o i i e e e e e e e e e e e
19.2 Certificate Signing Request Management v v v it it
19.3 Certificate Management i e e e e e e e e e e e e e e
19.4 Certificate Authority Management oo

Bidirectional Forwarding Detection
20.1 BED SeSSiOonS o v i i e e e e e e e e e e e e e e
20.2 BFD Session Authentication L e e e e e e e

User Management
21.1 User Configuration i e e e e
21.2 Authentication Methods

NETCONF Access Control Model (NACM)

22.1 NACMExample o e e e e e e e e
22.2 View NACM Configuration o . i ittt it e e e e e e e
22.3 Enable or Disable NACM e e e e e e e e
22.4 NACM Default Policy ACtions o v v i i e e e e e e e e e e e
22.5 NACM Username Mapping o v v v v v i it e e e e e e e e e e e e e e
22,6 NACM GIOUPS . .« « v v v o e
2277 NACMRule Lists o o o e e e s e e e e e e e
22.8 NACMRules e

140
140
143
145
146

147
147
153
154

155
155
162
163

165
165
169
170
171

172
172

174
175
176
179
180

184
184
186

188
188
188

22.9 NACM Rule Processing Order o e 197

22.10 Regaining Access if Locked Outby NACM ittt e e 197
22.11 NACM Defaults o o e e e e e 198
HTTP Server 199
23.1 HTTP Server Configuration o v i i i i i it et e e e e e e 199
23.2 HTTPS Encryption 0 L i e e e e e e e e e e e e e e e e 200
23.3 Authentication L e e e e e e e 200
23.4 RESTCONF Server v it ittt e e e e e s e e e s e 201
TNSR Configuration Example Recipes 202
24.1 RESTCONEF Service Setup with Certificate-Based Authenticationand NACM 202
242 TNSR IPsec Hub for pfSense e 210
24.3 Edge Router Speaking eBGP with Static Redistribution for IPv4 AndIPv6 231
24.4 Service Provider Route Reflectors and Client for iBGPIPv4 243
24.5 LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver) 263
24.6 Using Access Control Lists (ACLS) e e e 266
2477 Inter-VLAN Routing e 269
24.8 GRE ERSPAN Example Use Case oo v it i ittt it ettt e e e 273
Advanced Configuration 276
25.1 Dataplane Configuration L e e e e 276
25.2 Host Memory Management Configuration L 280
Troubleshooting 281
26.1 Ping and traceroute do not function without host OS defaultroute 281
26.2 Unrecognized routes inaroutingtable L o L 281
26.3 Services do not receive traffic on an interface with NAT enabled 282
26.4 NAT session limits / “Create NAT session failed” error 282
26.5 ACL rules do not match NAT trafficasexpected 282
26.6 Some Traffic to the host OS management interface is dropped 282
26.7 Lockedoutby NACM Rules e 282
26.8 How to gain access to the oot aCCOUNt o v v v v v v et e e e e e e e e e 282
26.9 Console Messages Obscure Prompts 0 o e e e 282
26.10 Diagnosing Service Issues oL e 283
26.11 Debugging TNSR o o e e 283
Commands 285
27.1 Mode List. e e e e 287
27.2 Master Mode Commands e e e 288
273 ConfigMode Commands o e e e e 289
27.4 Show Commands in Both Master and ConfigModes 292
27.5 AccessControl List Modes e e 293
27.6 MACIPACLMode. oottt e 294
2777 GREMode e 295
27.8 HTTPmode e e e e 295
27.9 Interface Mode L e e e 296
27.10 Loopback Mode e e e e e e e e 297
27.11 Bridge Mode e e e e e e e 297
27.12 NAT Commands in Configure Mode 298
27.13 NAT Reassmbly Mode e 298
27.14 DS-Lite Commands in Configure Mode 298
2715 Tap Mode o e e e e e e e e e e e e 299
27.16 BED Key Mode o o e e e e e e e 299
2717 BED Mode e 300

27.18 Host Interface Mode e e
27.19 IPsec Tunnel Mode L L e e e
2720 IKEmode o o e e
27.21 IKE Peer Authentication Mode L e e e
27.22 IKE Peer Authentication Round Mode Lo
2723 IKEChild SAMode e
27.24 IKE Child SA Proposal Mode e e e e e e
27.25 IKE Peer Identity Mode o e e e e e e e
27.26 IKE Proposal Mode L
2727 Map Mode e e e e e e e e
27.28 Map Parameters Mode L. e
2729 memif Mode e e e
27.30 Dynamic Routing Access List Mode e e
27.31 Dynamic Routing Prefix List Mode
27.32 Dynamic Routing Route Map Rule Mode
27.33 Dynamic Routing BGPMode
27.34 Dynamic Routing BGP Server Mode e
27.35 Dynamic Routing BGP Neighbor Mode
27.36 Dynamic Routing BGP Address Family Mode
27.37 Dynamic Routing BGP Address Family NeighborMode
27.38 Dynamic Routing BGP Community List Mode
27.39 Dynamic Routing BGP ASPathMode
27.40 Dynamic Routing Manager Mode e e e
27.41 IPv4 Route Table Mode e e e
27.42 IPv6 Route Table Mode e
2743 IPv4 or IPv6 Next HopMode L o e
2744 SPAN Mode e
2745 VXLANMoOde o o e e
27.46 User Authentication Configuration Mode e
27.47 NTP Configuration Mode e
2748 NTP Restrict Mode o L e e e e e e
27.49 NTP Upstream Server Mode o o 0 0 e e e e e
27.50 NACM Group Mode ot e e e e e e e e e e e e e e
27.51 NACMRule-list Mode e e e
2752 NACMRule Mode e e
27.53 DHCP IPv4 Server ConfigMode e
27.54 DHCP4 Subnetd Mode e
27.55 DHCP4 Subnet4 Pool Mode o e
27.56 DHCP4 Subnet4 Reservation Mode e
27.57 Kea DHCP4, Subnet4, Pool, or Reservation Option Mode
27.58 Unbound Server Mode e
27.59 Unbound Forward-Zone Mode e e e e
27.60 Subif Mode e
27.61 Bond Mode L. e e e
27.62 Host ACLMode e e e e
27.63 Host ACLRule Mode e

28 API Endpoints
28.1 YANG DataModels e e e e
28.2 RESTCONF APL e e e e

29 Netgate TNSR Releases
290.1 TNSR 19.05Release NOtES v v v v i i e e e e e e e e e e e e e e e e e e
290.2 TNSR 19.02.1 Release Notes i i i e e e e e e e e e e e e e e

330
330
330

331
331
339

29.3 TNSR 19.02 Release NOteS o . v v e e e e e e e e e e e e e 343
294 TNSR 18.11 Release NOtes o v o v i o e s e e e e e e e e e e e e e e e 349
29.5 TNSR 18.08 Release NOtes o i v i i e e e e e e e e e e e e e e 354
20.6 TNSR 18.05Release NOtes o i i i i i e e e e e e e e e e e e e e e 359
29.7 TNSRO.1.0Release Notes i i i i e e e e e e e e e e e e e e 361
30 Licensing 363
30.1 Apache2.0License. e 364
30.2 CentOS EULA License o i i e e e e e s s 368
30.3 GPLV2.0LAcense o v i e e e e e e 368
304 LGPLV2.1LICENSE v v v o i e e e e e e e e e e e e e e e e 375
30.5 MITLICeNSe v o o e e e e e e e e e e e e e e e 385
30.6 Net SNMP LICense v o i e e e e e e e e e e e e e e e e 385

vi

Product Manual TNSR v19.05

orphan

This documentation has all the details needed to fully configure your TNSR platform, from the basics of TNSR all
the way to the complexities of implementing different applications. For quotes, updates, and more information about
TNSR, please contact sales @netgate.com.

orphan

© Copyright 2025 Rubicon Communications LLC 1

mailto:sales@netgate.com

CHAPTER
ONE

INTRODUCTION

TNSR is an open-source based packet processing platform that delivers superior secure networking solution perfor-
mance, manageability, and services flexibility. TNSR can scale packet processing from 1 to 10 to 100 Gbps, even 1
Tbps and beyond on commercial-off-the-shelf (COTS) hardware - enabling routing, firewall, VPN and other secure
networking applications to be delivered for a fraction of the cost of legacy brands. TNSR features a RESTCONF API
- enabling multiple instances to be orchestration managed - as well as a CLI for single instance management.

1.1 TNSR Secure Networking

TNSR is a full-featured software solution designed to provide secure networking from 1 Gbps to 400 Gbps. With
graduated pricing based on performanace increments, TNSR it a viable option for users with moderate bandwidth
needs to the demanding requirements of enterprise and service providers.

Each licensed instance comes bundled with TNSR Technical Assistance from our 24/7 world-wide team of support
engineers. Find out more about the included support available with TNSR.

Contact us to begin a conversation about how TNSR can help meet your needs.

1.2 TNSR Trial

A 120-day trial version is also available. You can visit the Trials page of tnsr.com to find out full details on how the
trial works.

1.3 TNSR Architecture

TNSR runs on a Linux host operating system. Initial configuration of TNSR includes installing associated services
and configuring network interfaces. It is important to note that network interfaces can be managed by the host OS or
by TNSR, but not by both. In other words, once a network interface is assigned to TNSR, it is no longer available - or
even visible - to the host OS.

A little background. TNSR is the result of Netgate development, using many open source technologies to create a
product that can be supported and easily implemented in production environments.

Without TNSR, Linux systems use drivers to plumb the connections from hardware interfaces (NICs) to the OS kernel.
The Linux kernel then handles all I/O between these NICs. The kernel also handles all other I/O tasks, as well as
memory and process management.

https://www.tnsr.com/support
https://www.tnsr.com/pricing
https://www.tnsr.com/trials

Product Manual TNSR v19.05

Linux Host

User Space

Kermel

_Z25%0 reEv £ ras .

L 2IN
& JIN
U OIN

In high I/O situations, the kernel can be tasked with servicing millions of requests per second. TNSR uses two open
source technologies to simplify this problem and service terabits of data in user space. Data Plane Development Kit
(DPDK) bypasses the kernel, delivering network traffic directly to user space, and and Vector Packet Processing (VPP)

accelerates traffic processing.

Linux Host

-)

User Space

Kernel

\ o ndivends, |/

£ 3IN
u JIN

In practical terms, this means that once a NIC is assigned to TNSR, that NIC is attached to a fast data plane, but it is
no longer available to the host OS. All management - including configuration, troubleshooting and update - of TNSR is
performed either at the console or via RESTCONF. In cloud or virtual environments, console access may be available,
but the recommended configuration is still to dedicate a host OS interface for RESTCONF API access.

The recommended configuration of a TNSR system includes one host NIC for the host OS and all other NICs assigned
to TNSR.

© Copyright 2025 Rubicon Communications LLC 3

Product Manual TNSR v19.05

This is important and bears repeating:
* The host OS cannot access NICs assigned to TNSR

* In order to manage TNSR, you must be able to connect to the console

1.4 Technology Stack

TNSR is designed and built from the ground up, using open source software projects including:
* Vector Packet Processing (VPP)
* Data Plane Developer Kit (DPDK)
* YANG for data modeling
¢ Clixon for system management
— Command Line Interface (CLI)
— RESTCONTF for REST API configuration
* FRR for routing protocols
* strongSwan for IPsec key management
» Kea for DHCP Services
See also:

What is Vector Packet Processing? Vector processing handles more than one packet at a time, as opposed to scalar
processing which handles packets individually. The vector approach fixes problems that scalar processing has with
cache efficiency, read latency, and issues related to stack depth/misses.

For technical details on how VPP accomplishes this feat, see the VPP Wiki.

1.5 Basic Assumptions

This documentation assumes the reader has moderate to advanced networking knowledge and some familiarity with
the CentOS Linux distribution.

orphan

© Copyright 2025 Rubicon Communications LLC 4

https://fd.io/technology/#vpp
https://www.dpdk.org/
http://www.yang-central.org
http://www.clicon.org/
https://tools.ietf.org/html/rfc8040
https://frrouting.org/
https://strongswan.org/
https://kea.isc.org/
https://wiki.fd.io/view/VPP/What_is_VPP%3F

CHAPTER
TWO

INSTALLATION

Use the following instructions to install TNSR 19.05 from an .ISO image. Ensure that the target hardware meets the
minimum specifications for a TNSR Supported Platform.

1.
2.
3.

Obtain the TNSR . iso image file from Netgate®.
Write the . iso image to bootable media (DVD or USB drive).

Connect to the system console.

Note: The installer supports both VGA and serial console output, with VGA as the default.

Boot the system using the TNSR image on DVD or USB.

Note: If the optical drive or removable media is not set as the primary boot device for the hardware, then use
the system boot menu to manually select the boot device.

After a few seconds, the installer displays a TNSR 19.05 screen.

Press any key, such as space, to stop the 60-second timer. The menu contains, at minimum, the following two
choices:

« Install TNSR (serial-console) <version>: Select this option for hardware that uses serial port ® for its
console.

* Install TNSR <version>: Select this option for installation via VGA console

Highlight the correct option for this hardware and press Enter to begin the installation of TNSR. It may take a
few seconds for the installer to display output to the console.

Note: If the console does not display a visual indication of which item is selected, reboot the device and use the
BIOS boot selection menu to choose UEFI as the boot method. For example, on the SG-5100, press Esc during
POST to access this menu, and of the two entries in the menu for the USB drive, choose the line that starts with
UEFI:.

. Once Anaconda launches, it displays a menu labeled Installation with nine choices. All options marked with

[!] must be configured to resolve all installation requirements.

Note: Some items marked with a ! will resolve on their own a few moments after the installer launches, such
as options 3 and 4. Wait a few moments and enter r to refresh the screen.

https://docs.netgate.com/tnsr/en/latest/platforms/

Product Manual TNSR v19.05

Install (serial-console) THSR
Install THSR

Troubleshoot ing

Automatic boot in 51 seconds...

Fig. 1: TNSR 19.05 Installation Menu

At a minimum, configure 2) Time Settings, 5) Installation Destination, and an administrator account with 9)
User creation to allow the installer to proceed. These are covered next.

9. Configure the time zone

» Enter 2 to start the time zone configuration process.

 Enter 1 to enter the time zone selection screen.

* Continue through the available options until the correct zone is located.
For example, Enter 3 for America, then 36 for Chicago.

¢ Enter the number corresponding to the region and zone, or type out the zone name.

After selecting a zone, the installer will return to the main menu.
10. Configure the installation destination.

* Enter 5 to start the installation destination configuration process.

* Select the correct target disk on the next screen.
The installer will select the disk automatically when only one is present.

* Enter c to continue.

* Choose how to partition the disk.
The default Use All Space is the best practice.

* Enter c to continue.

* Choose the partition scheme.

The default LVM is the best practice.

© Copyright 2025 Rubicon Communications LLC 6

Product Manual TNSR v19.05

Starting installer, one moment. ..

anaconda 21.48.22.147-1 for THSR started.

= installation log files are stored in ~tmp during the installation

= shell is available on TTYZ

= when reporting a bug add logs from ~tmp as separate textrplain attachments
18:83:25 Not asking for UNC because we don’t have a network

Installation

1) [x] Language settings Time settings
(English (United States)) (Timezone iz not set.)
3) [x] Installation source Software selection
(Local media) (TNSR Install)
5) [?] Installation Destination Kdump
(No disks selected) (Kdump i=s enabled)
7) [1 Network configuration Root password
(Not connected) (Root account is disabled.)
9) [1 User creation
(No user will be created)
Flease make your choice from above ['q’ to quit § 'b" to begin installation i
‘r' to refreshl:

Fig. 2: TNSR 19.05 Setup Menu

© Copyright 2025 Rubicon Communications LLC 7

Product Manual TNSR v19.05

¢ Enter c to finish and return to the main menu.

11. Add an administrator account.

Note: Security best practices dictate that it is best not to enable interactive logon for the root account. As
such, the root account will be locked out after the installation. Use this process to add at least one alternate
administrator account.

» Enter 9 to start the user configuration process.
* Enter 1 to create a new user.
 Enter 3 to enter the username.
* Enter 4 to configure the account to use a password.
» Enter 5 to set and confirm the password for the user.
 Enter 6 to mark the user as an Administrator.
 Enter c to finish and return to the main menu.

12. Optionally configure a Host OS interface.

This will enable a network interface in the host OS for use as a management interface. This interface can then
be used to access the system for troubleshooting or maintenance.

Warning: Though this is technically optional, using a management interface is the best practice.

* Enter 7 to start the interface configuration.
¢ Choose one of the listed network interfaces.

» Configure interface parameters on this screen as needed, such as a static IP address.

Note: The default behavior is to use DHCP to obtain the interface address. If this is the desired behavior,
then leave the address options as-is.

* Enter 7 to enable Connect automatically after reboot.

 Enter 8 to enable Apply configuration in installer.

* Enter c to complete the interface configuration and continue back to the interface list.
 Enter c again to exit the network configuration.

13. Once all options with [!] have been resolved, enter b from the main menu to begin the installation. Messages
are displayed indicating the progress of the installation. When the installer finishes its tasks, it displays message
that says Installation complete. Press return to quit. At that point, press Enter and the system will reboot.

Note: The installer may spend several minutes displaying the message Performing post-installation setup
tasks, but it will eventually continue.

14. When the system is restarting, remove the DVD or USB drive while the system reboots. CentOS 7 will start up
automatically from the disk to which it was installed. If the installation media remains inserted, the system may
boot into the installer again.

© Copyright 2025 Rubicon Communications LLC 8

Product Manual TNSR v19.05

Note: The boot options in the system BIOS may need changed if it does not boot automatically into CentOS 7.

15. After the system finishes rebooting, log in with the user and password chosen during the installation.

Note: Once the system reboots, network interfaces not configured in the installer will be disabled in CentOS. Depend-
ing on the hardware, these interfaces may automatically be enabled in TNSR. If TNSR does not see any interfaces, they
will need to be manually configured in TNSR. See Setup NICs in Dataplane for details.

Tip: One network interface should be enabled in the host OS as a management interface to allow access to the system
for troubleshooting or maintenance. This can be configured in the installer, as mentioned above, or afterward.

orphan

© Copyright 2025 Rubicon Communications LLC 9

CHAPTER
THREE

DEFAULT BEHAVIOR

After the installation completes and TNSR boots for the first time, TNSR has an empty default configuration. This
means that TNSR has no pre-configured interfaces, addresses, routing behavior, and so on.

The host OS defaults are set during installation, and depend on the base OS, CentOS 7.5. For example, host management
interfaces may have been configured by the installer.

3.1 Default Accounts and Passwords

By default, the TNSR installation includes host OS accounts for root with interactive login disabled, and a tnsr
account.

For ISO installations, the best practice is to create at least one additional initial administrator account during the instal-
lation process. That user is custom created by the person performing the installation, and thus is not a common default
that can be listed here.

Warning: When installing TNSR from an ISO image, the installer allows the root account to be unlocked and
assigned a password. The best practice, however, is to leave the root account locked and create at least one addi-
tional administrator account using the installer. These additional accounts may use sudo to elevate privileges. Any
users added to the wheel group later may also use sudo to execute commands as root.

The default behavior of the tnsr account varies by platform:

ISO/Bare Metal
The tnsr user is available with a default password of tnsr-default.

Appliances Shipped with TNSR Pre-installed
The tnsr user is available with a default password of tnsr-default.

AWS
The tnsr account is present but restricted to key-based authentication via ssh, using a key selected
when launching the TNSR instance.

Azure
The tnsr account is present but restricted to key-based authentication via ssh, using a key selected
when launching the TNSR instance.

The password for the tnsr account can be reset by any other account with access to sudo. For example, the command
sudo passwd tnsr will prompt to set and confirm a new password for the tnsr user. The same action may also
be performed for the root account (sudo passwd root). As mentioned in the previous warning, it is best to leave
interactive logins for root disabled.

10

Product Manual TNSR v19.05

Warning: Change default passwords, even randomized default passwords or passwords pre-configured when
launching a cloud-based instance, after the first login. Do not leave default passwords active!

Note: User authentication is performed by the host OS. Though users may be created inside TNSR (User Manage-
ment), these users are propagated to the host. To control what users may access, see NETCONF Access Control Model
(NACM).

3.2 Default TNSR Permissions

By default, there is no TNSR configuration present. As such, there are no pre-configured access permissions for users
to restrict access to TNSR. Thus, any operating system user on the TNSR host will be able to reach the TNSR CLI and
make changes.

To restrict which accounts have access to TNSR, see NETCONF Access Control Model (NACM).

3.3 Default Allowed Traffic

For the default behavior of allowed traffic to and from TNSR, there are two separate areas to consider:
* Traffic flowing through TNSR

* Traffic for the host OS management interface

3.3.1 TNSR

By default, there is no TNSR configuration present. As such, there are no default access lists (ACLs) and once TNSR
is able to route traffic, all packets flow freely. See Access Lists for information on configuring access lists.

3.3.2 Host OS

The TNSR installation configures a default set of Netfilter rules for the host OS management interface. The following
traffic is allowed to pass into and out of the host operating system interfaces:

* ICMP / ICMP6

e ssh (TCP/22)

* HTTP (TCP/80)

o HTTPS (TCP/443)

* BGP (TCP/179)

* ISAKMP (UDP/500)

* NTP (UDP/123, TCP/123)
* DNS (UDP/53, TCP/53)

* SNMP (UDP/161)

e DHCP Server (UDP/67)

© Copyright 2025 Rubicon Communications LLC 11

Product Manual TNSR v19.05

* UDP Traceroute (UDP ports 33434-33524 with TTL=1)
To manage host ACLs which can override this behavior, see Host ACLs.

orphan

© Copyright 2025 Rubicon Communications LLC 12

CHAPTER
FOUR

ZERO-TO-PING

This document is a crash course in getting TNSR up and running quickly after installation. The topics included here
are covered in more detail throughout the remainder of the documentation.

Each section contains a list of additional related resources with more detail in a See Also box. Follow these links for
more information on each topic.

4.1 First Login

When TNSR boots, it will present a login prompt on the console (video and serial). Login at this prompt using either
the default tnsr account or an administrator account created during the installation process.

Note: For installations from ISO and for hardware shipped with TNSR preinstalled, the default password for the tnsr
user is tnsr-default. For cloud-based installs such as AWS and Azure, by default the tnsr account can only login
with key-based ssh authentication. See Default Accounts and Passwords for more information.

The tnsr user automatically enters the TNSR CLI when used to login interactively. Manually created administrative
users do not have this behavior, and using them to login interactively will result in a login shell.

Alternately, if the host OS management interface was configured in the installer, login using an SSH client connecting
to that interface.

See also:
e Installation

* Default Accounts and Passwords

4.1.1 Changing the Password
The password for administrator accounts was set during the installation process, but the default tnsr account should
have its password reset before making other changes.

Login to the tnsr account with the default tnsr-default password and change it using the shell passwd command
from the TNSR CLI:

tnsr# shell passwd

Changing password for user tnsr.
Changing password for tnsr.
(current) UNIX password:

New password:

(continues on next page)

13

Product Manual TNSR v19.05

(continued from previous page)
Retype new password:
passwd: all authentication tokens updated successfully.
tnsr#

Alternately, login in as an administrator and change the password for the default tnsr account using sudo from the
shell:

$ sudo passwd tnsr

Changing password for user tnsr.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

$

Warning: Use a strong password for this account as it will be able to make changes to the TNSR configuration,
unless restricted by a custom NACM configuration.

See also:
* [Installation
* Default Accounts and Passwords

e NETCONF Access Control Model (NACM)

4.2 Interface Configuration

There are two types of interfaces on a TNSR system: Host OS interfaces for managing the device and dataplane
interfaces which are available for use by TNSR.

4.2.1 Host OS Management Interface
A host management interface must be configured manually in the installer, or later in CentOS. See Installation for the
full procedure to configure a host OS management interface during installation.

At a minimum, the host OS must have an interface address, subnet mask, and a default gateway configured. The default
gateway is necessary so that the host OS may retrieve updates as that traffic does not flow through TNSR, but over the
management interface. Additionally, other host traffic may flow through the management interface, such as the ping
command from within the TNSR CLI.

If an interface was not configured for management in the installer, it will need to be manually changed back to host
OS control and then configured for network access. See Remove TNSR NIC for Host Use for instructions on how to
return an interface from TNSR back to host OS control so it can be used for management. This procedure will require
rebooting the TNSR device.

Consult CentOS 7.5 documentation for the specifics of network configuration for other environments.
See also:

e [Installation

* Disable Host OS NICs for TNSR

e Remove TNSR NIC for Host Use

© Copyright 2025 Rubicon Communications LLC 14

Product Manual

TNSR v19.05

4.2.2 Dataplane Interfaces

Interfaces not configured for host OS management control in the installer will be setup in such a way that they are

available for use by the dataplane and thus TNSR.

Enter the TNSR CLI (Entering the TNSR CLI) and configure the network interfaces:

tnsr# configure

tnsr(config)# dataplane dpdk dev ?

0000:00:14.0
Connection I354 (rev 03)

0000:00:14.1 Ethernet controller:
Connection I354 (rev 03)

0000:00:14.2 Ethernet controller:
Connection I354 (rev 03)

0000:00:14.3 Ethernet controller:
Connection I354 (rev 03)

0000:03:00.0 Ethernet controller:
Network Connection (rev 03)

0000:04:00.0 Ethernet controller:

Ethernet controller:

Intel

Intel

Intel

Intel

Intel

Intel

Corporation
Corporation
Corporation
Corporation
Corporation

Corporation

Network Connection (rev 03) (Active Interface enp4s®)
tnsr(config)# dataplane dpdk dev 0000:00:14.1 network
tnsr(config)# dataplane dpdk dev 0000:00:14.2 network

tnsr(config)# service dataplane restart
tnsr(config)# exit

Ethernet
Ethernet
Ethernet
Ethernet
I211 Gigabit

I211 Gigabit

See also:
e Installation

 Setup NICs in Dataplane

4.3 TNSR Interfaces

Next, the interfaces inside TNSR must be configured with addresses and routing.

4.3.1 WAN DHCP Client

In this example, WAN will be set as a DHCP client and configured as the outside NAT interface:

tnsr# configure terminal

tnsr(config)# interface GigabitEthernet®/14/1

tnsr(config-interface)# description Internet

tnsr(config-interface)# dhcp client ipv4
tnsr(config-interface)# enable
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit
tnsr(config)# exit

See also:
* DHCP Client Example

» Configure Interfaces

© Copyright 2025 Rubicon Communications LLC

15

Product Manual TNSR v19.05

4.3.2 LAN Interface

Next, configure an address for the internal network and set it as the inside NAT interface:

tnsr(config)# interface GigabitEthernet®/14/2
tnsr(config-interface)# ip address 172.16.1.1/24
tnsr(config-interface)# description Local
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# enable
tnsr(config-interface)# exit

See also:

» Configure Interfaces

4.4 NAT

Configure TNSR to use the WAN interface address for NAT, and enable NAT forwarding:

tnsr(config)# nat pool interface GigabitEthernet0/14/1
tnsr(config)# nat global-options nat44 forwarding true

See also:
* Network Address Translation
* NAT Pool Addresses
* NAT Forwarding

4.5 DHCP Server

Setup a basic DHCP server on the LAN side to hand out addresses, also instruct clients to use TNSR as their gateway
and DNS server.

tnsr(config)# dhcp4 server

tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet®/14/2
tnsr(config-kea-dhcp4)# subnet 172.16.1.0/24
tnsr(config-kea-subnet4)# pool 172.16.1.100-172.16.1.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# exit

tnsr(config-kea-dhcp4)# exit

tnsr(config)# dhcp4 enable

See also:

© Copyright 2025 Rubicon Communications LLC 16

Product Manual TNSR v19.05

* Dynamic Host Configuration Protocol

4.6 DNS Server

Configure TNSR to act as a DNS server for local clients, using upstream forwarding DNS servers of 8.8.8.8 and
8.8.4.4:

tnsr# configure

tnsr(config)# unbound server

tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 172.16.1.1
tnsr(config-unbound)# access-control 172.16.1.0/24 allow
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4
tnsr(config-unbound-fwd-zone)# exit

tnsr(config-unbound)# exit

tnsr(config)# unbound enable

See also:

e DNS Resolver

4.7 Ping

4.7.1 From the Host

The TNSR CLI includes a ping utility which will send an ICMP echo request out.

tnsr# ping 203.0.113.1

PING 203.0.113.1 (203.0.113.1) 56(84) bytes of data.

64 bytes from 203.0.113.1: icmp_seq=1 ttl=64 time=0.680 ms
64 bytes from 203.0.113.1: icmp_seq=2 ttl=64 time=0.176 ms
64 bytes from 203.0.113.1: icmp_seq=3 ttl=64 time=0.505 ms
64 bytes from 203.0.113.1: icmp_seq=4 ttl=64 time=0.453 ms
64 bytes from 203.0.113.1: icmp_seq=5 ttl=64 time=0.420 ms
64 bytes from 203.0.113.1: icmp_seq=6 ttl=64 time=0.144 ms
64 bytes from 203.0.113.1: icmp_seq=7 ttl=64 time=0.428 ms
64 bytes from 203.0.113.1: icmp_seq=8 ttl=64 time=0.494 ms
64 bytes from 203.0.113.1: icmp_seq=9 ttl=64 time=0.163 ms
64 bytes from 203.0.113.1: icmp_seq=10 ttl=64 time=0.346 ms

--- 203.0.113.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9000ms
rtt min/avg/max/mdev = 0.144/0.380/0.680/0.167 ms

tnsr#

By default this will follow the host OS routing table, but by specifying a source address, it will use addresses from
TNSR:

© Copyright 2025 Rubicon Communications LLC 17

Product Manual TNSR v19.05

tnsr# ping 203.0.113.1 source 203.0.113.2
PING 203.0.113.1 (203.0.113.1) from 203.0.113.2 : 56(84) bytes of data.
64 bytes from 203.0.113.1: icmp_seq=1 ttl=64 time=0.700 ms

64 bytes from 203.0.113.1: icmp_seq=2 ttl=64 time=0.353 ms
64 bytes from 203.0.113.1: icmp_seq=3 ttl=64 time=0.590 ms
64 bytes from 203.0.113.1: icmp_seq=4 ttl=64 time=0.261 ms
64 bytes from 203.0.113.1: icmp_seq=5 ttl=64 time=0.395 ms
64 bytes from 203.0.113.1: icmp_seq=6 ttl=64 time=0.598 ms
64 bytes from 203.0.113.1: icmp_seq=7 ttl=64 time=0.490 ms
64 bytes from 203.0.113.1: icmp_seq=8 ttl=64 time=0.790 ms
64 bytes from 203.0.113.1: icmp_seq=9 ttl=64 time=0.155 ms
64 bytes from 203.0.113.1: icmp_seq=10 ttl=64 time=0.430 ms

--- 203.0.113.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9001ms
rtt min/avg/max/mdev = 0.155/0.476/0.790/0.187 ms

See also:

* Diagnostic Utilities

4.7.2 From LAN Client

At this stage a LAN client will be able to connect to the network (port or switch) connected to the LAN interface. It can
pull an IP address and other configuration via DHCP, resolve domain names via DNS, and reach hosts beyond TNSR
using it as a gateway.

A ping executed on a client will flow through TNSR and replies will return.

4.8 Save the TNSR Configuration

TNSR maintains three separate configuration databases: startup, candidate, and running. The running copy is the
active configuration. TNSR loads the startup copy at boot time.

To ensure the expected configuration is loaded when TNSR is rebooted, copy the running configuration to the startup
configuration after making changes:

tnsr# configure
tnsr(config)# configuration copy running startup

Optionally, create a backup copy of the configuration which can be loaded later if necessary:

[tnsr(config)# configuration save running backup.xml

See also:
* Configuration Database

» Configuration Backups

© Copyright 2025 Rubicon Communications LLC 18

Product Manual TNSR v19.05

4.9 Next Steps

From here, click the Next button at the bottom of the page to continue on to the next section of the documentation, or
choose a topic from the table of contents to the left.

Other suggested next steps include:
* Configure updates (non-trial version only)
» See more practical examples, such as setting up the RESTCONF API
» Configure /Psec tunnels
 Configure time synchronization

orphan

© Copyright 2025 Rubicon Communications LLC 19

CHAPTER
FIVE

COMMAND LINE BASICS

The TNSR command line interface (CLI) may seem familiar to administrators who are familiar the CLI of other routers
or networking equipment. However, the specific behavior and structure of the TNSR CLI differs in several aspects.

Tip: For a full TNSR CLI command reference, visit Commands.

orphan

5.1 Working in the TNSR CLI

5.1.1 Command Prompt

The TNSR CLI command prompt has a several components:

[<hostname> tnsr<(mode)># <user input>

These components are:

hostname

The fully qualified hostname of the router.

mode
This section of the prompt changes depending on the current mode to indicate that a different subset

of commands is available.
See also:

For a list of modes and prompt strings, see Mode List.

user input

This area is where a user enters commands and other input.

In this brief example, the router hostname is router, and the mode section of the prompt is shown changing when a
command enters or exits a mode.

router
router
router
router
router
router

tnsr# configure

tnsr(config)# interface GigabitEthernet3/0/0
tnsr(config-interface)# description Management
tnsr(config-interface)# exit

tnsr(config)# exit

tnsr#

20

Product Manual TNSR v19.05

5.1.2 Command History

The TNSR CLI stores the last 300 commands across sessions. This command history is kept in ~/. tnsr_history.

The command history is accessed by pressing Ctrl-P (previous command), Ctrl-N (next command), or by using the
up and down arrow keys.

5.1.3 Autocomplete

The TNSR CLI supports case-sensitive tab expansion and prediction for input to speed up interactive work. For exam-
ple, the first few letters of a command or entity may be typed, depending on context, and then pressing the tab key will
complete a portion or all of the remaining input where possible. Additionally, in cases when there is an existing entry
or only one possible choice, pressing tab will automatically insert the entire entry. Commands or entities may also be
shortened provided the input is not ambiguous.

Tip: Press ? to show possible completions of the current command when in the middle of a word, or press it between
words to show the next available parameter (Finding Help).

5.1.4 Keyboard Shortcuts

The TNSR CLI supports several CLI navigation and editing key combinations, including:

Command Keys

Previous History Command Ctrl-P or up arrow
Next History Command Ctrl-N or down arrow
Erase Character Backspace or Ctrl-H
Erase Word Ctrl-w

Cursor to Start of Line Ctrl-A

Cursor to End of Line Ctrl-E

Clear and Redraw Screen Ctrl-L

Exit the CLI Ctrl-D
Context-Sensitive Help ?

orphan

5.2 Finding Help

The CLI includes context-sensitive help. At any point, enter a ? and TNSR will print a list of available commands or
keywords that are valid in the current context. Enter a space before the ? to ensure correct context.

Additionally, the help command can be issued in any mode. There are three variations:

help, help commands
These are equivalent and print a list of available commands in the current mode.

help mode
Prints information about the current mode, including whether or not exiting the mode will cause a
commit (Configuration Database).

orphan

© Copyright 2025 Rubicon Communications LLC 21

Product Manual TNSR v19.05

5.3 Starting TNSR

The services required by TNSR to run are enabled by the installer, and they will automatically start at boot time. There
is no need to manually stop or start TNSR services during normal operation.

5.3.1 TNSR Service Relationships

TNSR requires the vpp, clixon-backend, and clixon-restconf services.

The clixon-backend service is configured to depend on vpp, thus:
« If the vpp service is restarted, clixon-backend will also restart if it is running.
« If the vpp service is stopped, clixon-backend will stop if it is running.

e If both vpp and clixon-backend are stopped, then starting clixon-backend will also start vpp.

Note: TNSR may require additional services depending on features enabled by the TNSR configuration. These will
be automatically managed as needed.

5.3.2 Manual TNSR Service Operations

Stop TNSR services:

[$ sudo systemctl stop vpp clixon-restconf]

Start TNSR services:

[$ sudo systemctl start clixon-backend clixon-restconf]

Restarting TNSR services if they are already running:

[$ sudo systemctl restart vpp clixon-restconf J

These services are all daemons and not interactive. To configure TNSR, the administrator must initiate the TNSR CLI
separately, as described in Entering the TNSR CLI.

Convenience Alias

For convenience, an alias in the shell can be used to handle this task. For example, the following single line can be
added to ~/ .bashrc:

alias restarttnsr='sudo systemctl stop vpp clixon-restconf;
sudo systemctl start clixon-backend clixon-restconf'

Note: The changes to ~/.bashrc will not take effect immediately. Either logout and login again, or source the file
by running source ~/.bashrcor . ~/.bashrc.

The above actions can then be accomplished all at once by running restarttnsr.

orphan

© Copyright 2025 Rubicon Communications LLC 22

Product Manual TNSR v19.05

5.4 Entering the TNSR CLI

The TNSR CLI can be started a few different ways. The command to start the CLI is /usr/bin/clixon_cli, but the
exact method varies, as discussed in this section.

When started, the TNSR CLI will print the hostname followed by the prompt:

=)

From that prompt, commands can be entered to view status information or perform other tasks. Throughout this doc-
umentation, the router hostname will typically be omitted unless it is required for clarification.

5.4.1 Using the tnsr account
TNSR includes a tnsr user by default, and this user will automatically load the TNSR CLI at login. To take advantage
of this user, login to it directly using ssh, or switch to it using sudo or su from another account.

The behavior of the tnsr account varies by platform, and its password can be reset using any account with access to
sudo (See Default Accounts and Passwords).

To switch from another user to the tnsr user, use sudo:

[$ sudo su - tnsr]

Alternately, use su and enter the password for the tnsr user:

$ su - tnsr
Password:

5.4.2 Using another account

The TNSR CLI can also be started manually from any user.

This command will start the TNSR CLI as the current user, which is ideal to use in combination with NACM:

[s Just/bin/clizon cli]

5.4.3 Using root

This command will start the TNSR CLI as root, which generally should be avoided unless absolutely necessary (for
example, recovering from a flawed NACM configuration):

[$ sudo /usr/bin/clizon_cli]

© Copyright 2025 Rubicon Communications LLC 23

Product Manual TNSR v19.05

5.4.4 Current User

From inside TNSR, check the current user as seen by TNSR with whoami:

tnsr# whoami
real UID/GID: 996/992
effective UID/GID: 996/992

user name: tnsr
home dir: /var/lib/tnsr
shell: /bin/bash

5.4.5 Shell Alias

For convenience, the command to launch the TNSR CLI can be added to an alias in the shell. For example, the following
line can be added to ~/.bashrc to run TNSR as the current user:

[alias tnsrcli='/usr/bin/clizon_cli']

Note: The changes to ~/.bashrc will not take effect immediately. Either logout and login again, or source the file
by running source ~/.bashrcor . ~/.bashrc.

Then the TNSR CLI may be accessed using the alias from the shell, tnsrcli.

orphan

5.5 Configuration Database

TNSR maintains three separate configuration databases: startup, candidate, and running. These files are stored as XML
in plain text files.

startup
The configuration loaded when the host boots up.

Note: A restart of TNSR services is not the same as a reboot. If, for example, the clixon services
are restarted, TNSR will still be using the running database.

candidate
An in-process potential configuration that exists while the TNSR configuration is being actively
edited. When committed, this configuration will be accepted as the running configuration by TNSR
if it is free of errors.

running
The active running configuration, which reflects the current state of TNSR.

Note: These databases are located in /var/tnsr/ on the host, but these files are not intended to be accessed outside
of TNSR.

The configuration database is managed using the configuration command from within config mode.

© Copyright 2025 Rubicon Communications LLC 24

Product Manual TNSR v19.05

5.5.1 Saving the Configuration

For changes to persist between reboots of the TNSR host, the running configuration must be copied to the startup
configuration as shown in this example:

tnsr(config)# configuration copy running startup

tnsr# configure ’

5.5.2 Viewing the Configuration

To view the configuration databases, use the show configuration command followed by the database name, for
example:

[tnsr# show configuration running J
or:
[tnsr# show conf run]

The default output is XML, but the configuration may also be printed in json format by adding json to the end of the
command.

5.5.3 Reverting to the Startup Configuration

TNSR can also revert to the previously saved startup configuration to remove undesirable changes to the running con-
figuration, should a regression in behavior occur.

For example:

tnsr# configure

tnsr(config)# configuration copy startup candidate
tnsr(config)# configuration candidate commit
tnsr(config)# exit

Warning: It is not possible to copy the startup configuration directly to the running configuration as that will not
result in the settings being active. The configuration must be committed after copying to the candidate.

5.5.4 Configuration Database Commands

These brief examples show other available configuration database management commands.

Delete the candidate database entirely, which if committed will leave TNSR with an empty configuration:

[tnsr(config)# configuration candidate clear]

Commit changes made to the candidate database, which if successful will become the running database:

[tnsr(config)# configuration candidate commit]

Discard the current candidate database to remove a change that has failed to validate, returning to the running config-
uration without the attempted changes:

© Copyright 2025 Rubicon Communications LLC 25

Product Manual TNSR v19.05

[tnsr(config)# configuration candidate discard

Attempt to validate the current candidate configuration to locate errors:

[tnsr(config)# configuration candidate validate

)

Load a file from the host into the candidate database. The contents of the file can replace the candidate entirely, or

merge a new section into an existing configuration. After loading, the candidate must be committed manually.

[tnsr(config)# configuration candidate load <filename> [(replace|merge)]

Copy the candidate configuration to the startup configuration:

[tnsr(config)# configuration copy candidate startup

Copy the running configuration to either the candidate or startup configuration:

[tnsr(config)# configuration copy running (candidate|startup)

Copy the startup configuration to the candidate configuration:

[tnsr(config)# configuration copy startup candidate

Save either the candidate or running configuration to a file on the host.

[tnsr(config)# configuration save (candidate|running) <filename>

)

While not a configuration database command directly, the TNSR CLI automatically discards the candidate database if

it fails to validate. This behavior can be changed using the following command:

[tnsr(config)# no cli option auto-discard

orphan

5.6 Configuration Mode

After starting the TNSR CLI, the administrator is in basic mode and not configuration mode. To enter configuration
mode, enter the configure command. This command may be abbreviated to config and it is also acceptable to write

terminal after, as a convenience for administrators familiar with IOS who type it out of habit.

All of the following commands are equivalent:

tnsr# configure

tnsr# configure terminal
tnsr# config

tnsr# conf t

After entering any one of the above commands, the prompt changes to reflect the new configuration mode:

tnsr# configure
tnsr(config)#

After entering other configuration commands, the new configuration is stored in the candidate database (Configuration
Database). A candidate database may be committed either when all of the required information is present, or when

exiting the current context. Some commands are committed immediately.

© Copyright 2025 Rubicon Communications LLC

26

Product Manual TNSR v19.05

5.6.1 Navigating Configuration Modes

Certain commands in configuration mode enter other modes, for example, the interface command will enter
config-interface mode when used on an existing interface:

tnsr(config)# interface GigabitEthernet3/0/0
tnsr(config-interface)#

To leave a mode, use the exit command. This will return to the previous, lower mode:

tnsr(config-interface)# exit
tnsr(config)#

From config mode, using exit will return to basic mode:

tnsr(config)# exit
tnsr#

From any mode, the exit command may be repeated until the prompt returns to basic mode.

At that point, if no errors have been encountered by TNSR, all changes will have been committed to the running
database. If an error occurs, TNSR will print a message indicating the problem. Solving such problems is covered in
Troubleshooting later in this section.

5.6.2 Removing Configuration ltems

Items are removed or negated using no, followed by the option to remove. For example, to remove an interface descrip-
tion:

tnsr(config)# interface GigabitEthernet®/14/1
tnsr(config-interface)# no description

In this case, since there is only one description, removing the the description does not require the existing content of that
option. In most cases, the no command only requires enough parameters to uniquely identify an entry to be removed
or negated.

In certain cases, a partial command may remove multiple items or may be used as a shorthand method of removing a
longer entry when the details do not uniquely identify an entry.

For example, this command removes one input ACL from an interface:

[tnsr(config—interface)# no access-list input acl idsblock J

Where this shorter version will remove all input ACL entries on an interface:

[tnsr(config—interface)# no access-list input acl J

Finally, this form would remove all ACLs of any type from an interface:

[tnsr(config—interface)# no access-1list J

The ? help command (Finding Help) is useful in determining when these actions are possible. For example, the CLI
will show <cr> (“carriage return”) as an available keyword when testing a command:

© Copyright 2025 Rubicon Communications LLC 27

Product Manual TNSR v19.05

tnsr(config-interface)# no access-list ?

<cr>

acl ACL Rule

input ACL applies to ingress packets
macip MACIP Rule

output ACL applies to egress packets

Since the help request printed <cr> among the choices, the command may be completed by pressing Enter.

5.6.3 Troubleshooting

If a change to the candidate database fails a validation check or application of the change to the system fails for some
reason, it is discarded automatically by default. TNSR resets the candidate database to the current contents of the
running database to avoid further attempts to apply the faulty configuration contained in the candidate database.

This automatic behavior can be changed, however, in cases where power users want more control to troubleshoot failed
configuration transactions:

tnsr# configure
tnsr(config)# no cli option auto-discard

When auto-discard is disabled, if a configuration commit fails the candidate database retains the faulty configuration
data. Further configuration commands may apply additional changes to the candidate database. However, until the
configuration data which caused the failure is removed or set to a value which can be successfully applied, no further
commit will succeed.

Disabling the auto-discard feature only persists for the duration of the current CLI session in which it was disabled. At
the start of a new CLI session, auto-discard will again be enabled by default.

To view the status of the auto-discard option, use show cli:

tnsr# show cli
Discard erred candidate database: true

A faulty candidate can be viewed with the show configuration candidate command, as described in Configura-
tion Database

There are three approaches to rectify this situation:
* Issue alternate commands that directly correct the faulty configuration.

* Abandon the attempted configuration:

tnsr# configure
tnsr(config)# configuration candidate discard

* Remove the fault from the candidate configuration by reverting to the running configuration:

tnsr# configure
tnsr(config)# configuration copy running candidate
tnsr(config)# configuration candidate commit

L

orphan

© Copyright 2025 Rubicon Communications LLC 28

Product Manual TNSR v19.05

5.7 Configuration Backups

The candidate and running databases can be saved to or loaded from files in the host OS. This can be used to make
backups, copy configurations to other routers, or similar purposes.

The filenames can take an absolute path and filename, or the path may be omitted to save the file in the directory from
which the TNSR CLI was invoked by the administrator. When saving, this file must be writeable by the TNSR backend
daemon. When loading, this file must be readable by the TNSR backend daemon.

Tip: The best practice is to store backup configuration files in a secure location to prevent unauthorized access to
sensitive information.

Saving the running configuration as a backup:

tnsr# config
tnsr(config)# configuration save running backup.zxml

Loading a configuration file from a backup:

tnsr# config
tnsr(config)# configuration candidate load backup.xml
tnsr(config)# configuration candidate commit

orphan

5.8 Viewing Status Information

Status information can be viewed using the show command from either basic or configuration mode.

For a full list of possible show commands, enter show ?:

tnsr# show ?

acl Access Control Lists

bfd Bidirectional Forwarding Detection
cli State of per-session CLI options
clock Show the current system date and time
configuration Config DB configuration state
counters Interface counters

dslite DS-Lite

gre GRE tunnels

host Host information

http HTTP

interface Interface details

ipsec IPsec

kea Kea/DHCP

macip MACIP Access Control Lists

map MAP-E/MAP-T

nacm NACM data

nat Network Address Translation
neighbor Neighbors (ARP/NDP)

ntp NTP

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 29

Product Manual TNSR v19.05

(continued from previous page)

packet-counters Packet statistic and error counters
route Show routing info.

span SPAN mirrors

sysctl Sysctl parameters

system System information

unbound Unbound DNS

version Show version of system components
vxlan VXLAN tunnels

tnsr# show version

Version: tnsr-v19.02-1

Build timestamp: Thu Feb 21 17:12:00 2019 CST
Git Commit: 0x40204091

orphan

5.9 Service Control

Services controlled directly by TNSR can be restarted from within the TNSR CLI in configuration mode.

To control a service, use the service command as follows:

tnsr# configure
tnsr(config)# service <name> <action>

The service name must be one of the following:

backend
Configuration backend (clixon_backend)

bgp
BGP routing (bgpd, zebra)

dataplane
Dataplane (vpp)

dhcp
DHCP (kea)

http
HTTP for RESTCONF API (nginx)

ntp
Time service (ntpd)

restconf
RESTCONF API (clixon_restconf)

unbound
DNS Resolver (unbound)

The following action types are available:

start
Start the service if it is not already running.

stop
Stop the service if it is currently running.

© Copyright 2025 Rubicon Communications LLC 30

Product Manual TNSR v19.05

restart
Stop and restart the service, or start the service if it is not running. This action is not available for
the dhcp service.

reload
Reload the service configuration without restarting. This action is available for the dhcp and unbound
services.

status
Show the current status of the service daemon(s) and the last few log entries.

orphan

5.10 Diagnostic Utilities

The TNSR CLI includes convenience utilities for testing connectivity.

5.10.1 Diagnostic Routing Behavior

The utilities in this section behave the same with regard to routing. These utilities will send traffic using the host OS
routing table by default unless a specific source address is passed to the command.

5.10.2 Ping

To perform a basic ICMP echo request, use the ping command:

[tnsr# ping <destination host> source <interface IP address>]

TNSR will send 10 ICMP echo requests to the destination host, waiting a maximum of 12 seconds for a reply. The
source address would be a TNSR interface address, which will allow ping to send its request using the routing table
in TNSR.

The ping command supports a number of additional parameters which alter its behavior:

tnsr# ping (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>] [source <src-addr>]
[count <count>] [packet-size <bytes>] [ttl <ttl-hops>] [timeout <wait-sec>]

dest-host|dest-ip
The target of the ICMP echo request. This may be a hostname, IPv4 IP address, or IPv6 IP address.

ipvdlipv6
When a hostname is used for the destination, this parameter controls the address family used for
the ICMP echo request when the DNS response for the hostname contains both IPv4 (A) and IPv6
(AAAA) records.

interface
The TNSR interface from which the ICMP echo requests will originate.

source
The source IP address for the ICMP echo requests. This is required to initiate an ICMP echo request
using the routing table in TNSR. If omitted, the ICMP echo request will use the host OS routing
table.

count
The number of ICMP echo requests to send. Default value is 10.

© Copyright 2025 Rubicon Communications LLC 31

Product Manual TNSR v19.05

packet-size
The size of of the ICMP echo request payload, not counting header information. Default value is 56.

ttl
The Time To Live/Hop Limit value for ICMP echo requests, which can limit how far they may travel
across the network. Default value is 121 hops.

timeout

The total time to wait for the command to complete.

5.10.3 Traceroute

To perform a network routing trace to a destination host, use the traceroute command:

[tnsr# traceroute <destination host> source <interface IP address>]

The source address would be a TNSR interface address, which will allow traceroute to send its request using the
routing table in TNSR.

As with the ping command, there several additional parameters to change the behavior of the trace:

tnsr# traceroute (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>] [source <src-
—addr>]

[packet-size <bytes>] [no-dns] [timeout <seconds>] [ttl <ttl-hos>] [waittime <wait-
—sec>]

Most parameters are the same as those found in ping (Ping). Only the items that differ are listed here:

no-dns
Do not attempt to use DNS to reverse resolve hosts that respond to probes.

waittime
Amount of time the command will wait for individual probe responses to return.

Warning: The traceroute command requires /usr/bin/traceroute to be present in the base operating sys-
tem. The TNSR package set includes a dependency which will automatically install a package for traceroute. It
may also be installed manually using sudo yum install -y traceroute or a similar command, depending on
the host OS package management configuration.

5.11 Basic System Information

The TNSR CLI can set several basic elements about the system itself, which also serves as a good introduction to
making changes on TNSR. These settings are made in config mode.

The following parameters are available:

system contact <text>
System contact information, such as an e-mail address or telephone number.

system description <text>
A brief description of this TNSR instance, for example its role or other identifying information.

system location <text>
The location of this TNSR instance, for example a physical location (building, room number, rack
number and position, VM host)

© Copyright 2025 Rubicon Communications LLC 32

Product Manual TNSR v19.05

system name <text>
The hostname of this TNSR instance.

Warning: This setting also changes the hostname in the host operating system to match, replac-
ing any previously configured hostname.

This example shows how to set the above parameters, starting from master mode:

gw tnsr# configure

gw tnsr(config)# system contact support@example.com
gw tnsr(config)# system description TNSR Lab Router
gw tnsr(config)# system location HQ MDF/Rack 2 Top
gw tnsr(config)# system name labrtr01

labrtr®1 tnsr(config)# exit

To view the values of these parameters, along with uptime and memory usage, use the show system command from
either master or config mode:

labrtr01 tnsr# show system
System Parameters:
description: TNSR Lab Router
contact: support@example.com
name: labrtr0l
location: HQ MDF/Rack 2 Top
object-id: 1.3.6.1.4.1.13644
uptime: 1303615 seconds
total-ram: 8004488 KiB
free-ram: 3236820 KiB
total-swap: 2932732 KiB
free-swap: 2932732 KiB

orphan

© Copyright 2025 Rubicon Communications LLC 33

CHAPTER
SIX

BASIC CONFIGURATION

Now that TNSR is installed, it needs additional manual setup.

Note: This section assumes TNSR was installed as described in /nstallation. Devices pre-loaded with TNSR by
Netgate do not require these extra steps.

This section contains information for a manual setup of interfaces. It can also serve as a reference for activating
additional hardware added to an existing installation.

orphan

6.1 Setup Interfaces

TNSR requires complete control of the network interfaces that it will use. This means that the host operating system
must not be attempting to use or control them in any way. The device ID of the interface(s) also must be obtained to
inform VPP and TNSR what interfaces to use. The interface link can be tuned through VPP and configured through
TNSR.

Warning: The host management interface must remain under the control of the host operating system. It must not
be configured as an interface to be controlled by TNSR.

Network interfaces not configured in the installer will be disabled in CentOS during the installation process. The
interfaces will need to be re-enabled in TNSR. For a fresh installation of TNSR, skip ahead to Serup NICs in Dataplane.

Interfaces added to the TNSR instance after the initial setup will need to be disabled using the following procedure.

6.1.1 Identify NICs to use with TNSR

To start, locate the network interfaces in use by the host operating system. View a list of network interfaces known to
the host OS with this command:

[s ip link

To determine if a network interface is in use by the host OS, run the following command:

[$ ip link show up

34

Product Manual TNSR v19.05

If an interface shows in that list, and its name does not start with vpp, then it is under control of the host.

Note: The TNSR installer will automatically mark any interface not configured in the installer for use by TNSR.

Make a note of the network interfaces and their purpose. Note which interface will be used for host management, and
which interfaces will be used by TNSR. The host management interface will be left under the control of the operating
system, while the remaining interfaces may be used by TNSR. In this example, the host contains four network interfaces:
enp0s20£0, enp0s20£f1, enp0s20f2, and enp®s20£f3 and TNSR will use enp0s20£f1 and enp0s20£2.

orphan

6.2 Disable Host OS NICs for TNSR

In order for TNSR to control network interfaces, they must be disabled in the host OS. In most cases this is not necessary,
as network interfaces not configured in the installer will be automatically disabled in CentOS during the installation
process. For a fresh installation of TNSR, skip ahead to Serup NICs in Dataplane. This section remains to explain
how to change interfaces added after initial installation, or for installations which do not contain whitelisted network
interfaces.

This is a two-step process. First, the link must be forced down, and then the network interface must be disabled in
Network Manager.

Warning: The host management interface must remain under the control of the host operating system. It must not
be configured as an interface to be controlled by TNSR. Do not disable the management interface during this step.

For each of the interfaces noted in the last section, manually force the link down:

[$ sudo ip link set <interface name> down

For example:

$ sudo ip link set enp0s20f1 down
$ sudo ip link set enp0s20f2 down

Next, disable these network interfaces in Network Manager. For each of these interfaces, edit the corresponding startup
script:

[$ sudo vi /etc/sysconfig/network-scripts/ifcfg-<interface name>

In each of these files, ensure the following values are set. Add lines if they are not already present in the file:

ONBOOT=no
NM_CONTROLLED=no

Note: To change an interface from being usable by TNSR to back under host OS control, see Remove TNSR NIC for
Host Use.

orphan

© Copyright 2025 Rubicon Communications LLC 35

Product Manual TNSR v19.05

6.3 Setup NICs in Dataplane

Next, determine the device ID for the interfaces. Start the CLI (Entering the TNSR CLI) and run the following command
to output the device IDs as seen by the dataplane:

tnsr# configure
tnsr(config)# dataplane dpdk dev ?

0000:02:01.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet
Controller (Copper) (rev 01) (Active Interface eth®)

0000:02:02.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet
Controller (Copper) (rev 01)

0000:02:03.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet

Controller (Copper) (rev 01)

Interfaces under host control will be noted in the output with Active Interface. Other listed interfaces are usable by
TNSR.

For a fresh installation of TNSR, skip ahead to Configuring Interfaces for TNSR, otherwise continue on to identify host
interfaces added after TNSR was installed.

6.3.1 Host Interface Name to Dataplane ID Mapping

The output of the dataplane dpdk dev ? command includes the device IDs in the first column. The device IDs will
map to the network cards in a way that is typically easy to determine. For example:

Table 1: Interface Identifiers

Interface Identifier

enp0s20f0 0000:00:14.0
enp0s20f1 0000:00:14.1
enp0s20f2 0000:00:14.2
enp0s20f3 0000:00:14.3
enp3s0 0000:03:00.0
enp4s0 0000:04:00.0

The host OS interface name and VPP identifiers contain the same information represented in different ways. They both
reference the PCI bus number, slot number, and function number. The Interface name contains the values in decimal
while the identifier shown in VPP uses hexadecimal.

Deconstructing the first interface name, it contains the following:

Table 2: Interface Name Components

Component Interface Value VPP ID Value

Device Type en (Ethernet) n/a

PCI Bus pO 00

Bus Slot s20 14 (Decimal 20 in Hex)
Function {0 .0

Using this pattern, make a note of the VPP identifiers for the next step. In this example, since enp®s20£f1 and
enp0s20£2 are the interfaces to use, the corresponding VPP IDs are 0000:00:14.1 and 0000:00:14.2.

© Copyright 2025 Rubicon Communications LLC 36

Product Manual TNSR v19.05

6.3.2 Configuring Interfaces for TNSR

Next, edit the dataplane configuration. Start the CLI (Entering the TNSR CLI) and enter configuration mode:

tnsr# configure
tnsr(config)#

Add the device IDs of the interfaces to be used by the VPP dataplane, determined above:

tnsr(config)# dataplane dpdk dev 0000:00:14.1 network
tnsr(config)# dataplane dpdk dev 0000:00:14.2 network

Then commit the configuration:

[tnsr(config)# configuration candidate commit

Restart the VPP dataplane:

tnsr(config)# service dataplane restart
tnsr(config)# exit

The interfaces will now be available for TNSR. Start the CLI again and run show interface and verify that the
interfaces appear in the output. The output example below has been shortened for brevity:

tnsr# show interface
Interface: GigabitEthernet®/14/1

[...]

Interface: GigabitEthernet0/14/2
[...]

Interface: local®

[...]

The TNSR interface name also reflects the type, followed by the PCI Bus/Slot/Function ID of each interface, using the
same hexadecimal notation as VPP.

Note: Once TNSR attaches to interfaces in this way, they will no longer be shown as devices in the host OS. To return
a network interface back to host OS control, see Remove TNSR NIC for Host Use.

One exception to this behavior is Mellanox network interfaces as they use the same driver for both host OS and DPDK,
they still appear in the host OS.

Customizing Interface Names

The default interface names, such as GigabitEthernet0/14/1, may be customized by an administrator. To customize
the names, the PCI ID of the device must be known. The custom names can be used anywhere that an interface name
is necessary in TNSR.

Note: Only dataplane hardware interface names may be customized in this way. Interfaces from virtual sources such
as loopback, IPsec, and GRE cannot be renamed.

The command to rename interfaces is dataplane dpdk dev <pci-id> network name <name>. To activate the
change, the dataplane must be restarted after making the name change.

© Copyright 2025 Rubicon Communications LLC 37

Product Manual TNSR v19.05

This example changes the name of GigabitEthernet0/14/1, PCIID 0000:00:14.1, to DMZ:

First, look at the list of interfaces. Note that the interface is in the list with its original name:

tnsr# show interface

Interface: GigabitEthernet0/14/1
[...]

Interface: GigabitEthernet®/14/2
[...]

Interface: local®

[...]

Next, remove any references to the interface from TNSR, and then remove the interface configuration entirely:

[tnsr(config)# no interface GigabitEthernet®/14/1

Now set the name of the device, then restart the dataplane:

tnsr(config)# dataplane dpdk dev 0000:00:14.1 network name DMZ
tnsr(config)# service dataplane restart

After the dataplane restarts, the interface will appear in the list with its new name:

tnsr# show interface
Interface: DMZ

[...]

Interface: GigabitEthernet®/14/2
[...]

Interface: local®

[...]

To change the name back at a later time, all references to the interface must first be removed, and then the name can be
reset:

tnsr(config)# no interface DMZ
tnsr(config)# no dataplane dpdk dev 0000:00:14.1 name
tnsr(config)# service dataplane restart

6.3.3 Troubleshooting

If the interfaces do not appear in the show interface output, the default driver did not attach to those interfaces and
they may require a different driver instead. To see a list of available drivers, use the following command from config
mode:

tnsr(config)# dataplane dpdk uio-driver ?

igb_uio UIO igb driver
uio_pci_generic Generic UIO driver
vfio-pci VFIO driver

To enable a different driver, complete the command using the chosen driver name, then commit the configuration and
restart the dataplane.

Note: Mellanox devices use RDMA and not UIO, so changing this driver will not have any effect on their behavior.

© Copyright 2025 Rubicon Communications LLC 38

Product Manual TNSR v19.05

If a Mellanox device does not appear automatically, TNSR may not support that device.

tnsr(config)# dataplane dpdk uio-driver igb_uio
tnsr(config)# configuration candidate commit
tnsr(config)# service dataplane restart
tnsr(config)# exit

Then attempt to view the interfaces with show interface again. If they are listed, then the correct driver is now
active.

orphan

6.4 Setup QAT Compatible Hardware

TNSR Supports hardware compatible with Intel® QuickAssist Technology, also known as QAT, for accelerating cryp-
tographic and compression operations.

This hardware can be found in CPIC cards as well as many C3000 and Skylake Xeon systems. Netgate XG-1541 and
XG-1537 hardware has an add-on option for a CPIC card.

6.4.1 Setup Process

Enable SR-IOV in the BIOS

SR-IOV is required for QAT to function in TNSR. SR-IOV enables Virtual Functions which are required for binding
by crypto devices.

The procedure to enable SR-IOV varies by platform. Generally this involves rebooting the hardware and entering the
BIOS setup, making the change, and then saving and rebooting. The exact location of the SR-IOV option also varies
in different BIOS implementations.

Note: Netgate devices which ship with a CPIC card preinstalled will have this step completed at the factory, but double
check the BIOS to ensure it is set as expected.

Enable IOMMU in grub
IOMMU (Input—Output Memory Management Unit), which in this context is also known as Intel VT-d, must be enabled
in grub for QAT to function. It functions similar to PCI passthrough, allowing the dataplane to access the QAT device.
To enable IOMMU in grub:

* Open /etc/default/grub in a text editor (as root or with sudo)

* Locate the line starting with GRUB_CMDLINE_LINUX

¢ Check if that line includes intel_iommu=on iommu=pt

* If those parameters are not included on the line, append them to the end, before the end quote.

 Save and exit the text editor

* Run one following commands (depending on how the device boots):

— Legacy: sudo grub2-mkconfig -o /boot/grub2/grub.cfg

© Copyright 2025 Rubicon Communications LLC 39

Product Manual TNSR v19.05

— UEFI: sudo grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg

¢ Reboot the device

Change the uio driver to igb_uio

Next, change the TNSR dataplane uio driver to igb_uio:

tnsr# configure
tnsr(config)# dataplane dpdk uio-driver igb_uio

Configure the QAT PCI device in TNSR

Next, configure the QAT device in TNSR.

To configure this device, first locate its PCI ID. TNSR will print the PCI ID when viewing possible parameters for
dataplane devices

tnsr(config)# dataplane dpdk dev ?

0000:03:00.0 Ethernet controller: Intel Corporation Ethernet Connection X552,
—10 GbE SFP+

0000:03:00.1 Ethernet controller: Intel Corporation Ethernet Connection X552..
—10 GbE SFP+

0000:04:00.0 Co-processor: Intel Corporation DH895XCC Series QAT

0000:05:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network.
—Connection (rev 01) (Active Interface enol)

0000:05:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network..
—Connection (rev 01)

In this instance, the following line from the output is for the QAT device:

[@@@0:04:00.@ Co-processor: Intel Corporation DH895XCC Series QAT

The first value printed on the line is the PCI ID, 0000:04:00.0.

Now, tell TNSR the device at that address is a crypto device:

[tnsr(config)# dataplane dpdk dev 0000:04:00.0 crypto J

Activate and check the settings

When viewing the XML configuration with show configuration running, it will contain settings similar to the
following example. Note that if other dataplane options are present in the configuration, those will also be visible. Here
is how it looks once configured:

<dataplane-config>
<dpdk>
<dev>
<id>0000:04:00.0</id>
<device-type>crypto</device-type>
</dev>
<uio-driver>igb_uio</uio-driver>

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 40

Product Manual TNSR v19.05

(continued from previous page)

</dpdk>
</dataplane-config>

After configuring the crypto device and uio driver, TNSR will commit the settings to the dataplane configuration.

To activate the new settings, restart the dataplane.

tnsr(config)# service dataplane restart
tnsr(config)# exit
tnsr#

Lastly, using the shell command, verify that VPP can see the crypto device:

tnsr# shell sudo vppctl show dpdk crypto devices
0000:04:00.0_gat_sym crypto_qat up

numa_node 0, max_queues 2

free_resources 0, used_resources 1

SYMMETRIC_CRYPTO, SYM_OPERATION_CHAINING, HW_ACCELERATED, IN_PLACE_SGL, OOP_SGL_IN_SGL_
—0UT, OOP_SGL_IN_LB_OUT, OOP_LB_IN_SGL_OUT, OOP_LB_IN_LB_OUT

Cipher: none, aes-cbc-128, aes-cbc-192, aes-cbc-256, aes-ctr-128, aes-ctr-192, aes-ctr-
256, aes-gcm-128, aes-gcm-192, aes-gcm-256

Auth: none, md5-96, shal-96, sha-256-96, sha-256-128, sha-384-192, sha-512-256

6.4.2 Troubleshooting

If the QAT device does not appear in the show dpdk crypto devices output, or it only shows an AES-NI device,
then VPP can not see the crypto device. To correct this, first verify the QAT drivers are loaded, VFs exist for the QAT
device, and grub BOOT_IMAGE is passing the necessary iommu parameters.

Verifty IOMMU parameters:

[$ dmesg | grep iommu]

The following parameters should appear somewhere on the BOOT_IMAGE line in the dmesg output:

[intel_iommu=on iommu=pt]

Verify that the QAT drivers are loaded in the operating system:

$ 1lsmod | grep gat

gat_dh895xccvf 13281 O

gat_dh895xcc 13510 ©

intel_qgat 141755 2 qat_dh895xccvf,qat_dh895xcc
dh_generic 13286 1 intel_gat

rsa_generic 18819 1 intel_gat

authenc 17776 1 intel_gat

Verify Virtual Functions (VFs) exist for the QAT device:

[$ lspci | grep QAT | wc -1]

The number of listings are dependent on how many threads VPP uses to process packets. At minimum there will be at
least three entries, but there may be many more. The lines will look similar to this example:

© Copyright 2025 Rubicon Communications LLC 41

Product Manual TNSR v19.05

04:00.0 Co-processor: Intel Corporation DH895XCC Series QAT
04:01.0 Co-processor: Intel Corporation DH895XCC Series QAT Virtual Function
04:01.1 Co-processor: Intel Corporation DH895XCC Series QAT Virtual Function

TNSR stores the device Physical Function (PF), 04:00. 0 for example, in its configuration because the VFs do not yet

exist at boot time. They are created by clixon-backend when it processes the crypto device. Then, the allocated

VFs on the PF have their addresses written to startup.conf.

The VFs are bound to igb_uio because igb_uio is a driver which allows a userspace process to do RDMA on buffers

that are used by a PCI device.

If the drivers are loaded and the VFs show under 1spci, then verify /etc/vpp/startup.conf has the appropriate

dpdk settings. The igb_uio driver must be present and the PCI IDs of TNSR interfaces along with one of the VFs for

the QAT device:

dpdk {
uio-driver igb_uio
dev 0000:04:01.0
dev 0000:05:00.1
dev 0000:03:00.0
dev 0000:03:00.1

}

If that looks correct, verify igb_uio is being used by the QAT VF and interfaces:

$ sudo vppctl show pci all | grep igb_uio
0000:03:00.0 O 8086:15ac 2.5 GT/s x1 igb_uio

0000:03:00.1 O 8086:15ac 2.5 GI/s x1 1igb_uio
0000:04:01.0 O 8086:0443 unknown igb_uio
0000:05:00.1 0O 8086:1521 5.0 GT/s x4 1igb_uio

Physical TNSR interfaces will display there in addition to the QAT VF ID, which matches the QAT VF ID configured

for dpdk in /etc/vpp/startup.conf.

If any of those tests do not provide the expected output, then reboot the system and check again. Ensure the TNSR

services and VPP are running, and then check the VPP QAT status again.

[$ sudo vppctl show dpdk crypto devices

]

If there is still no output, verify the PCI ID for the crypto device specified in TNSR is accurate. It must be the first

PCI ID displayed by 1spci | grep gat. Then verify the PCI ID of the next listing in that output (first VF device) is

specified in /etc/vpp/startup. conf properly and also the same PCI ID seen by VPP when running:

[$ sudo vppctl show pci all | grep igb_uio

orphan

© Copyright 2025 Rubicon Communications LLC

42

Product Manual TNSR v19.05

6.5 Remove TNSR NIC for Host Use

If TNSR is controlling a network interface that should be used by the host OS, it can be returned to host OS control in
a few steps.

6.5.1 Locate the Interface
First, identify the interface in question. The PCI ID and Linux interface name are required to proceed, and Host
Interface Name to Dataplane ID Mapping explains the relationship between these interface names and IDs.

In this example, the TNSR interface GigabitEthernet®/14/3 will be returned to the host OS. Based on the name, the
PCIID is 0000:00:14. 3, and converting from hexadecimal to decimal yields the Linux interface name enp®s20£3.
This is determined based on PCI bus 0, Bus slot 20 (decimal), function 3.

6.5.2 Remove the Interface from TNSR

First, remove any configuration items using the interface. The interface could be present in several places, so inspect
the entire running configuration for references to this interface and then remove them.

Next, remove the interface configuration itself:

tnsr# configure
tnsr(config)# no interface GigabitEthernet0/14/3

If the interface was manually specified in the dataplane by PCI ID as mentioned in Configuring Interfaces for TNSR,
that must be also be removed. This will be present in the running configuration inside the <dataplane> section, if one
exists. To remove the configuration, follow this example using the correct PCI ID:

[tnsr(config)# no dataplane dpdk dev 0000:00:14.3 J

Save the configuration after making these changes, as the next steps will involve actions that may result in the startup
configuration being used by TNSR:

[tnsr(config)# configuration copy running startup }

Exit the TNSR CLI.

6.5.3 Edit the Host Interface Configuration

The network manager interface configuration scripts are located in /etc/sysconfig/network-scripts/. This di-
rectory will contain an interface configuration script for the Linux interface name determined above, in the form of
ifcfg-<name>. In this example, this is ifcfg-enp0s20£3.

From a shell on the host OS, edit the file for this interface using sudo, for example:

[$ sudo vi /etc/sysconfig/network-scripts/ifcfg-enp0s20£f3 J

Inside that file change ONBOOT to yes:

[ONBOOT:yes]

Remove the NM_CONTROLLED line. if one is present.

© Copyright 2025 Rubicon Communications LLC 43

Product Manual TNSR v19.05

6.5.4 Reactivate the Host Interface

At this point, the interface is ready to return to host OS control. There are two methods to complete the process: Reboot
the host, or manually reactivate the interface.

Reboot

The fastest and easiest option is to reboot the host. This will allow the host to naturally locate and resume control of
the device.

Warning: All traffic processing by TNSR will stop while the host is rebooting!

Reboot the host from the shell as follows:

[$ sudo shutdown -r

Manually Reactivate

Warning: The following procedure is advanced and we do not recommend using this method. We strongly advise
rebooting the host instead.

There is also a manual method which may be used if a reboot is not feasible.

First, stop the dataplane and related services:

Warning: All traffic processing by TNSR will stop while this service is stopped!

[$ sudo systemctl stop vpp }

Next, start a root shell and unbind the device from the current driver (TNSR):

$ sudo -s
echo '0000:00:14.3"' > '/sys/bus/pci/devices/0000:00:14.3/driver/unbind’

Warning: Note the use of the PCI ID in both locations in the command, and the use of quotes around parameters.

That leaves the device unbound. Now it must be returned to a host kernel driver. The name of this driver depends on
the hardware. For most Netgate TNSR devices this will be igb, as in the following example.

Still using the root shell from the previous command, bind the interface to the driver as follows:

[# echo '0000:00:14.3' > '/sys/bus/pci/drivers/igb/bind’

Lastly, start the dataplane and related services:

[$ sudo systemctl start clixon-backend J

© Copyright 2025 Rubicon Communications LLC 44

Product Manual TNSR v19.05

6.5.5 Configure the Host Interface

At this point the interface is now under host OS control and will be listed in the output of ip and similar commands.

$ ip addr show dev enp0®s20f3
5: enp®s20f3: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc mq state DOWN group..
—default glen 1000

link/ether 00:08:a2:09:95:b4 brd ff:ff:ff:ff:ff:ff

The interface configuration in the host OS can be used to change the interface behavior as needed. The default behavior
isto act as a DHCP client. This can be changed by editing the interface configuration file noted in Edit the Host Interface
Configuration. Consult the CentOS documentation for additional details.

orphan

© Copyright 2025 Rubicon Communications LLC 45

CHAPTER
SEVEN

UPDATES AND PACKAGES

TNSR software updates are available to download over the Internet using Linux package management tools (RPM,
yum). The settings required to communicate with the software repository containing TNSR updates are preconfigured
on TNSR. Connections to the Netgate TNSR repository must be authenticated using a valid signed client certificate.

Warning: Trial versions of TNSR cannot be updated. Reinstall with a full version of TNSR or install a new trial
version.

Note: All versions of TNSR, including trial versions, can update the operating system packages even without the
update certificate in place. Only TNSR-related packages require authentication to update.

This guide explains how to obtain and install the required client certificate on a TNSR instance.

Warning: Portions of this process are not final and may change.

Commands must be executed on the TNSR instance to generate an X.509 certificate signing request. The request must
then be submitted to Netgate for signing. Once the request has been signed and a certificate has been generated, the
certificate must be downloaded and installed in TNSR.

Note: While itis possible to create the certificate outside of TNSR and import it afterward, this guide only demonstrates
using TNSR directly. See Public Key Infrastructure for more details about creating and importing certificates.

At a high level, the steps involved in the process can be summarized as:

orphan

7.1 Generate a Key Pair

This guide uses the TNSR CLI pki commands documented in Public Key Infrastructure to generate cryptographic
keys that can be used for secure communications and authentication.

Warning: When creating keys and certificates for updates, the name of each component must be tnsr-updates,
which is the name required by the software repository configuration.

46

Product Manual TNSR v19.05

The first step is to generate a set of cryptographic keys:

tnsr# pki private-key tnsr-updates generate

tnsr#

Note: This command can be run only once successfully. Subsequent attempts will result in an error unless the existing
key is deleted.

This new tnsr-updates key object contains the private key, which is secret, and a public key, which is included in
the certificate.

The same key pair can be used as the basis for multiple certificate signing requests. If a certificate expires, is accidentally
deleted, or needs to be replaced for any other reason other than the keys being compromised, generate a new signing
request using the existing key pair.

orphan

7.2 Generate a Certificate Signing Request

The Certificate Signing Request (CSR) contains a public key derived from the key pair generated in the previous step,
plus attributes that uniquely identify the requester. A CSR is signed by a Certificate Authority to generate a certificate.

To generate a CSR, first set values which identify this TNSR instance:

tnsr# pki signing-request set common-name tnsr-example.netgate.com
tnsr# pki signing-request set country US

tnsr# pki signing-request set state Texas

tnsr# pki signing-request set city Austin

tnsr# pki signing-request set org Netgate

tnsr# pki signing-request set org-unit Engineering Testing 1 2 3

For the Common Name, enter the fully qualified domain name or Public IP address of the TNSR instance. For the
other fields, enter information about the name and location of the organization controlling this TNSR instance.

A Digest Algorithm is also required to sign the request:

[tnsr# pki signing-request set digest sha256

View the values that have been set before generating the request:

tnsr# pki signing-request settings show
Certificate signing request fields:
common-name: tnsr-example.netgate.com
country: US
state: Texas
city: Austin
org: Netgate
org-unit: Engineering Testing 1 2 3
digest: sha256

© Copyright 2025 Rubicon Communications LLC 47

Product Manual

TNSR v19.05

Any typos can be corrected by re-running the appropriate set commands.

When all values are correct, generate the request:

Warning: As with the key pair, the request must have the name tnsr-updates.

tnsr# pki signing-request tnsr-updates generate

MIICzTCCAbUCAQAwgYcxITAfBgNVBAMMGHRuUc3ItZXhhbXBsZS5uZXRnYXR1LmNv
bTELMAKGA 1UEBhMCVVMxD jAMBgNVBAgMBVR1eGFzMQ8wDQYDVQQHDAZBAXNOaWW4x
EDAOBgNVBA0MBO51dGdhdGUxXI jAgBgNVBASMGUVUZ21uZWVyaW5nIFR1c3Rpbmcg
MSAyIDMwggEiMA®OGCSqGSIb3DQEBAQUAA4IBDwAWggEKAOIBAQDAUXpX5KYNnult
7xXxIKVSES6kPMDtBHgXB7d2fywtqfI/UVvV9+LhCHLLOz80ovqq/GcHioddCBQH63a
+Ugh®cMIZVOwRQhe7eYMO3GmHMyuxz6P5eW03E9d/3sTOrL+fUDH8CVWwW jmwX0tC
1dP3PADH4ennxqaWk®+1Hga®Dm9I3hrErX5crzIMyZpGZ/BXfDYo+QuxktZOHIsSb
9gDtEN2534I2wk@hm6mFashDWxmYpcb8ventcVwtEOQGAByNsCg8z3VwcPQY6x9k
YIKFuQM3U8hZ2y60Ej jPqfsc+GnZ6b+7blinck7tITqz6FQwnSW3sKvXkwsyeDnEa
3eyIjSrFAgMBAAGgADANBgkghkiG9wOBAQSFAAOCAQEAet jRqn6IoekxZErrPvZE
encbvedPUTLSEbGF923PMpmH5KBAOe4QMT2wEA7dWd5GeuOEA5+6/Q1vQh3k11yU
bzDgRASj167cKFxp6fL2iDkvoaGf+PusLGM3eQthGzF6t7q6cH1 500ANVbrLZws2
qu09evqHgPCIkOhcmPLXSGgitMIwH7EBSmySsZPuEyUCsozA8YLsDLMOdxU5PQnX
XesDhGOAMcFhu34nmsUrCqJlwi3CM4rulT1YseVVyZDy jhTEWuCp91Z£7 jzR12gEF
afis853CjtURIekfzeKIggacrlY0XXt119DtKDz19Z4sWu3C1PsdciOgalCnSVHh
5g==

TNSR will print the CSR data to the terminal, as shown above. Copy the text, including the lines containing BEGIN

CERTIFICATE REQUEST and END CERTIFICATE REQUEST, and save it to a file.

orphan

7.3 Submit the Certificate Signing Request

To generate a signed certificate, the signing request must be submitted to Netgate. Netgate will sign the request with a

Certificate Authority key trusted by the TNSR update repository servers.

© Copyright 2025 Rubicon Communications LLC

48

Product Manual TNSR v19.05

7.3.1 Required Customer Information

The certificate signing request must be accompanied by information Netgate can use to identify the customer and
validate the request. This information varies by platform.

TNSR Device or ISO Install

For customers using a device preloaded with TNSR or installing TNSR from an ISO image, the certificate signing
support request must be accompanied by information that Netgate can use to validate the request. Netgate must be
able to determine that the request is being sent from an authorized user on an account that has an appropriate TNSR
purchase.

For example, send the support request from the same e-mail address which was used when making the TNSR purchase
and include an order number and other relevant information in the support request when submitting the CSR.

TNSR in AWS
For AWS customers, two additional pieces of information are necessary to validate the status of customer accounts
before Netgate can sign a certificate:

¢ The AWS Customer ID

¢ The AWS Instance ID

Note: When registering a TNSR instance to obtain a client certificate, Netgate must be able to prove that this instance
of TNSR is a valid instance of the currently published AWS image. To do this, Netgate utilizes the AWS API that
indicates which TNSR image the specified instance ID is an instance of. This is the only use of the customer instance
ID, which is not stored or retained in any way.

The AWS Customer ID can be found using the instructions at https://docs.aws.amazon.com/general/latest/gr/
acct-identifiers.html

The AWS Instance ID can be retrieved from the EC2 Web Console:
1. Navigate to https://console.aws.amazon.com/ec2/
2. Click Instances
3. Click the box next to the TNSR instance to select it

4. The AWS Instance ID is displayed at the bottom of the page under the Description tab

7.3.2 Create a Support Request for the CSR

Using the CSR and customer information, submit a request on the Netgate Support Portal.

Warning: The following steps are still under design and development and may change at any time.

1. Navigate to https://go.netgate.com/support/login

2. Log in with an existing account using an email address and password, or register a new account using the Sign
Up button and following the prompts

3. Create a new support request with the following properties:

© Copyright 2025 Rubicon Communications LLC 49

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://console.aws.amazon.com/ec2/
https://go.netgate.com/support/login

Product Manual TNSR v19.05

Department
Select Netgate Global Support

Software Product
Select the matching purchased TNSR product, either TNSR Business or TNSR Enterprise

Platform
Choose the value that matches where TNSR is running, for example TNSR in AWS, Netgate
XG-1541 1U, or Whitebox / Other

General Problem Description
Select TNSR Certificate Authorization

Support Level
Choose the support level that matches the purchased TNSR product, TNSR Business, TNSR
Business Plus, or TNSR Enterprise

AWS Instance ID
For TNSR on AWS customers only, The ID for this TNSR instance located previously

AWS Customer ID
For TNSR on AWS customers only, the AWS Customer ID located previously

Order Number
For device and ISO customers, the order number of the TNSR purchase for this device

4. Include any other necessary identifying information in the Description field
5. Click Attach file and attach the file containing the CSR text

6. Submit the support request

7.4 Retrieve the signed certificate

Warning: The following steps are still under design and development and may change at any time.

Once the certificate signing request has been signed by Netgate, the status of the support request will be updated to

reflect that the certificate is ready.

When this occurs, download the signed certificate:
1. Navigate to https://go.netgate.com/support/login
2. Locate the support request
3. Download the attached signed certificate file

orphan

© Copyright 2025 Rubicon Communications LLC

50

https://go.netgate.com/support/login

Product Manual TNSR v19.05

7.5 Install the certificate

With the signed certificate in hand, it can now be installed on the TNSR instance:

Warning: As with the key and CSR, the name of the certificate must be tnsr-updates.

tnsr# pki certificate tnsr-updates enter
Type or paste a PEM-encoded certificate.
Include the lines containing 'BEGIN CERTIFICATE' and 'END CERTIFICATE'

MIIE7DCCAtSgAwIBAgIJANbZBxsCVDpvMAOGCSqGSIb3DQEBCWUAMHQxCzAIBgNV
BAYTA1VTMQ4wDAYDVQQIDAVUZXhhczEPMAOGA 1UEBwwGQXVzdGluMRAWDgYDVQQK
DAdOZXRnYXR1MRgwFgYDVQQLDA9OZXRnYXR1IFROU1IgQOEXGDAWBgNVBAMMDOS51
dGdhdGUgVE5TUiBDQTAeFwOxODAOMZzAXNTE 1MDFaFwOxODA1MzAXNTE 1IMDFaMIGH
MSEwHwYDVQQDDBhObnNyLWV4YW1wbGUubmVOZ2FOZS5jb20xCzAIBgNVBAYTALIVT
MQ4wDAYDVQQIDAVUZXhhczEPMAOGA 1TUEBwwGQXVzdGluMRAwWDgYDVQQKDAJOZXRn
YXR1IMSIwIAYDVQQLDB1FbmdpbmV1cmluZyBUZXNOaW5nIDEgMiAzMIIBI jANBgkq
hkiG9wOBAQEFAAOCAQS8AMIIBCgKCAQEAWFMaV+SmDZ7tbe8SCleREupDzA7QR61w
e3dn8sLanyP1Fb1£ffi4Qhyy9M/KL6qvxnB4gHXQgUB+t2v1KodHDCGVTSEUIXu3m
DDtxphzMrsc+j+X1jtxPXf97E9Ky/n1Ax/A1VsI5sSFILQpXT9zwAx+Hp58amlpNP
PR4GtA5vd4axK1+XK8yTMmaRmfwV3w2KPtLsZLWThyLEm/YA7RDdud+CNsJINIZup
hilrIQ1sZmKXG/L3p7XFcLRDKkBgAc jbAoPM91cHDOGOsfZGCChbkDN1PIWdsugBI4
z6n7HPhp2em/u21p3]07SE6s+hUMI01t7Cr15MLMng5xGt3siI0gxQIDAQABO20W
azAJBgNVHRMEA j AAMBEGCWCGSAGG+EIBAQQEAWIFoDAdBgNVHQ4EFgQUXPOsedA8
QS34KxEmzZ] InKWjZKQwHwYDVRO jBBgwFoAU8CpQYHQGBICUwnHWUO1Unf7WES50w
CwYDVROPBAQDAgXgMAOGCSqGSIb3DQEBCWUAA4ICAQC+6M81sTWIc/NL1LsS1ziQ
LWWdOL3qc7Q1R6r+HdouU2R//+gP2y1H]elCM9k jCqHSQos5y+BDI1/cbrV5IR5U
cnA2s54uePzGZGk89vZHCcUkuXDIgloU8g+p6e7pIlyLolxRU99ps j8gT4nUBcczD
W+Vb7x4fotekPwXNWohsRsAXSPqEKbwuf®3H4nt fmXLMHSq/qWmv1/g2nH7 9DRRN
M+A1SEyKL1XwGljY4mjblsOV8PY42LAjnS£7x+LZXnLSYL+9jZGt 1A3U8FnQn4d
cSEUDDPESyYAj7xye96AAE7ayHtrBLKqbrVQXzVUX8xYQKroXyt1WabMnTdHzXu7K
ZM92H20g1SW2VO1ABjzBIIPPI2pvCZilvt4XM1krmyTJEsem+U30ByY/wGp93DNOe
SOsM7GMBe]8+aYNGEYIrVcX63VKy3dCLWjZpldwH1v8BNwIn/npWPOMbIhOEIe?7 /
WeqGTJu86UVKzuezilsPkUjqPO®cdGIHHMrGB8Q8uJ4ReHdRLs7Rs6CKOOF2v68iQ
MyILSwy3cnlsxDnsm3JGIThXkm5aVCkLhBVOEM8GXItW49£tP9tsODKM3DWLLe82p
CG4IiLHO/n1VMEeOHNn5XEQ5r+GjYy8vDLIvAukDaet91i3ZaPAOFHZgLxNhWaPF5
jiSpPVrJiAlsJCv6Fy2FvA==

tnsr#

After successfully installing the certificate, TNSR can now download software updates from the repository.

orphan

© Copyright 2025 Rubicon Communications LLC 51

Product Manual TNSR v19.05

7.6 Package Management

The package management commands allow the operator to install new software packages as well as discover and per-
form updates for installed packages.

7.7 Package Information Commands

There are three commands which query the package database.

A <pkg-glob> is a simple regular expression. It consists of a string of alphanumeric characters which is optionally
prefixed or suffixed with a * character. The * character indicates zero or more characters.

For example:

abc matches only the package abc and would not match abcd.
*abc matches abc or zabc and would not match abcz.

abc* matches abc or abcz and would not match zabc.

abc matches any package with abc contained anywhere in its name.

matches any package.

Tip: Do not escape or quote the glob as would typically be required by a Unix shell. The glob abc* is not the same
as abc*.

The first two commands have qualifiers that limit the scope of the packages to all, installed, or updatable packages.
These limitations are optional, and if not specified then it defaults to all packages in the database.

To display detailed information on packages:

[tnsr# package info [available | installed | updates] <pkg-glob>]

Warning: package information is limited to the first 25 packages found. If a query returns more items, a more
specific pkg-glob must be used to narrow the search.

To display a simple listing of package names and versions for all matching packages:

[tnsr# package list [available | installed | updates] <pkg-glob>]

The search command searches for a string in either the package name or description. The output includes the package
name and description of the package. The search term is literal, it is not a regular expression or glob:

[tnsr# package search <term>]

© Copyright 2025 Rubicon Communications LLC 52

Product Manual TNSR v19.05

7.8 Package Installation

Warning: Recommended procedure is to reboot the router after any package install, remove, or upgrade operation.

To install a package and its required dependencies:

[package install <pkg-glob>

To remove a package:

[package remove <pkg-glob>

To upgrade a package:

[package upgrade [<pkg-glob>]

7.9 Updating TNSR

Warning: Trial versions of TNSR packages cannot be updated. Reinstall with a full version of TNSR or install a
new trial version. The operating system may be updated, but not TNSR.

With a signed client certificate from Netgate in place, TNSR has access to the Netgate software repositories which
contain important updates to TNSR. These updates can be retrieved using the package command in the TNSR CLI,
or yum in the host OS shell.

Note: Updating TNSR will also update the operating system. Even when there are no TNSR updates available, it
is a good practice to periodically perform an update to obtain important operating system updates such as security
vulnerability mitigations.

7.9.1 Pre-Upgrade Tasks

Before updating TNSR, perform the following tasks:
» Make sure the signed certificate is in place (/nstall the certificate)
¢ Make sure the TNSR instance has working Internet connectivity through the host OS management interface

* Take a backup of the running and startup configurations (Configuration Backups)

© Copyright 2025 Rubicon Communications LLC 53

Product Manual TNSR v19.05

7.9.2 Updating via the TNSR CLI

The easiest way to update TNSR is from within the TNSR CLI itself.

{tnsr# package upgrade]

That command will download and apply all available updates. Afterward, exit the CLI and start it again.

Note: There will be no output from this command until the process completely finishes, which may take a few minutes
for larger updates.

7.9.3 Updating via the shell

TNSR can also be updated from the command line using the host OS package management commands, in this case,
yum:

$ sudo yum clean all
$ sudo yum clean expire-cache
$ sudo yum -y upgrade

Update Script

The following shell script may be used to keep TNSR and CentOS updated. In addition to the updates it also makes a
local backup before performing the update.

Listing 1: Download: updatetnsr.sh

#!/bin/sh

Stop existing services
sudo systemctl stop strongswan-swanctl frr vpp clixon-restconf

Time to make the backups

mkdir -p ~/tnsr-config-backup

sudo cp -p /var/tnsr/running_db ~/tnsr-config-backup/running_db- date +%Y%m%d%H%M%S .xml
sudo cp -p /var/tnsr/startup_db ~/tnsr-config-backup/startup_db- date +%Y%m%d%H%M%S .xml

Update all RPMs

sudo yum clean all

sudo yum clean expire-cache
sudo yum -y upgrade

Ensure services are stopped, in case some automatically started after update.
sudo systemctl stop strongswan-swanctl frr vpp clixon-restconf

Start services

sudo systemctl start clixon-backend clixon-restconf

© Copyright 2025 Rubicon Communications LLC 54

Product Manual TNSR v19.05

7.9.4 Update Troubleshooting

If the TNSR CLI method does not work, use the shell method instead.

If either method prints an error referring to a broken package database, recover it as follows:

$ mkdir -p ~/tmp/

$ sudo mv /var/lib/rpm/__db* ~/tmp/
$ sudo rpm --rebuilddb

$ sudo yum clean all

orphan

© Copyright 2025 Rubicon Communications LLC 55

CHAPTER
EIGHT

INTERFACES

An interface must exist in TNSR before it is available for configuration. For hardware interfaces this is handled by the
procedure in Sefup Interfaces. To create additional types of interfaces, see Types of Interfaces later in this chapter.

Once interfaces are present in TNSR, they can be configured to perform routing and other related tasks.

orphan

8.1 Locate Interfaces

The next step is to decide the purpose for which TNSR will use each interface.

First, look at the list of interfaces:

tnsr# show interface
Interface: GigabitEthernet®/14/1

[...]

Interface: GigabitEthernet0/14/2
[...]

Interface: local®

[...]

In the above shortened output, there are two viable interfaces, GigabitEthernet®/14/1 and GigabitEthernet®/
14/2. These can be used for any purpose, so map them as needed for the design of the network for which TNSR will
be routing.

The example configuration for this network is:

Table 1: Example Configuration

Interface Function IP Address Gateway
GigabitEthernet0/14/1 WAN

203.0.113.2/24 203.0.113.1

2001:db8:0:2::2/64 2001:db8&:0:2::1
GigabitEthernet0/14/2 LAN n/a

10.2.0.1/24

2001:db8:1::1/64

56

Product Manual TNSR v19.05

Connect the interfaces on the router hardware to the appropriate networks at layer 1 and layer 2, for example by plugging
the WAN into an Internet circuit and the LAN into a local switch. If TNSR is plugged into a managed switch, ensure
that its ports are configured for the appropriate VLANS.

Tip: These interface names can be set to custom values. See Customizing Interface Names for details.

orphan

8.2 Configure Interfaces

With the configuration data in hand, it is now possible to configure TNSR interfaces for basic IP level connectivity.

From within the TNSR CLI (Entering the TNSR CLI), enter configuration mode and setup the interfaces using this
example as a guide:

tnsr# configure terminal

tnsr(config)# interface GigabitEthernet®/14/1
tnsr(config-interface)# description WAN
tnsr(config-interface)# ip address 203.0.113.2/24
tnsr(config-interface)# ipv6 address 2001:db8:0:2::2/64
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet®/14/2
tnsr(config-interface)# description LAN
tnsr(config-interface)# ip address 10.2.0.1/24
tnsr(config-interface)# ipv6 address 2001:db8:1::1/64
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

tnsr#

In this sample session, both interfaces were configured with an appropriate description for reference purposes, an IP
address/subnet mask, and then placed into an enabled state.

If other hosts are present and active on the connected interfaces, it will now be possible to ping to/from TNSR to these
networks.

Tip: After making changes, don’t forget to save them to ensure they persist for the next startup by issuing the
configuration copy running startup command from with in config mode. See Saving the Configuration for
more information.

© Copyright 2025 Rubicon Communications LLC 57

Product Manual TNSR v19.05

8.2.1 Interface Command

The interface command can configure existing interfaces and create new interfaces.

Configure an existing interface:

tnsr(config)# interface <name>
tnsr(config-interface)#

This command enters config-interface mode

Note: The maximum interface name length is 63 characters.

Create a new interface:

[tnsr(config)# interface <type> <options>

)

The mode entered by this command depends upon the type of interface it creates. For more information on interface
types and how to configure them, see Types of Interfaces.

Print a list of available interfaces and types:

[tnsr(config)# interface ? }

8.2.2 Interface Configuration Options

The following commands are available when configuring an interface (config-interface mode):

access-list (input|output) acl <acl-name>
Access Control Lists which apply to packets on this interface in the given direction (Standard ACLs).

access-list macip <macip-name>
MACIP Access Control Lists which apply to packets on this interface (MACIP ACLs).

bond <id>
Set this interface as a part of the given bonding group (Bonding Interfaces).

bridge domain <id>
Set this interface as a member of the given bridge domain (Bridge Interfaces).

description
Set the interface description.

dhcp client [ipv4]
Configures this interface to obtain its [Pv4 address using Dynamic Host Configuration Protocol.

dhcp client ipv4 hostname <host-name>
Sets the hostname sent with DHCP client requests.

disable
Disable interface administratively.

enable
Enable interface administratively.

ip address <ip-address>
Sets the IPv4 address for this interface.

© Copyright 2025 Rubicon Communications LLC 58

Product Manual TNSR v19.05

ip nat (inside|outside)
Configures this interface to be an inside or outside NAT interface (Network Address Translation)

ip route-table <route-table-name>
Configures a specific IPv4 route table to be used for traffic exiting this interface.

ipv6 address <ip6-address>
Sets the IPv6 address for this interface.

ipv6 route-table <route-table-name>
Configures a specific IPv6 route table to be used for traffic exiting this interface.

lldp
LLDP options for this interface (Link Layer Discovery Protocol).

mac-address
Configures an alternative MAC address for this interface.

map
MAP-E/T options for this interface (MAP (Mapping of Address and Port)).

mtu <size>
Sets the interface L2 Maximum Transmission Unit (MTU) size, in bytes.

vlan tag-rewrite disable
Disable tag rewriting for this interface

vlan tag-rewrite pop-1
Remove one level of VLAN tags from packets on this interface.

vlan tag-rewrite pop-2
Remove two level of VLAN tags from packets on this interface.

vlan tag-rewrite push-1 (dotlad|dotlq) <tag 1>
Add a new layer of VLAN tagging to frames on this interface using the provided VLAN tag.

vlan tag-rewrite push-2 (dotlad|dotlq) <tag 1> <tag 2>
Add two new layers of VLAN tagging to frames on this interface using the provided VLAN tags.

vlan tag-rewrite translate-1-1 (dotlad|dotlq) <tag 1>
Replace one layer of VLAN tags with the a different VLAN ID.

vlan tag-rewrite translate-1-2 (dotlad|dotlq) <tag 1> <tag 2>
Replace one layer of VLAN tags with two layers of tagging using the provided VLAN IDs.

vlan tag-rewrite translate-2-1 (dotlad|dotlq) <tag 1>
Replace two layers of VLAN tags with one layer of tagging using the provided VLAN ID.

vlan tag-rewrite translate-2-2 (dotlad|dotlq) <tag 1> <tag 2>
Replace two layers of VLAN tags with two different layers of tagging using the provided VLAN IDs.

8.2.3 DHCP Client Example

The previous example was for a static IP address deployment.

To configure a TNSR interface to obtain its IP address via DHCP as a client, follow this example instead:

tnsr# configure terminal

tnsr(config)# interface GigabitEthernet3/0/0
tnsr(config-interface)# dhcp client ipv4
tnsr(config-interface)# enable

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 59

Product Manual TNSR v19.05

(continued from previous page)
tnsr(config-interface)# exit
tnsr(config)# exit

orphan

8.3 Monitoring Interfaces

Each interface has associated counters, which enable traffic volume and error monitoring.

Note: To limit the amount of administrative traffic, VPP only updates these counters every 10 seconds.

There are four commands used to monitor interfaces, show interface, show counters, interface clear
counters, and show packet-counters.

8.3.1 show interface

The show interface command prints important traffic volume and error counters specific to each interface. For
example:

tnsr# show interface

Interface: TenGigabitEthernet6/0/0
Admin status: up
Link up, link-speed 1000 Mbps, full duplex
Link MTU: 1500 bytes
MAC address: 00:90:0b:7a:8a:67
IPv4 Route Table: ipv4-VRF:0
IPv4 addresses:
203.0.113.2/24
IPv6 Route Table: ipv6-VRF:0
IPv6 addresses:
2001:db8:0:2::2/64
VLAN tag rewrite: disabled
counters:
received: 3388618 bytes, 13048 packets, O errors
transmitted: 14862 bytes, 53 packets, 7 errors
13008 drops, O punts, ® rx miss, 0 rx no buffer

The show interface command also supports filtering of its output using one or more special keywords. When the
list is filtered, its name, description, and administrative status are printed along with the chosen output.

acl
Prints the access control lists configured on an interface

counters
Prints the interface traffic counters for an interface
ipv4
Prints the IPv4 addresses present on the interface and the IPv4 route table used by the interface.

© Copyright 2025 Rubicon Communications LLC 60

Product Manual TNSR v19.05

ipv6
Prints the IPv6 addresses present on the interface and the IPv6 route table used by the interface.

link
Prints the link status (e.g. up or down), media type and duplex, and MTU

mac
Prints the hardware MAC address, if present

nat
Prints the NAT role for an interface (e.g. inside or outside)

These keywords may be used with the entire list of interfaces, for example:

[tnsr# show interface ipv4

The filtering may also be applied to a single interface:

[tnsr# show interface TenGigabitEthernet6/8/0 1ink

Multiple keywords may also be used:

[tnsr# show interface ipv4 link

8.3.2 show counters

The show counters command displays detailed information on all available interface counters.

Example output:

tnsr# show counters
Interface: TenGigabitEthernet6/0/0
admin up, link up

receiver value transmit value
rx-bytes: 4020452 tx-bytes: 17072
rx-packets: 15446 tx-packets: 62
rX-error: 0 tx-error: 7
rx-ip4: 952
rx-ip6: 9
rx-miss: 0
rx-no-buffer: 0
drop: 15398
punt: 0

Counter values take a minimum of 10 seconds to be populated with valid data.

© Copyright 2025 Rubicon Communications LLC 61

Product Manual

TNSR v19.05

8.3.3 clear interface counters

The interface clear counters <name> command clears all counters on a given interface. This command is
available in config mode. If no specific interface is given, all interfaces will have their counters cleared:

tnsr# configure

tnsr(config)# interface clear counters
Counters cleared

tnsr(config)#

8.3.4 Available Counters

Table 2: Counter Descriptions

Counter

Description

rx-bytes
rx-packets
rX-error
rx-ip4
rx-ip6
rx-miss
rx-no-buffer
tx-bytes
tx-packets
tx-error
drop

punt

bytes received

packets received
receiver errors

IPv4 packets received
IPv6 packets received
receiver miss

no buffers on receiver
bytes transmitted
packets transmitted
transmitter errors
packets dropped
packets punted

8.3.5 show packet-counters

The show packet-counters command prints packet statistics and error counters taken from the dataplane. These
counters show counts of packets that have passed through various aspects of processing, such as encryption, along with

various types of packet send/receive errors.

Example output:

tnsr# show packet-counters

Count Node

624 dpdk-crypto-input
624 dpdk-esp-decrypt-post
624 dpdk-esp-decrypt
622 esp-encrypt
624 ipsec-if-input
304 ip4-input

9 ip4-arp

22 1ldp-input

—interfaces

8 ethernet-input

2 ethernet-input
5821 ethernet-input

16 arp-input

Reason

Crypto ops dequeued

ESP post pkts

ESP pkts received

ESP pkts received

good packets received

Multicast RPF check failed

ARP requests sent

11dp packets received on disabled.

no error

unknown ethernet type

unknown vlan

ARP request IP4 source address learned

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 62

Product Manual

TNSR v19.05

(continued from previous page)

8.4

28 GigabitEthernet0®/14/0-output interface is down
8 GigabitEthernet3/0/0-output interface is down
orphan

Types of Interfaces

Regular Interfaces
Typically these are hardware interfaces on the host, or virtualized by the hypervisor in a virtual ma-
chine environment. These are made available to TNSR through VPP, as described in Setup Interfaces.

VLAN Subinterfaces
VLAN interfaces are configured on top of regular interfaces. They send and receive traffic tagged
with 802.1q VLAN identifiers, allowing multiple discrete networks to be used when connected to a
managed switch performing VLAN trunking or tagging.

memif
Shared memory packet interfaces (memif) are virtual interfaces which connect between TNSR and
other applications on the same host.

tap
Virtual network TAP interfaces which are available for use by host applications.

ipsec
Interfaces created and used by /Psec tunnels.

Loopback
Local loopback interfaces used for a variety of reasons, including management and routing so that
the address on the interface is always available, no matter the status of a physical interface.

GRE
Generic Routing Encapsulation, an unencrypted tunneling interface which can be used to route traffic
to remote hosts over a virtual point-to-point interface connection.

SPAN
Switch Port Analyzer, copies packets from one interface to another for traffic analysis.

Bond
Bonded interfaces, aggregate links to switches or other devices employing a load balancing or failover
protocol such as LACP.

Bridge
Bridges connect interfaces together bidirectionally, linking the networks on bridge members together
into a single bridge domain. The net effect is similar to the members being connected to the same
layer 2 or switch.

VXLAN Interfaces
Virtual Extensible LAN (VXLAN) is a similar concept to VLANS, but it encapsulates Layer 2 traffic
in UDP, which can be transported across other IP networks. This enables L2 connectivity between
physically separated networks in a scalable fashion.

orphan

© Copyright 2025 Rubicon Communications LLC

63

https://docs.fd.io/vpp/17.10/libmemif_doc.html

Product Manual TNSR v19.05

8.4.1 VLAN Subinterfaces

VLANS enable a device to carry multiple discrete broadcast domains, allowing a single switch to function as if it were
multiple switches. VLANs are commonly used for network segmentation in the same way that multiple switches can
be used: To place hosts on a specific segment, isolated from other segments. Where trunking is employed between
switches, devices on the same segment need not reside on the same switch. Devices that support trunking can also
communicate on multiple VLANSs through a single physical port.

TNSR supports VLANSs through primarily through subinterfaces, though a variety of VLAN tag rewriting options are
available directly on interfaces (Configure Interfaces). Using subinterfaces, TNSR can send and receive VLAN tagged
traffic on one or more interfaces. The device to which TNSR is connected must also tag traffic in the same way as
TNSR.

TNSR also supports multiple levels of VLAN tagged subinterfaces, commonly known as QinQ or 802.1ad. This is used
to transport multiple VLANS inside another VLAN-tagged outer frame. Intermediate equipment only sees the outer
tag, and the receiving end can pop off the outer tag and use the multiple networks inside independently as if it had a
direct layer 2 connection to those networks. In this way, providers can isolate multiple tenants on the same equipment,
allowing each tenant to use whichever VLAN tags they require, or achieve other goals such as using greater than the
default limit of 4096 VLANS.

Note: TNSR can forward packets it receives on a QinQ interface or route packets out a QinQ interface, but the
router-plugin does not currently support QinQ so features such as ping will not work against the subinterface directly.

VLAN Subinterface Configuration

A few pieces of information are necessary to create a VLAN subinterface (“subif”):
* The parent interface which will carry the tagged traffic, e.g. GigabitEthernet3/0/0

* The subinterface ID number, which is a positive integer that uniquely identifies this subif on the parent interface.
It is commonly set to the same value as the VLAN tag

* The VLAN tag used by the subif to tag outgoing traffic, and to use for identifying incoming traffic bound for this
subif. This is an integer in the range 1-4095, inclusive. This VLAN must also be tagged on the corresponding
switch configuration for the port used by the parent interface.

Creating a VLAN Subinterface

The interface subif <parent> <subinterface id> command creates a new subif object with the given iden-
tifier. This command enters config-subif mode. That mode contains the following commands:

default
Default subinterface, will match any traffic that does not match another subinterface on the same
parent interface.

untagged
This subinterface will match frames without any VLAN tags.

exact-match
Specifies whether to exactly match the VLAN ID and the number of defined VLAN IDs. When this
is not set, frames with more VLAN tags will also be matched. Layer 3/routed interfaces must use
exact-match, it is optional for unrouted/L2 interfaces.

dotlq (<vlan-id>|any)
The VLAN tag to match for this subinterface.

© Copyright 2025 Rubicon Communications LLC 64

Product Manual TNSR v19.05

inner-dotlq (<vlan-id>|any)
An inner 802.1q VLAN tag for use with QinQ

outer-dotlad (<vlan-id>|any)
An outer 802.1ad VLAN tag for use with QinQ

outer-dotlq (<vlan-id>|any)
An outer 802.1q VLAN tag for use with QinQ

vlan <vlan-id>
VLAN ID for tag rewriting

Note: Where multiple similar options are present, generally this is for compatibility with other equipment that requires
using those specific options. Consult the documentation for the peer device to find out which options it prefers.

After creating the interface, it will be available in TNSR. The name of this interface is composed of the parent interface
name and the subif id, joined by a .. For example, TenGigabitEthernet6/0/0.70.

VLAN Subinterface Examples

VLAN Example

First, create a new subif object. In this example, both the subif id and the 802.1q VLAN tag are the same, 70:

tnsr(config)# interface subif TenGigabitEthernet6/0/0 70
tnsr(config-subif)# dotlq 70

tnsr(config-subif)# exact-match

tnsr(config-subif)# exit

Upon commit, this creates a corresponding subif interface which appears with the parent interface name and the subif
id, joined by a .:

tnsr(config)# interface TenGigabitEthernet6/0/0.70
tnsr(config-interface)#

At this point, it behaves identically to regular interface in that it may have an IP address, routing, and so on.

QinQ Example

This example creates a QinQ subinterface with an inner tag of 100 and an outer tag of 200. The subinterface ID number
can be any arbitrary unsigned 32-bit integer, but in this case it makes the purpose more clear to have it match the outer
and inner VLAN tags of the subinterface:

tnsr(config)# subif GigabitEthernet®/b/0 200100
tnsr(config-subif)# inner-dotlq 100
tnsr(config-subif)# outer-dotlq 200
tnsr(config-subif)# exit

tnsr(config)# exit

orphan

© Copyright 2025 Rubicon Communications LLC 65

Product Manual TNSR v19.05

8.4.2 Shared Memory Packet Interfaces (memif)

A Shared Memory Packet Interface (memif) has two components: A socket and an interface. A memif also requires a
role, either master or slave. In most TNSR applications, it will be the master and the other endpoint will be a slave.
A single socket may only be associated with one role type.

Memif Configuration

Creating a memif Socket

The interface memif socket command requires an identifier number and a filename, both of which must
be unique to this socket. The full form of the command is: interface memif socket id <id> filename
<socket-filename>

In this command, the available parameters are:
id
A required identifier unique to this memif instance. This is an integer in the range 1..4294967294.

socket-filename
The full path to a socket file used for establishing memif connections. A socket can be used for either
master or slave interfaces, but not both. A socket can have more than one master, or it can have more
than one slave.

Creating a memif interface

Next, the interface memif interface <id> command creates a memif object. This command requires its own
interface identifier, and it must be tied to the socket using the same ID from the previous command.

This command enters config-memif mode, where the following commands are available:

socket-id <id>
The socket ID for the associated memif socket created previously. This value is required.

buffer-size <size>
The size of the buffer allocated for each ring entry. Default 2048.

mac-address <mac>
MAC address for the memif interface.

mode <mode>
Sets the mode for the memif interface. Mode must be one of:

ethernet
Ethernet (L2) mode.

Note: When ethernet mode is active and a mac-address is not set, TNSR will
generate a random MAC for the interface.

ip
IP (L3) mode.
punt/inject
Reserved for future use. Not yet implemented.

© Copyright 2025 Rubicon Communications LLC 66

https://docs.fd.io/vpp/17.10/libmemif_doc.html

Product Manual TNSR v19.05

ring-size <size>
Number of entries in receive and transmit rings. Value is 8. .32 and is used as a power of 2. Default
value is 10 for 1024 (2410) entries.

role <role> [<options>]
Sets the role of the memif interface. The default role is master and this is the most common role for
TNSR. The following modes and options are available:

master
Master role. The master does not expose its memory to the slave peer.

slave [(rx-queues|tx-queues) <num-queues>]
Slave role. Allocates and shares memory with the master to transfer data. When oper-
ating in slave mode, the number of receive or transmit queues may be set as an option:

rx-queues <n-rx-qs>
Number of receive queues. May be between 1. .255.

tx-queues <n-tx-qs>
Number of transmit queues. May be between 1. .255.

secret <sec-str>
A quoted secret string, up to 24 characters.

After creating the interface, it will be available in TNSR. The name of this interface is composed of the socket ID and
the interface ID: interface memif<socket id>/<interface id>.

Memif Example

First, create a socket with an ID of 23, using a socket file of /tmp/memif23. sock:

[tnsr(config)# interface memif socket id 23 filename /tmp/memif23.sock

Next, run commands to create a memif interface with an interface ID of 100 taking on the role master on the socket
created previously:

tnsr(config)# interface memif interface 100
tnsr(config-memif)# socket-id 23
tnsr(config-memif)# role master
tnsr(config-memif)# exit

Now the interface will be available to TNSR. In this example with a socket ID of 23 and an interface ID of 100, the
full interface name is memi£23/100.

Memif status

For a list of all current memif entries, along with their names and configuration, use the show interface memif
command:

tnsr# show interface memif

Socket Id Filename

0 /run/vpp/memif.sock
23 /tmp/memif23.sock

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 67

Product Manual TNSR v19.05

(continued from previous page)

memif id: 100
Memif name: memif23/100
Interface: memif23/100
Role: master
Mode: ethernet
MAC address: 02:fe:8c:e5:ce:06
Socket id: 23
Ring size: 0
Buffer size: 0
Admin up: false
Link up: false

orphan

8.4.3 Tap Interfaces

Virtual network tap interfaces give daemons and clients in the host operating system access to send and receive network
traffic through TNSR to other networks. A tap interface can carry layer 2 and layer 3 frames between the host OS and

TNSR, and be a bridge member.

Tap Configuration

The interface tap <name>command creates a tap object with the given name. This name is also used to create the
tap interface in the host OS. For example, if a tap object was created with interface tap mytap, then the interface

in the host OS is named mytap.
This command enters config-tap mode, which contains the following commands:

instance <instance>
Required instance identifier for the tap interface. A tap interface appears in TNSR using the tap
prefix followed by the chosen identifier number. For example, with an identifier number of 1, the
TNSR interface will be tapl.

mac-address <mac>
The MAC address for the TNSR side of the tap interface.

(rx-ring-size|tx-ring-size) <size>
Configures the receive (rx) or transmit (tx) ring buffer size.

Note: Default ring size is 256. The value must be a power of 2 and must be less than or equal to
32768.

host bridge <bridge-name>
Configure the tap as part of a host bridge.

Note: A tap object cannot have both an IP address and a bridge name set.

host (ipv4lipv6) gateway <ip-addr>
Configure a gateway for the host tap interface.

host (ipv4l|ipv6) prefix <ip-addr>
Configures the host IPv4 or IPv6 address for the tap interface.

© Copyright 2025 Rubicon Communications LLC

68

Product Manual TNSR v19.05

host mac-address <mac>
The MAC address for the host side of the tap interface.

host namespace <ns>
Configure a namespace inside which the tap will be created on the host.

TAP Examples

Example tap Interface

The following commands create a tap object named mytap with an instance id of 1:

tnsr(config)# interface tap mytap
tnsr(config-tap)# instance 1

At this point, the TNSR and host OS interfaces exist but contain no configuration:

In TNSR:

tnsr# show int tapl

Interface: tapl
Admin status: down
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 02:fe:77:d9:be:le
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0

In the host OS:

$ ip address show mytap
300: mytap: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc pfifo_fast state UNKNOWN.
—.group
default glen 1000
link/ether 42:5a:f0:6£:d9:77 brd ff:ff:ff:ff:ff:ff
inet6 fe80::405a:f0ff:fe6f:d977/64 scope link
valid_l1ft forever preferred_lft forever

Example Tap Interface Addresses

Configuring addresses for tap interfaces depends on the location of the interface.

For the interface visible in TNSR, configure it in the same manner as other TNSR interfaces:

tnsr# configure

tnsr(config)# int tapl

tnsr(config-interface)# ip address 10.2.99.2/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

tnsr#

The MAC address of the tap interface may also be set on the tap object:

© Copyright 2025 Rubicon Communications LLC 69

Product Manual TNSR v19.05

tnsr# configure

tnsr(config)# interface tap mytap
tnsr(config-tap)# mac-address 02:fe:77:d9:be:ae
tnsr(config-tap)# exit

tnsr(config)# exit

tnsr#

The address for the host OS interface is configured by the host command under the tap object instance:

tnsr# configure

tnsr(config)# interface tap mytap
tnsr(config-tap)# host ipv4 prefix 10.2.99.1/24
tnsr(config-tap)# exit

tnsr(config)# exit

tnsr#

At this point, the interfaces will show the configured addresses:

In TNSR:

tnsr# show int tapl
Interface: tapl
Admin status: up
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 02:fe:77:d9:be:ae
IPv4 Route Table: ipv4-VRF:0
IPv4 addresses:
10.2.99.2/24
IPv6 Route Table: ipv6-VRF:0

In the host OS:

$ ip address show mytap
308: mytap: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN..
—group
default glen 1000
link/ether 02:fe:77:d9:be:ae brd ff:ff:ff:ff:ff:ff
inet 10.2.99.1/24 scope global mytap
valid_lft forever preferred_lft forever
inet6 fe80::02fe:77d9:beae/64 scope link
valid_l1ft forever preferred_lft forever

The host <family> prefix <address> syntax works similarly for IPv6 with an appropriate address.

orphan

© Copyright 2025 Rubicon Communications LLC 70

Product Manual TNSR v19.05

8.4.4 Loopback Interfaces

Loopback interfaces are internal interfaces available for use in TNSR for routing and other internal traffic handling
purposes such as acting as a bridged virtual interface (Bridge Interfaces).

Loopback Configuration

Before a loopback interface can be configured, a loopback instance must be created by the interface loopback
<name> command. This command enters config-loopback mode. The loopback must be given a unique name and
a positive numeric instance identifier.

The following commands are available in config-loopback mode:

instance
A required instance identifier. This value is used to generate the loopback interface name in TNSR
in the form of loop<id>. For example, with an id of 1, the loopback interface name is loop1l.

description
A brief text description of this loopback instance.

mac-address
An optional MAC address to use for the loopback interface. If omitted, TNSR will generate a MAC
in the form of de:ad:00:00:00:<id>.

Loopback Example

This example creates a new loopback object named mgmtloop with an instance identifier of 1:

tnsr(config)# interface loopback mgmtloop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit

Upon commit, the new interface will be available for use by TNSR. The interface will be designated loop<instance
id>, in this case, loopl. It can then be configured in the same manner as other interfaces:

tnsr(config)# interface loopl
tnsr(config-interface)# ip address 10.25.254.1/24
tnsr(config-interface)# exit

orphan

8.4.5 GRE Interfaces

A Generic Routing Encapsulation (GRE) interface enables direct routing to a peer that does not need to be directly
connected, similar to a VPN tunnel, but without encryption. GRE is frequently combined with an encrypted transport
to enable routing or other features not possible with the encrypted transport on its own. GRE interfaces can be combined
with dynamic routing protocols such as BGP, or use static routing.

© Copyright 2025 Rubicon Communications LLC 71

Product Manual TNSR v19.05

GRE Configuration

To create a GRE object, TNSR requires an object name, positive integer instance ID, source IP address, and destination
IP address. The first step is to run the gre <object-name> command, which enters config-gre mode. Inside
config-gre mode, the following commands are available:

instance <id>
Required instance identifier. This value is used to generate the GRE interface name in TNSR in the
form of gre<id>. For example, with an id of 1, the GRE interface name is grel.

source <ip-address>
Required IP address on TNSR to use as a source for GRE traffic associated with this instance. Can
be an IPv4 or IPv6 address.

destination <ip-address>
Required IP address of the remote GRE peer, which is the destination for GRE traffic associated with
this instance. Can be an IPv4 or IPv6 address, but the address family must match that of the source
IP address.

encapsulation route-table <route-table>
This option controls which route table is used by the GRE object, for traffic utilizing the GRE inter-
face. The default behavior is to use the default routing table.

tunnel-type <type>
TNSR supports multiple GRE tunnel types, where <type> is one of the following:

13
Layer 3 encapsulation, the default type of GRE tunnel, which can carry layer 3 IP traffic
and above.

erspan session-id <id>
Encapsulated Remote Switched Port Analyzer (ERSPAN). This requires a session ID
number, which is an integer in the range 0. .1023. When combined with Switch Port
Analyzer (SPAN) Interfaces, ERSPAN can deliver copies of local packets to a remote
host for inspection. Explained in detail in GRE ERSPAN Example Use Case.

teb
Transparent Ethernet Bridging (TEB)

GRE Examples

This example creates a new GRE object named test1, with an instance id of 1, and the source and destination addresses
shown:

tnsr(config)# gre testl

tnsr(config-gre)# instance 1
tnsr(config-gre)# source 203.0.113.2
tnsr(config-gre)# destination 203.0.113.25
tnsr(config-gre)# exit

Upon commit, the new GRE interface will be available for use by TNSR. The name of the GRE interface is
gre<instance id>, which in this case results in grel. The GRE interface can then be configured similar to other
interfaces (Configure Interfaces):

tnsr(config)# interface grel
tnsr(config-interface)# ip address 10.2.123.1/30
tnsr(config-interface)# enable
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 72

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-interface)# exit
tnsr(config)# exit

See also:

For an example ERSPAN configuration, see GRE ERSPAN Example Use Case

GRE Status

To view a list of current GRE objects, use show gre:

tnsr# show gre

Name Instance Type Source IP Dest IP Encap Rt Session Id

testl 1 L3 203.0.113.2 203.0.113.25 ipv4-VRF:0 0

This command prints a list of all GRE objects and a summary of their configuration.

orphan

8.4.6 Switch Port Analyzer (SPAN) Interfaces

A SPAN interface ties two interfaces together such that packets from one interface (the source) are directly copied
to another (the destination). This feature is also known as a “mirror port” on some platforms. SPAN ports are com-
monly used with IDS/IPS, monitoring systems, and traffic logging/statistical systems. The target interface is typically
monitored by a traffic analyzer, such as snort, that receives and processes the packets.

A SPAN port mirrors traffic to another interface which is typically a local receiver. To send SPAN packets to a remote
destination, see GRE ERSPAN Example Use Case which can carry mirrored packets across GRE.

SPAN Configuration

SPAN instances are configured from config mode using the span <source-interface>command. That command
enters config-span mode. Inside config-span mode, the following commands are available:

onto <destination-interface> <layer> <state>
Specifies a destination for SPAN traffic. May be repeated for multiple destinations. This interface
may not be the same as the <source-interface> given to create the span instance.

The available parameters include:

destination-interface
The interface which will receive copies of packets from the source interface.
The destination interface can be any interface available to TNSR except for the
<source-interface> given to create the span instance.

layer
Sets the layer above which packet information is forwarded to the destination. Can be
one of the following choices:

hw
Mirror hardware layer packets.

© Copyright 2025 Rubicon Communications LLC 73

Product Manual TNSR v19.05

12
Mirror Layer 2 packets.

state
Can be one of the following choices:

rx
Enables receive packets

tx
Enables transmit packets

both
Enables both transmit and receive packets

disabled
Disables both transmit and receive

Note: When removing a span instance, the state does not need to be present on the command, and will be ignored.

SPAN Example

This example creates a new span that copies all packets sent and received on GigabitEthernet0/14/0 tomemif1/1.
The packet copies include hardware level information and above.

tnsr(config)# span GigabitEthernet®/14/0
tnsr(config-span)# onto memifl/1 hw both
tnsr(config-span)# exit

See also:

For an example ERSPAN configuration that combines GRE in ERSPAN mode with a span instance, see GRE ERSPAN
Example Use Case.

orphan

8.4.7 Bonding Interfaces

TNSR supports bonding multiple interfaces together for link aggregation and/or redundancy. Several bonding methods
are supported, including Link Aggregation Control Protocol (LACP, 802.3ad). These types of interfaces may also be
called LAG or LAGG on other platforms and switches.

Bond Configuration

A bond instance has two main components on TNSR: The bond itself, and the interfaces which are a member of the
bond. Beyond that, the device to which the bonded interfaces connect, typically a switch, must also support the same
bonding protocol and it must also have ports with an appropriately matching configuration.

© Copyright 2025 Rubicon Communications LLC 74

Product Manual TNSR v19.05

Creating a bond

The interface bond <instance> command in config mode enters config-bond mode. An instance number,
such as 0, must be manually specified to create a new bond interface.

config-bond mode contains the following commands:

load-balance (12]123]134)
Configures the load balancing hash for the bonded interface. This setting determines how traffic will
be balanced between ports. Traffic matching a single source and destination pair for the configured
hash value will flow over a single link. Using higher level hashing will balance loads more evenly in
the majority of cases, depending on the environment, but requires additional resources to handle.

This load-balance configuration is only available in lacp and xor modes.
This should be set to match the switch configuration for the ports.

12
Layer 2 (MAC address) hashing only. Any traffic to/from a specific pair of MAC ad-
dresses will flow over a single link. This method is the most common, and may be the
only method supported by the other end of the bonded link.

Note: If the bonded interface only transmits traffic to a single peer, such as an upstream
gateway, then all traffic will flow over a single link. The bond still has redundancy, but
does not take advantage of load balancing.

123
Layer 2 (MAC address) and Layer 3 (IP address) hashing. For non-IP traffic, acts the
same as 12.

134
Layer 3 (IP address) and Layer 4 (Port, when available) hashing. If no port information
is present (or for fragments), acts the same as 123, and for non-IP traffic, acts the same
as 12.

mode (round-robin|active-backup|xor|broadcast|lacp)

round-robin
Load balances packets across all bonded interfaces by sending a packet out each inter-
face sequentially. This does not require any cooperation from the peer, but can poten-
tially lead to packets arriving at the peer out of order. This can only influence outgoing
traffic, the behavior of return traffic is up to the peer.

active-backup
Provides only redundancy. Uses a single interface of the bond, and will switch to an-
other if the first interface fails. The switch can only see the MAC address of the active
port.

xor
Provides hashed load balancing of packet transmission. The transmit behavior is con-
trolled by the 1load-balance option discussed previously. This mode is a step up from
round-robin, but the behavior of return traffic is still up to the peer.

broadcast
Provides only link redundancy by transmitting all packets on all links.

lacp
Provides dynamic load balancing and redundancy using Link Aggregation Control Pro-
tocol (LACP, 802.3ad). In this mode, TNSR will negotiate an LACP link with an

© Copyright 2025 Rubicon Communications LLC 75

Product Manual TNSR v19.05

appropriately-configured switch, and monitors the links. This method is the most flex-
ible and reliable, but requires active cooperation from a switch or suitable peer. The
load balancing behavior can be controlled with the 1load-balance command discussed
previously.

mac-address <mac-address>
Optionally specifies a manually-configured MAC address to be used by all members of the bond,
except in active-backup mode in which case it is only used by the active link.

Bond Interface Settings

Additionally, from within config-interface on an Ethernet interface, the following commands are available:
bond <instance> [long-timeout] [passive]

instance
The instance ID of the bond to which this interface will belong.

long-timeout
Uses a 90-second timeout instead of the default timeout of 3 seconds when monitoring
bonding peers, such as with LACP.

passive
This interface will be a member of the bond but will not initiate LACP negotiations.

Bond Example

This example sets up a basic LACP bond between two interfaces. The first step is to create the bond instance:

tnsr(config)# interface bond 0
tnsr(config-bond)# load-balance 12
tnsr(config-bond)# mode lacp

tnsr(config-bond)# mac-address 00:08:a2:09:95:99
tnsr(config-bond)# exit

Next, decided which TNSR interfaces will be members of the bond, and configure them to be a part of the bond instance.
In this case, the example uses GigabitEthernet®/14/2 and GigabitEthernet®/14/3:

tnsr(config)# int GigabitEthernet®/14/2
tnsr(config-interface)# bond 0
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# int GigabitEthernet0/14/3
tnsr(config-interface)# bond 0
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit

With that complete, TNSR will now have a new interface, BondEthernet®:

Interface: BondEthernet®
Admin status: down
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 00:08:a2:09:95:99

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 76

Product Manual TNSR v19.05

(continued from previous page)
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0
Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3
counters:
received: 0 bytes, 0 packets, O errors
transmitted: O bytes, 0 packets, O errors
0® drops, O punts, 0 rx miss, 0 rx no buffer

Looking at the interfaces that are members of the bond, the BondEthernet® membership is also reflected there:

Interface: GigabitEthernet®/14/2

Admin status: up

Link up, unknown, full duplex

Link MTU: 9206 bytes

MAC address: 00:08:22:09:95:99

IPv4 Route Table: ipv4-VRF:0

IPv6 Route Table: ipv6-VRF:0

Bond interface: BondEthernet®

counters:
received: 52575 bytes, 163 packets, 0 errors
transmitted: 992 bytes, 8 packets, 19 errors
31 drops, O punts, O rx miss, 0 rx no buffer

Interface: GigabitEthernet0/14/3

Admin status: up

Link up, unknown, full duplex

Link MTU: 9206 bytes

MAC address: 00:08:a2:09:95:99

IPv4 Route Table: ipv4-VRF:0

IPv6 Route Table: ipv6-VRF:0

Bond interface: BondEthernet®

counters:
received: 4006 bytes, 37 packets, 0 errors
transmitted: 620 bytes, 5 packets, 13 errors
20 drops, 0 punts, ® rx miss, O rx no buffer

A configuration can now be applied to BondEthernet@:

tnsr(config)# interface BondEthernet®
tnsr(config-interface)# ip address 10.2.3.1/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# exit

Finally, look at the completed interface configuration:

tnsr# show interface BondEthernet®

Interface: BondEthernet®
Admin status: up
Link up, unknown, unknown duplex
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 77

Product Manual

TNSR v19.05

Link MTU: 9216 bytes
MAC address: 00:08:a2:09:95:99
IPv4 Route Table: ipv4-VRF:0
IPv4 addresses:
10.2.3.1/24
IPv6 Route Table: ipv6-VRF:0
Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3
counters:
received: 0 bytes, 0 packets, 0 errors
transmitted: 806 bytes, 9 packets, 0 errors

2366 drops, O punts, 0 rx miss, 9 rx no buffer

(continued from previous page)

For information on the LACP state, use show interface lacp

tnsr# show interface lacp

Interface name: GigabitEthernet®/14/2
Bond name: BondEthernet®
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Interface name: GigabitEthernet®/14/3
Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Bond Status

To view the bond configuration, use show interface bond. This will show the configured bond parameters and

other information that does not appear on the interface output:

tnsr# show interface bond
Interface name: BondEthernet®
Mode: lacp
Load balance: 12
Active slaves: 2
Slaves: 2
Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3

To view the bonding status of all interfaces, use show interface bonding:

tnsr# show interface bonding

Interface: BondEthernet®

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

78

Product Manual TNSR v19.05

(continued from previous page)
Admin status: up
Slave interfaces:
GigabitEthernet0/14/2
GigabitEthernet0/14/3

Interface: GigabitEthernet®/14/0
Description: Uplink
Admin status: up

Interface: GigabitEthernet®/14/1
Admin status: down

Interface: GigabitEthernet0/14/2
Admin status: up
Bond interface: BondEthernet®

Interface: GigabitEthernet0/14/3
Admin status: up
Bond interface: BondEthernet®

Interface: GigabitEthernet3/0/0
Description: Local Network
Admin status: up

To view the LACP status, use show interface lacp [interface name]:

tnsr# show interface lacp

Interface name: GigabitEthernet®/14/2
Bond name: BondEthernet®
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Interface name: GigabitEthernet®/14/3
Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

8.4.8 Bridge Interfaces

Bridges connect multiple interfaces together bidirectionally, linking the networks on bridge members together into a
single bridge domain. The net effect is similar to the members being connected to the same layer 2 or switch.

This is commonly used to connect interfaces across different types of links, such as Ethernet to VXLAN. Another
common use is to enable filtering between two segments of the same network. It could also be used to allow individual
ports on TNSR to act in a manner similar to a switch, but unless filtering is required between the ports, this use case is
not generally desirable.

© Copyright 2025 Rubicon Communications LLC 79

Product Manual TNSR v19.05

Warning: Bridges connect together multiple layer 2 networks into a single larger network, thus it is easy to
unintentionally create a layer 2 loop if two bridge members are already connected to the same layer 2. For example,
the same switch and VLAN.

There are two components to a bridge: The bridge itself, and the interfaces which are members of the bridge.

Bridge Configuration

Creating a Bridge

A bridge is created by the interface bridge domain <bdi>command, available in config mode. This command
enters config-bridge mode where the following options are available:

arp entry ip <ip-addr> mac <mac-addr>
Configures a static ARP entry on the bridge. Entries present will be used directly, rather than hav-
ing TNSR perform an ARP request flooded on all bridge ports to locate the target. Additionally,
when a bridge is not set to learn MACs, these entries must be created manually to allow devices to
communicate across the bridge.

arp term
Boolean value that when present enables ARP termination on this bridge. When enabled, TNSR will
terminate and respond to ARP requests on the bridge. Disabled by default.

flood
Boolean value that when present enables Layer 2 flooding. Enabled by default. When TNSR cannot
locate the interface where a request should be directed on the bridge, it is flooded to all ports.

forward
Boolean value that when present enables Layer 2 unicast forwarding. Enabled by default. Allows
unicast traffic to be forwarded across the bridge.

learn
When present, enables Layer 2 learning on the bridge. Enabled by default.

mac-age <minutes>
When set, enables MAC aging on the bridge using the specified aging time.

uu-flood
When present, enables Layer 2 unknown unicast flooding. Enabled by default.

Bridge Interface Settings

To add an interface to a bridge as a member, the following settings are available from within config-interface
mode:

interface bridge domain <domain-id> [bvi] [shg <n>]

domain id
Bridge Domain ID, corresponding to the ID given when creating the bridge interface previously.

bvi
Boolean value that when present indicates that this is a Bridged Virtual Interface (BVI). A bridge
connects multiple interfaces together but it does not connect them to TNSR. A BVIinterface, typically
a loopback, allows TNSR to participate in the bridge for routing and other purposes.

© Copyright 2025 Rubicon Communications LLC 80

Product Manual TNSR v19.05

An L3 packet routed to the BVI will have L2 encapsulation added and then is handed off to the bridge
domain. Once on the bridge domain, the packet may be flooded to all bridge member ports or sent
directly if the destination is known or static. A packet arriving from the bridge domain to a BVI will
be routed as usual.

Note: A bridge domain may only contain one BVI member.

shg <n>
A Split Horizon Group identifier, used with VXLAN interfaces. This number must be non-zero and
the same number must be used on each VXLAN tunnel added to a bridge domain. This prevents
packets from looping back across VXLAN interfaces which are meshed between peers.

Bridge Example

This example will setup a bridge between GigabitEthernet3/0/0 and GigabitEthernet0/14/1, joining them
into one network. Further, a loopback interface is used to allow TNSR to act as a gateway for clients on these bridged
interfaces.

First, create the bridge with the desired set of options:

tnsr(config)# interface bridge domain 10
tnsr(config-bridge)# flood
tnsr(config-bridge)# uu-flood
tnsr(config-bridge)# forward
tnsr(config-bridge)# learn
tnsr(config-bridge)# exit

Next, add both interfaces to the bridge:

tnsr(config)# int GigabitEthernet3/0/0
tnsr(config-interface)# bridge domain 10
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# int GigabitEthernet®/14/1
tnsr(config-interface)# bridge domain 10
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface loopback bridgeloop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit

tnsr(config)# interface loopl
tnsr(config-interface)# ip address 10.25.254.1/24
tnsr(config-interface)# bridge domain 10 bvi
tnsr(config-interface)# enable
tnsr(config-interface)# exit

© Copyright 2025 Rubicon Communications LLC 81

Product Manual TNSR v19.05

Bridge Status

To view the status of bridges, use the show interface bridge domain [<id>] command:

tnsr(config)# show interface bridge domain 10
Bridge Domain Id: 10
flood: true
uu-flood: true
forward: true
learn: true
arp-term: false
mac-age: 0
BVI IF: loopl
Domain Interface Members
IF: GigabitEthernet0/14/1 SHG: O
IF: GigabitEthernet3/0/0 SHG: 0
IF: local® SHG: 0
IF: loopl SHG: 0
ARP Table Entries

If the id value is omitted, TNSR will print the status of all bridges.

8.4.9 VXLAN Interfaces

Virtual Extensible LAN, or VXLAN, interfaces can be used to encapsulate Layer 2 frames inside UDP, carrying traffic
for multiple L2 networks across Layer 3 connections such as between routed areas of a datacenter, leased lines, or
VPNs.

VXLAN tunnels are commonly used to bypass limitations of traditional VLANSs on multi-tenant networks and other
areas that require large scale L2 connectivity without direct connections.

There are two main components to a VXLAN tunnel: The VXLAN tunnel itself, and the bridge domain used to
terminate the tunneled traffic to another local interface.

VXLAN Configuration

A new VXLAN tunnel is created with the vxlan <tunnel-name> command in config mode, which then enters
config-vxlan mode.

In config-vxlan mode, the following commands are available:

instance <id>
Required instance identifier configured on the VXLAN tunnel. Based on this, a new interface will
be available in TNSR named vxlan_tunnel<id>. For example, with instance 0 the interface is
named vxlan_tunnel®.

vni <u24>
Required VXLAN Network Identifier

source <ip-addr>
Required source IP address on TNSR used to send VXLAN tunnel traffic.

destination <ip-addr>
Required destination IP address for the far side of the tunnel. This can be a multicast address, but if
it is, then the multicast interface must also be defined.

© Copyright 2025 Rubicon Communications LLC 82

Product Manual TNSR v19.05

encapsulation route-table <rt-table-name>
Routing table used for VXLAN encapsulation.

multicast interface <if-name>
Interface used for multicast. Required if the destination address is a multicast address. If defined,
the destination address must be multicast.

Note: The source IP address, destination IP address and encapsulation route table must all be of the same
address family, either IPv4 or IPv6.

VXLAN-Related Settings
In addition to the VXLAN settings, there are related settings in bridges and interfaces which are used with VXLAN
tunnels.

In config-bridge mode, the arp termcommand to enable ARP termination is needed for bridges used with VXLAN
tunnels.

In config-interface mode, when adding an interface to a bridge, the shg (Split Horizon Group) parameter is
required for VXLAN tunnels. This number must be non-zero and the same number must be used on each VXLAN
tunnel added to a bridge domain. This prevents packets from looping back across VXLAN interfaces which are meshed
between peers.

VXLAN Example

First, create the bridge with the desired set of options:

tnsr(config)# interface bridge domain 10
tnsr(config-bridge)# arp term
tnsr(config-bridge)# flood
tnsr(config-bridge)# uu-flood
tnsr(config-bridge)# forward
tnsr(config-bridge)# learn
tnsr(config-bridge)# exit

Add host interface to bridge domain:

tnsr(config)# int GigabitEthernet3/0/0
tnsr(config-interface)# bridge domain 10 shg 1
tnsr(config-interface)# exit

Create the VXLAN tunnel:

tnsr(config)# vxlan xmpl

tnsr(config-vxlan)# instance 0
tnsr(config-vxlan)# vni 10
tnsr(config-vxlan)# source 203.0.110.2
tnsr(config-vxlan)# destination 203.0.110.25
tnsr(config-vxlan)# exit

Add the VXLAN tunnel to bridge domain:

© Copyright 2025 Rubicon Communications LLC 83

Product Manual TNSR v19.05

tnsr(config)# int vxlan_tunnel®
tnsr(config-interface)# bridge domain 10 shg 1
tnsr(config-interface)# exit

VXLAN Status

To view the status of VXLAN tunnels, use the show vxlan command:

tnsr# show vxlan

Name Instance Source IP Dest IP Encap Rt Decap Node IF Name Mcast IF VNI
xmpl ® 203.0.110.2 203.0.110.25 ipv4-VRF:0 1 vxlan_tunnel® 10
orphan

© Copyright 2025 Rubicon Communications LLC 84

CHAPTER
NINE

ROUTING BASICS

A route is how TNSR decides where to deliver a packet. Each route is comprised of several components, including:

Route Table
A discrete collection of routes to be consulted by TNSR or its services.

Destination
The network/prefix to which clients or TNSR services will send packets.

Next Hop Address
The neighboring router which can accept traffic for the destination network.

Next Hop Interface
The interface through which TNSR can reach the neighboring router

orphan

9.1 Route Tables

TNSR is able to use multiple discrete route tables but these tables do not offer complete VRF-style isolation. When
routing packets, TNSR consults the route tables present on the interface the packet enters (ingress) which match the
address family of the packet (IPv4 or IPv6).

If an interface is not configured for a specific route table, TNSR uses the default table. For IPv4, the default routing
table is ipv4-VRF:0. For IPv6, the default is ipv6-VRF:0. Custom routing tables may be given arbitrary names.

Warning: VRF is in the name of the default route tables, but TNSR does not offer full virtual routing and forwarding
(VRF) features at this time.

Identical routes can have different destination paths in separate route tables, but identical networks cannot be directly
connected to multiple interfaces.

orphan

85

Product Manual

TNSR v19.05

9.2 Neighbors

For directly connected networks, TNSR will attempt to locate neighboring hosts via Address Resolution Protocol (ARP)
for IPv4 or Neighbor Discover Protocol (NDP) for IPv6. In this way, TNSR can discover the hardware MAC address
to which a packet will be delivered in these networks.

9.2.1 Static Neighbors

Static neighbor entries can override this dynamic behavior so that a specified IPv4 or IPv6 address is always associated

with the same MAC address.

The command to specify a static neighbor takes the following form:

tnsr(config)# neighbor <interface> <ip-address> <mac-address> [no-adj-route-table-entry]

The parameters for this command are:

<interface>

The interface on which this static entry will be placed.

<ip-address>

The IPv4 or IPv6 address for the static neighbor entry.

<mac-address>

The MAC address to associate with the given IP address.

no-adj-route-table-entry
Do not create an adjacency route table entry.

For example, to add a static entry to map 1.2.3.4 to a MAC address of 00:11:22:33:44:55 on the interface
GigabitEthernet3/0/0, run this command from config mode:

[tnsr(config)# neighbor GigabitEthernet3/0/0 1.2.3.4 00:11:22:33:44:55

9.2.2 View Neighbors

To see the current table of known IPv4 and IPv6 neighbors, use the show neighbor [interface <if-name>]

command.

Note: In other products, this information may be referred to as the ARP table or NDP table.

tnsr# show neighbor

GigabitEthernet®/14/0
GigabitEthernet0/14/0
GigabitEthernet3/0/0
GigabitEthernet3/0/0

Interface S/D IP Address MAC Address

D 203.0.113.1 00:90:0b:37:a3:24
D 203.0.113.14 00:0d:b9:33:0£f:71
S 1.2.3.4 00:11:22:33:44:55
D 10.2.0.129 00:0c:29:4c:b3:9b

This output can optionally be filtered by interface name.

The S/D column shows if the entry is static (S) or dynamic (D).

orphan

© Copyright 2025 Rubicon Communications LLC

86

Product Manual TNSR v19.05

9.3 Viewing Routes

To view the contents of all route tables:

[tnsr# show route J

To view the contents of a single route table:

{tnsr# show route table <table name>]

For example, to view the default IPv4 route table only, use:

[tnsr# show route table ipv4-VRF:0

9.3.1 Route Flags

In the route display, the flags: row may contain the following:

no flags
If the flags line is empty, this is a normal route with no special actions.

local
This network is local to TNSR and packets to this destination will not leave the TNSR host.

drop
Packets matching this route will be dropped by TNSR. Commonly seen with null routes for subnets
or for traffic which must not leave a subnet.

unreachable
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP “Destination
unreachable” message back to the source address.

prohibit
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP “Destination
administratively prohibited”” message back to the source address.

9.3.2 Common Routes

Routing tables on TNSR may include unexpected entries by default or even after adding and configuring interfaces and
other services. The following list covers several of these types of routes that may be present and what they mean:

0.0.0.0/32 (drop)
Null route to drop traffic with an empty address.

0.0.0.0/0
Default route for packets that do not match any other route, such as for Internet hosts or other remote
destinations.

224.0.0.0/4 (drop)
Multicast that must not be routed.

224.0.0.0/24
Local subnet multicast.

240.0.0.0/4 (drop)
Reserved network that must not be routed.

© Copyright 2025 Rubicon Communications LLC 87

Product Manual TNSR v19.05

255.255.255.255/32 (local)
Special broadcast address for networks local to TNSR.

x.x.x.<first>/32 (drop)
Null route for subnet configured on an interface. Last octet will vary depending on subnet size and
network address. For example, this is .0 in a /24 subnet.

x.x.x.<last>/32 (drop)
Broadcast address for subnet configured on an interface. Last octet will vary depending on subnet
size and network address. For example, this is .255 in a /24 subnet.

x.X.X.x/32 (local, next hop x.x.x.x/32)
Internal route for an address present on a TNSR interface.

Routes can also be added to the table dynamically by other processes such as via BGP or if an interface is configured
as a DHCP client. Check the status or other associated logs for configured features to find the origins of these routes.

orphan

9.4 Managing Routes

Routes are entered into TNSR using the route (ipv4|ipv6) table <name> command in configuration mode.
When using the route command for this purpose, the address family and table name must be specified in order to
establish the routing context. This command enters config-route-table mode. From there, individual routes can
be managed.

Inside config-route-table mode, the following commands are available:

description
Sets a description for the route table.

route <destination-prefix>
Configures a route to the specified destination network. This enters config-rttbl-next-hop mode
where the remaining parameters for the route are set.

Tip: For a single address, use a /32 mask for IPv4 or /128 for IPv6.

Inside config-rttbl-next-hop mode, the following commands are available:

description
Sets a description for this route.

next-hop <hop-id> via <action|gateway>
Configures how TNSR will handle traffic to this destination. This may be repeated multiple times
with unique hop-id values to specify multiple destinations. The following parameters are available
to control the route behavior:

hop-id
The ID of the next hop. Must be unique between entries in the same route.

via <ip-address>
Sets the next hop for this route as an IP address. Additional modifiers are possible for
any via form using an IP address destination, see Route modifiers.

via <ip-address> <interface>
Configures both the IP address and interface for the next hop. This is the most com-
monly used form for routes. May use modifiers, see Route modifiers.

© Copyright 2025 Rubicon Communications LLC 88

Product Manual TNSR v19.05

via <ip-address> next-hop-table <route-table-name>
Configures a recursive route lookup using a different route table. May use modifiers,
see Route modifiers.

via classify <classify-name>
Reserved for future use.

via drop
Drops traffic to this destination (null route).

via local
The destination is local to TNSR, such as an interface address or loopback.

via null-send-prohibit
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP
“Destination administratively prohibited” message back to the source address.

via null-send-unreach
Packets matching this route will be dropped by TNSR, and TNSR will send an ICMP
“Destination unreachable” message back to the source address.

9.4.1 Route modifiers

For routes set with a next hop using via <ip-address, additional modifiers control how TNSR resolves the route
destination.

preference
Sets the administrative distance preference. Helps to choose between multiple possible destinations
when routing protocols are used. This is only a local value, and a lower value is taken as being more
reliable (closer).

weight
The weight of routes to the same destination. Acts as a ratio of packets to deliver to each next hop.

Tip: Equal weights will deliver the same amount of traffic to all next hops for this destination prefix,
uneven weights will deliver more traffic via the higher weighted connection. If one path has a weight
of 1, and the other has a weight of 3, then the first path will receive 25% (1/(1+3)) of the traffic and
the other will receive 75% (3/(1+3)).

resolve-via-attached
Sets a constraint on recursive route resolution via attached network. The next hop is unknown, but
destinations in this prefix may be located via ARP.

resolve-via-host
Sets a constraint on recursive route resolution via host. The next hop is known, but the interface is
not.

Tip: Multiple modifiers may be used together, but when doing so, weight and preference must be set first.

© Copyright 2025 Rubicon Communications LLC 89

Product Manual TNSR v19.05

Example

IPv4 example:

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-route-table-v4)# route 10.2.10.0/24
tnsr(config-rttbl4-next-hop)# next-hop 0 via 10.2.0.2 GigabitEthernet®/14/2

IPv6 Example:

tnsr(config)# route ipv6 table ipv6-VRF:0
tnsr(config-route-table-v6)# route fc07:b337:c4£3::/48
tnsr(config-rttbl6-next-hop)# next-hop ® via 2001:db8:1::2 GigabitEthernet®/14/2

Breaking down the examples above, first the route table is specified. Within that context a destination network route is
given. The destination network establishes a sub-context for a specific route. From there, the next hop configuration is
entered.

Note: When entering a next hop for a route in this way, both the IP address of the destination router and the interface
must be given.

To specify more than one route, exit out of the next-hop context so that TNSR is in the correct context for the route
table itself, then enter an additional destination and next-hop.

orphan

9.5 Default Route

In TNSR, the default route, sometimes called a default gateway, is the gateway of last resort. Meaning, traffic that is
not local and does not have any other route specified will be sent using that route. There is no default keyword in
TNSR; The special network 0.0.0.0/0 is used instead.

In this example, the gateway from Example Configuration is added using the WAN interface:

IPv4 Default Route Example:

tnsr(config)# route ipv4 table ipv4-VRF:0

tnsr(config-route-table-v4)# route 0.0.0.0/0

tnsr(config-rttbl4-next-hop)# next-hop O via 203.0.113.1 GigabitEthernet®/14/1
tnsr(config-rttbl4-next-hop)# exit

tnsr(config-route-table-v4)# exit

IPv6 Default Route Example:

tnsr(config)# route ipv6 table ipv6-VRF:0

tnsr(config-route-table-v6)# route ::/0

tnsr(config-rttbl6-next-hop)# next-hop ® via 2001:db8:0:2::1 GigabitEthernet®/14/1
tnsr(config-rttbl6-next-hop)# exit

tnsr(config-route-table-v6)# exit

orphan

© Copyright 2025 Rubicon Communications LLC 90

CHAPTER
TEN

ACCESS LISTS

Access Lists can be used to control ingress or egress traffic or to match hosts, networks and other contexts. An ACL
contains a set of rules that defines source and destination hosts or networks to match, along with other aspects of traffic
such as protocol and port number. Access Lists have an implicit final deny action. Any traffic not matched with an
explicit permit rule will be dropped. Access Lists assume “any” for a value unless otherwise specified.

Access Lists can be stateful (reflect), or work without state tracking (permit).
Access Lists must be defined first and then applied to an interface along with a specific direction.
Host ACLs operate differently, as they govern traffic for interfaces in the host operating system rather than inside TNSR.

orphan

10.1 Standard ACLs

A standard ACL works with IPv4 or IPv6 traffic at layer 3. The name of an ACL is arbitrary so it may be named in a
way that makes its purpose obvious.

ACLs consist of one or more rules, defined by a sequence number that determines the order in which the rules are
applied. A common practice is to start numbering at a value higher than O or 1, and to leave gaps in the sequence so
that rules may be added later. For example, the first rule could be 10, followed by 20.

Each rule must have an action and a defined ip-version. Rules can also define a source, destination, protocol,
and other attributes for matching packets.

description <text>
Text describing the purpose of this ACL.

action (deny|permit|reflect)
Determines what happens to packets matched by the rule. This is required.

deny
Drop a packet matching this rule.

permit
Pass a single packet matching the rule. Since this action is per-packet and stateless, a
separate ACL may also be required to pass traffic in the opposite direction.

reflect
Permit a packet matching this rule and use a stateful packet processing path. Track the
session and automatically permit return traffic in the opposite direction.

ip-version (ipv4|ipv6)

Controls whether IPv4 or IPv6 packets will be matched by the rule. This is required, and also governs
validation of the source and destination when applicable.

91

Product Manual TNSR v19.05

(source|destination)
Define matching criteria for a rule based on where a packet came from or where it is going.

source address <ip-address>
Match the source address of a packet. The given address must match the type set for
ip-version.

source port any
Match any TCP or UDP source port number (0 through 65535). Only valid when
protocol is set to TCP or UDP. This is the default behavior when the rule does not
contain a source port value.

source port <port-first> [- <port-last>]
Match the specified TCP or UDP source port or range of source ports. When supplying
a range, the first port must be lower than the last port. Only valid when protocol is
set to tcp or udp.

destination address <ip-address>
Match the destination address of a packet. The given address must match the type set
for ip-version.

destination port any
Match any TCP or UDP destination port number (0 through 65535). Only valid when
protocol is set to TCP or UDP. This is the default behavior when the rule does not
contain a destination port value.

destination port <port-first> [- <port-last>]
Match the specified TCP or UDP destination port or range of destination ports. When
supplying a range, the first port must be lower than the last port. Only valid when
protocol is set to tcp or udp.

Note: Matching a source or destination port is only possible when the protocol is explicitly set to
tcp or udp.

protocol (icmp|tcpludp)
Restricts the rule to match one specific protocol. This may be one of: icmp, tcp, udp. If no protocol
is specified, then the rule will match any protocol (0). When matching icmp, IPv4 will match ICMP
and IPv6 will match ICMPv6.

tcp flags value <v> mask <m>
For rules matching TCP packets, tcp flags further restrict the match. This statement requires both
a value and mask, which may be given in either order. The value and mask together define the
flags matched out of a possible set of flags. These flags are specified numerically using the standard
values for the flags: URG=32, ACK=16, PSH=8, RST=4, SYN=2, FIN=1. Add the values together
to reach the desired value.

For example, with stateful filtering a common way to detect the start of a TCP session is to look for
the TCP SYN flag with a mask of SYN+ACK. That way it will match only when SYN is set and ACK
is not set. Using the values from the previous paragraph yields: tcp flags value 2 mask 18

icmp (codeltype) <first> [- <last>]
For rules matching ICMP protocol packets, icmp type and icmp code restrict matches to a specific
value or range. The type and code are entered numerically in the range of 0-255. For a list of possible
type and code combinations, see the [ANA ICMP Parameters list.

icmp (code|type) any
Match any ICMP code or type. This is the default behavior.

© Copyright 2025 Rubicon Communications LLC

92

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Product Manual TNSR v19.05

10.1.1 Standard ACL Example

The following example ACL will block only SSH (tcp port 22) to 203.0.113.2 and permit all IPv4 other traffic:

tnsr(config)# acl blockssh

tnsr(config-acl)# rule 10

tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# destination address 203.0.113.2/32
tnsr(config-acl-rule)# destination port 22
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit

tnsr(config-acl)# rule 20

tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# exit

tnsr(config-acl)# exit

tnsr(config)# int GigabitEthernet®/14/1
tnsr(config-interface)# access-list input acl blockssh sequence 10
tnsr(config-interface)# exit

tnsr(config)#

Deconstructing the above example, the ACL behaves as follows:
¢ The name of the ACL is blockssh

e The first rule is 10. This leaves some room before it in case other rules should be matched before this rule in the
future.

Rule 10 will deny traffic matching:
— A destination of a single IPv4 address, 203.0.113.2
— A destination of a single TCP port, 22 (ssh)
— A source of any is implied since it is not specified

* The second rule is 20. The gap between 10 and 20 leaves room for future expansion of rules between the two
existing rules.

 Rule 20 will permit all other IPv4 traffic, since there is no source or destination given.
The ACL is then applied to GigabitEthernet®/14/1 in the inbound direction.

orphan

10.2 MACIP ACLs

MACIP ACLs and layer 3 ACLs (Standard ACLs) work similarly, but MACIP ACLs match traffic at layer 2 using MAC
addresses.

Since MACIP ACLs work with layer 2 information, they can only effectively function on interfaces which support
operating at layer 2, such as Ethernet. Additionally, MACIP ACLs can only match layer 2 interface packets from
neighboring hosts on directly connected networks.

© Copyright 2025 Rubicon Communications LLC 93

Product Manual TNSR v19.05

determined, thus cannot be matched by a MACIP ACL.

the default gateway or routing peer, and not the actual source of the traffic.

Warning: The MAC address of a remote host that reaches TNSR via routing though another gateway cannot be

For example, traffic arriving at TNSR from the Internet via Ethernet will typically have a source MAC address of

MACIP ACLs may only be applied in the input direction, and only match source addresses.

description <text>
Text describing the purpose of this ACL.

action <name>
Determines how the rule governs packets that match.

deny
Drops a packet which matches this rule.

permit
Passes a single packet matching the rule.

ip-version (ipv4|ipv6)
Controls whether IPv4 or IPv6 packets will be matched by the rule. This is required when an address
is present for the rule, and governs validation of the address value when applicable.

address <ip-prefix>
Match the source IPv4 or IPv6 address of a packet.

mac address <mac-address>
Optionally specifies a MAC address to block, in six groups of two colon-separated hexadecimal
values, such as 80:11:22:33:44:55. When unset, the default value is 00:00:00:00:00:00 and
uses the same value for a mask, which will match any MAC address.

mac mask <mac-mask>
Optionally specifies a mask which defines portions of a MAC address to match, similar to
an IP Prefix value. Given in six groups of two colon-separated hexadecimal values, such
as ff:ff:££:00:00:00, which matches the first half of a given MAC address. A mask of
ff:ff: ff:£f:ff:ff matches an entire MAC address exactly. A mask of 00:00:00:00:00:00
matches any MAC address, and is the default behavior when no mask is set.

10.2.1 MACIP ACL Example

tnsr(config)# macip blockamac

tnsr(config-macip)# rule 10
tnsr(config-macip-rule)# action deny
tnsr(config-macip-rule)# mac address 00:11:22:33:44:55
tnsr(config-macip-rule)# mac mask ff:ff:ff:ff:ff:ff
tnsr(config-macip-rule)# exit

tnsr(config-macip)# exit

tnsr(config)# int GigabitEthernet0/14/2
tnsr(config-interface)# access-list macip blockamac
tnsr(config-interface)# exit

tnsr(config)#

orphan

© Copyright 2025 Rubicon Communications LLC

94

Product Manual TNSR v19.05

10.3 Viewing ACL and MACIP Information

The show acl [<name>] command prints a list of defined ACLs and their actions. If <name> is given, then output
is limited to the specified ACL.

tnsr# show acl

Access Control List: blockssh

IPv Seq Action Source Dest Proto SP/T DP/C Flag Mask
ipvd 10 deny 0.0.0.0/0 203.0.113.2/32 tcp 0-65535 22-22 0x00 0x00
ipvd 20 permit 0.0.0.0/0 0.0.0.0/0 0

The show macip [<name>] command works the same way for MACIP entries:

tnsr(config)# show macip

MACIP ACL: blockamac
AF Seq Action IP Prefix MAC Address

ipvd 10 deny 0.0.0.0/0 00:11:22:33:44:55 ff:ff:ff:ff:£ff:ff

orphan

10.4 ACL and NAT Interaction

When NAT is active, ACL rules are always processed before NAT on interfaces where NAT is applied, in any direction.

The remainder of the section refers to the following example static NAT rule:

[nat static mapping tcp local 10.2.0.129 22 external 203.0.113.2 222

In this example, that rule is applied on the external-facing interface containing 203.0.113.2.

10.4.1 Inbound ACL Rules

ACL Rules set to be processed in the inbound direction on an interface (access-list input acl <name>
sequence <seq>) will match on the external address and/or port in a static NAT rule. In the above example,
this means an inbound ACL would match on a destination IP address of 203.0.113.2 and/or a destination port of
222.

10.4.2 Outbound ACL Rules

ACL Rules set to be processed in the outbound direction on an interface (access-1list output acl <name>
sequence <seq>) will match on the local address and/or port in a static NAT rule. In the above example, this
means an outbound ACL would match on a source IP address of 10.2.0.129 and/or a source port of 22.

orphan

© Copyright 2025 Rubicon Communications LLC 95

Product Manual TNSR v19.05

10.5 Host ACLs

TNSR can also create host ACLs to control traffic on host interfaces, such as the management interface. These ACLs
are implemented using Netfilter.

As mentioned in Default Allowed Traffic, TNSR includes a default set of host ACLs which protect host OS interfaces.
Host ACLs created by administrators can override or augment the default blocking behavior.

ACLs are ordered by sequence number, and evaluated from the start to the end, stopping when a match is found. Each
ACL contains one or more rules which define matching criteria and actions taken.

To create a new ACL, from config mode, use the command host acl <acl-name>, with the name to use for the
new ACL. This command enters config-host-acl mode, where the following commands are available:

description <text>
A text description of the host ACL.

sequence <acl-seq>
The sequence number of this ACL. This sequence number controls the order of the ACLs when TNSR
generates the host OS ruleset.

rule <rule-seq>
Creates a new rule in this ACL with the given sequence number and enters config-host-acl-rule
mode. The sequence number of the rule controls the order of the individual rules inside this ACL.

Inside config-host-acl-rule mode, the following commands are available:

action (deny|permit)
Controls whether packets matching this rule will be passed (permit) or dropped (deny).

description <text>
A text description of this rule.

match input-interface <host-interface>
When set, this rule will only match traffic on the given host interface name. This is an interface name
as seen by the host operating system, and not a TNSR interface.

match ip address (source|destination) <ip-addr>
Matches based on a given source or destination IP address.

match ip icmp type <type> [code <code>]
Matches a specific IPv4 ICMP type and optionally matches the ICMP code as well. To match
ICMP, the IP protocol must be set to icmp. Allowed types include: address-mask-reply,
address-mask-request, destination-unreachable, echo-reply, echo-request,
info-reply, info-request, parameter-problem, redirect, router-advertisement,
router-solicitation, source-quench, time-exceeded, timestamp-reply, and
timestamp-request.

match ip icmpvé6 type <type> [code <code>]
Matches a specific [IPv6 ICMP type and optionally matches the ICMP code as well. To match ICMP,
the IP protocol must be set to icmp. Allowed types include: destination-unreachable,
echo-reply, echo-request, mld-listener-query, mld-listener-reduction,
mld-listener-report, nd-neighbor-advert, nd-neighbor-solicit, nd-redirect,
nd-router-advert, nd-router-solicit, packet-too-big, parameter-problem,
router-renumbering, and time-exceeded.

match ip port (source|destination) <port-num>
Matches the given source or destination port number. To match a port, the protocol must be tcp
or udp.

© Copyright 2025 Rubicon Communications LLC 96

Product Manual TNSR v19.05

match ip port (source|destination) range start <low-port-num> [end <high-port-num>]
Matches the given source or destination port range, given as a lower start port number and a higher
ending port number. To match a port, the protocol must be tcp or udp.

match ip protocol (icmp|tcpludp)
Matches the specified IP protocol. When unset, any protocol will match the rule. However, it must
be set to enable protocol-specific matching such as ports (TCP or UDP) or ICMP types/codes.

match ip tcp flag (ack|cwrlecelfin|psh|rst|syn[urg)
Matches a specific TCP flag. May only be used when protocol is set to tcp.

match ip version (4/6)
Matches based on whether a packet is IPv4 (4), or IPv6 (6).

match mac address (source|destination) <mac>
Matches based on the source or destination MAC address. This is only valid for neighboring hosts
on interfaces which provide layer 2 information, such as Ethernet.

10.5.1 Host ACL Example

This example configures a rule to allow traffic from the remote system 203.0.113. 54 to reach a local host OS daemon
on port 12345, used by the TNSR IDS daemon:

tnsr(config)# host acl tnsrids

tnsr(config-host-acl)# sequence 10

tnsr(config-host-acl)# description TNSR IDS
tnsr(config-host-acl)# rule 100

tnsr(config-host-acl-rule)# description Pass to tnsrids
tnsr(config-host-acl-rule)# action permit
tnsr(config-host-acl-rule)# match ip address source 203.0.113.54
tnsr(config-host-acl-rule)# match ip protocol tcp
tnsr(config-host-acl-rule)# match ip port destination 12345

10.5.2 Host ACL Status

To see the list of current host ACLs, use the following command:

tnsr# show host ruleset
table inet tnsr_filter {
chain tnsr_input_mgmt_local {
jump tnsrids

}

chain tnsr_input_mgmt_default {
tcp dport ssh accept
tcp dport http accept
tcp dport https accept
ip protocol icmp accept
ip6 nexthdr ipv6-icmp accept
tcp dport bgp accept
ip protocol ospf accept
udp dport isakmp accept
tcp dport ntp accept
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 97

https://github.com/Netgate/TNSR_IDS

Product Manual TNSR v19.05

(continued from previous page)

udp dport ntp accept

tcp dport domain accept

udp dport domain accept

udp dport snmp accept

udp dport bootps accept

ip ttl 1 udp dport 33434-33524 counter packets O bytes 0 accept

}

chain tnsr_input {
type filter hook input priority 0; policy accept;
iifname "lo" accept
ct state established,related accept
jump tnsr_input_mgmt_local
jump tnsr_input_mgmt_default
drop
}

chain tnsr_forward {
type filter hook forward priority ®; policy drop;

}

chain tnsrids {
tcp dport 12345 counter packets O bytes 0 accept
3

orphan

© Copyright 2025 Rubicon Communications LLC 98

CHAPTER
ELEVEN

BORDER GATEWAY PROTOCOL

Border Gateway Protocol (BGP) is a dynamic routing protocol used between network hosts. BGP routes between
autonomous systems, connecting to defined neighbors to exchange routing information.

BGP can be used for exterior routing (ebgp) or interior routing (ibgp), routing across Internet circuits, private links, or
segments of local networks.

The BGP service in TNSR is handled by FRR.

orphan

11.1 Required Information

Before starting, take the time to gather all of the information required to form a BGP adjacency to a neighbor. At a
minimum, TNSR will need to know these items:

Local AS Number
The autonomous system (AS) number for TNSR. This is typically assigned by an upstream source,
an RIR, or mutually agreed upon by internal neighbors.

Local Router ID
Typically the highest numbered local address on the firewall. This is also frequently set as the internal
or LAN side IP address of a router. It does not matter what this ID is, so long as it is given in I[Pv4
address notation and does not conflict with any neighbors.

Local Network(s)
The list of networks that are advertised over BGP as belonging to the Local AS. For external BGP,
this is typically the IP address block allocated by the RIR. For internal BGP, this may be a list of local
networks or a summarized block.

Neighbor AS Number
The autonomous system number of the neighbor.

Neighbor IP Address
The IP address of the neighboring router.

The example in this section uses the following values:

99

https://frrouting.org/

Product Manual TNSR v19.05

Table 1: Example BGP Configuration

ltem Value
Local AS Number 65002
Local Router ID 10.2.0.1
Local Network(s) 10.2.0.0/16

Neighbor AS Number 65005
Neighbor IP Address 203.0.113.14

Warning: If NAT is active on the same interface acting as a BGP peer, then NAT forwarding must also be enabled.
See NAT Forwarding.

orphan

11.2 Enabling BGP

The BGP service has a master enable/disable toggle that must be set before BGP will operate. Enable BGP using the
enable command in config-frr-bgp mode:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# bgp enable

The BGP service is managed as described in Service Control.

Warning: After starting or restarting TNSR, restart the BGP service from within the TNSR configuration mode
CLI to ensure that the routes from BGP neighbors are fully populated throughout TNSR:

[tnsr(config)# service bgp restart J

orphan

11.3 Example BGP Configuration

The following example configures a BGP adjacency to a neighbor using the settings from Example BGP Configuration:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server 65002
tnsr(config-bgp)# router-id 10.2.0.1
tnsr(config-bgp)# neighbor 203.0.113.14
tnsr(config-bgp-neighbor)# remote-as 65005
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# network 10.2.0.0/16
tnsr(config-bgp-ipduni)# exit
tnsr(config-bgp)# exit

tnsr(config-frr-bgp)# enable

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 100

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-frr-bgp)# exit
tnsr(config)# service bgp restart

The next few sections break down and explain each part of this example.

orphan

11.3.1 Router Statement

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server 65002

This statement enters BGP Server mode and sets the autonomous system number for this router to 65002.

[tnsr(config—bgp)# router-id 10.2.0.1 J

BGP mode offers a new subset of commands, including setting the router-id as shown here. In this example the
internal IP address of TNSR, 10.2.0. 1, is set as the router ID.

BGP mode also can define the neighbors and configure the behavior of BGP for different address families, among other
possibilities.

orphan

11.3.2 Neighbor Configuration

tnsr(config-bgp)# neighbor 203.0.113.14
tnsr(config-bgp-neighbor)# remote-as 65005
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

The neighbor statement can take either an IP address to setup a single neighbor, as the example shows for 203.0.
113. 14, or it can take a name which configures a peer group. The command changes to BGP neighbor mode, indicated
by the config-bgp-neighbor prefix in the prompt.

Peer groups work nearly identical to neighbors, and they define options that are common to multiple neighbors. To
configure a neighbor as a member of a peer group, append peer-group <group name> to the neighbor statement.

Within BGP neighbor mode, the most important directive is remote-as to set the AS number of the neighbor. In this
case, the AS number of the neighbor is 65005. The majority of other neighbor configuration is handled by the neighbor
definition for a specific address family.

The default state of a neighbor is disabled down. To enable the neighbor, enter the enable command in BGP neighbor
mode.

orphan

© Copyright 2025 Rubicon Communications LLC 101

Product Manual TNSR v19.05

11.3.3 Address Family Configuration

tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# network 10.2.0.0/16
tnsr(config-bgp-ipduni)# exit

The TNSR BGP implementation is capable of handling routing information for IPv4 and IPv6 independently, among
other network layer protocols. The address-family command defines BGP behavior for each specific supported
case. The most common address families are ipv4 unicast and ipv6 unicast. The command changes to BGP
address family mode, bgp-af, which contains settings specific to each address family.

In this example for the ipv4 unicast address family, BGP is instructed to announce a route for the 10.2.0.0/16
network prefix. Neighbors will receive this route once they form an adjacency to this router.

orphan

11.3.4 BGP Example with Loopback
BGP on TNSR can also be used with loopback interfaces for more advanced routing scenarios. Using a loopback for

a BGP update source allows the path to the routing peer to be handled in some other way. It may be static, or it may
involve multiple paths to the peer, for example.

This scenario is based on the previous example, but uses a loopback interface for the update source.

Configure Loopback

First, setup the loopback interface and address:

tnsr(config)# interface loopback bgploop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit

tnsr(config)# interface loopl
tnsr(config-interface)# ip address 10.5.222.1/32
tnsr(config-interface)# exit

Since the loopback is not on an interface, the 10.5.222.1 address must be routed to TNSR somehow. This could be
an address in a routed block, or there could be another method of handling routes between the peers.

Route to Peer

Likewise, TNSR must know how to reach the remote peer, 10.5.222. 2, which in this case the example also assumes
is a loopback address configured in a similar manner. In this example, the peer is reachable at 203.0.113. 14 which
is in a network directly connected to TenGigabitEthernet6/0/0. For simplicity, this will only be a static route:

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-route-table-v4)# route 10.5.222.2/32
tnsr(config-rttbl4-next-hop)# next-hop 0 via 203.0.113.14 TenGigabitEthernet6/0/0

© Copyright 2025 Rubicon Communications LLC 102

Product Manual TNSR v19.05

Setup BGP with Loopback Address

Now setup the BGP service, using the new neighbor address and with the loopback address as an update source:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server 65002
tnsr(config-bgp)# router-id 10.2.0.1
tnsr(config-bgp)# neighbor 10.5.222.2
tnsr(config-bgp-neighbor)# remote-as 65005
tnsr(config-bgp-neighbor)# update-source 10.5.222.1
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# network 10.2.0.0/16
tnsr(config-bgp-ip4uni)# exit
tnsr(config-bgp)# exit

tnsr(config-frr-bgp)# enable
tnsr(config-frr-bgp)# exit

tnsr(config)# service bgp restart

orphan

11.4 Advanced Configuration

The BGP functionality in TNSR is capable of advanced configurations far beyond those detailed in this section. There
are numerous commands to fine-tune BGP behavior, to handle routes, route maps, prefix lists, timer adjustments, etc.
As TNSR uses FRR, most FRR configuration commands for BGP are mirrored in TNSR.

For a full command reference, see Commands.

orphan
11.5 BGP Information
TNSR supports several commands to display information about the BGP daemon configuration and its status.

11.5.1 Configuration Information

To view the BGP configuration:

[tnsr# show route dynamic bgp config [<as-number>]

To view the routing daemon manager (Zebra) configuration:

[tnsr# show route dynamic manager

To view other individual sections of the configuration:

tnsr# show route dynamic access-list [<access-list-name>]
tnsr# show route dynamic bgp as-path [<as-path-name>]
tnsr# show route dynamic bgp community-list [<community-list-name>]
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 103

Product Manual

TNSR v19.05

tnsr# show route dynamic prefix-list [<prefix-list-name>]
tnsr# show route dynamic route-map [<route-map-name>]

(continued from previous page)

11.5.2 Status Information

For a brief summary of BGP status information:

[tnsr# show route dynamic bgp summary

For lists configured BGP Neighbors and their status details:

tnsr# show route dynamic bgp neighbors [[<peer>] [advertised-routes|dampened-routes|
flap-statistics|prefix-counts|received|received-routes|routes]]

For information about a specific BGP peer group:

[tnsr# show route dynamic bgp peer-group <peer-group-name>

For a list of valid BGP next hops:

[tnsr# show route dynamic bgp nexthop [detail]

For details about an address or prefix in the BGP routing table:

[tnsr# show route dynamic bgp network <IP Address|Prefix>

11.5.3 BGP Active Session Control

The clear command can be used to reset active BGP sessions. This command is available from within

config-frr-bgp mode. The general form of the command is:

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# clear (*|<peer>|<asn>) [soft]

The first parameter controls what will be cleared, and values may be completed automatically with tab:

*

Clears all open BGP sessions

<peer>

Clears all sessions to a specific peer IP address or peer group name

<asn>
Clears all sessions to a specific AS number

The second parameter, soft is optional and controls whether or not the command will trigger a soft reconfiguration.

© Copyright 2025 Rubicon Communications LLC

104

Product Manual TNSR v19.05

11.5.4 Additional Information

Additional BGP status information can be obtained by using the vtysh program outside of TNSR.

The vtysh program must be run as root:

[sudo vtysh

The vtysh interface offers numerous commands. Of particular interest for BGP status are the following:

show bgp summary
A brief summary of BGP status information.

show bgp neighbors
Lists configured BGP Neighbors and their status details.

show ip bgp
A list of routes and paths for networks involved in BGP.

show ip route
The IP routing table managed by the FRR Zebra daemon, which marks the origin of routes to see
which entries were obtained via BGP.

orphan

11.6 Working with Large BGP Tables

When working with a large set of routes, roughly exceeding 30,000 route table entries, TNSR may require additional
memory to be allocated for the VPP dataplane Forwarding Information Bases (FIB). Smaller routing tables do not
require special configuration.

This memory allocation can be performed in configuration mode using one of the following commands:

For IPv4 (Memory):

tnsr# configure
tnsr(config)# dataplane ip heap-size <size>

For IPv6 (Memory):

tnsr# configure
tnsr(config)# dataplane ip6 heap-size <size>

The format of the size is <number>[KMG], for example: 512M or 1G for 512 Megabytes or 1 Gigabyte, respectively.

Additionally, the statistics segment heap size may also need to be increased (Statistics Segment):

tnsr# configure
tnsr(config)# dataplane statseg heap-size <size>

Note: The default size for dataplane statseg heap-size is 96MB, which is sufficient for approximately one
million routes

The VPP dataplane service requires a restart to enable these configuration changes. Restart VPP from the TNSR
configuration mode CLI using the following command:

© Copyright 2025 Rubicon Communications LLC 105

Product Manual TNSR v19.05

tnsr# configure
tnsr(config)# service dataplane restart

orphan

© Copyright 2025 Rubicon Communications LLC 106

CHAPTER
TWELVE

IPSEC

IPsec provides a standards-based VPN implementation compatible with other IPsec implementations. The IPsec sub-
system in TNSR is handled by strongSwan.

Currently, TNSR supports routed IPsec, allowing BGP or static routes to send traffic through IPsec.

orphan

12.1 Required Information

Before attempting to configure an IPsec tunnel, several pieces of information are required in order for both sides to
build a tunnel. Typically the administrators of both tunnel endpoints will negotiate and agree upon the values to use
for an IPsec tunnel.

At a minimum, these pieces of information should be known to both endpoints before attempting to configure a tunnel:

Local Address
The IP address on TNSR which will be used to send and accept IPsec traffic from the peer.

Local IKE Identity
The IKE identifier for TNSR, typically an IP address and the same as Local Address.

Local Network(s)
A list of local networks which will communicate through the IPsec tunnel to hosts on Remote Net-
work(s). This is not entered into the configuration on TNSR for routed IPsec, but will be needed by
the peer.

Remote Address
The IP address of the IPsec peer.

Remote IKE Identity
The identifier for the IPsec peer, typically the same as Remote Address.

Remote Network(s)
A list of networks at the peer location with which hosts in the Local Network(s) will communicate.
If using static routing, routes must be manually added for these networks using the Remote IPsec
Address and ipsecX interface. If BGP is used with IPsec, this will be handled automatically.

IKE Version
Either 1 for IKEv1 or 2 for IKEv2. IKEv2 is stronger and more capable, but not all IPsec equipment
can properly handle IKEv2.

IKE Lifetime
The maximum amount of time that an IKE session can stay alive until it is renegotiated.

107

https://strongswan.org/

Product Manual TNSR v19.05

IKE Encryption
The encryption algorithm used to encrypt IKE messages.

IKE Integrity
The integrity algorithm used to authenticate IKE messages

IKE DH/MODP Group
Diffie-Hellman group for key establishment, given in bits.

IKE Authentication
The type of authentication used to verify the identity of the peer.

Pre-Shared Key
When using Pre-Shared Key for IKE Authentication, this key is used on both sides to authenticate
the peer.

SA Lifetime
The amount of time that a child security association can be active before it is rekeyed.

SA Encryption
The encryption algorithm used to encrypt tunneled traffic.

SA Integrity
The integrity algorithm used to authenticate tunneled traffic.

SA DH/MODP Group
Diffie-Hellman group for security associations, in bits.

Local IPsec Address
The local IP address for the ipsecX interface, used for routing traffic to/from IPsec peers.

Remote IPsec Address
The remote IP address for the peer on ipsecX, used as a gateway for routing, or a BGP neighbor.

Warning: If NAT is active on the same interface acting as an IPsec endpoint, then NAT forwarding must also be
enabled. See NAT Forwarding.

orphan

12.2 IPsec Example

12.2.1 Required Information

This table contains the Required Information used to form the IPsec tunnel used in this example.

© Copyright 2025 Rubicon Communications LLC 108

Product Manual

TNSR v19.05

Table 1: Example IPsec Configuration

Item Value

Local Address 203.0.113.2
Local IKE Identity 203.0.113.2
Local Network(s) 10.2.0.0/16
Remote Address 203.0.113.25
Remote IKE Identity 203.0.113.25
Remote Network(s) 10.25.0.0/16
IKE Version 1

IKE Lifetime 28800

IKE Encryption AES-128

IKE Integrity SHA1

IKE DH/MODP Group 2048 (14)

IKE Authentication Pre-Shared Key
Pre-Shared Key mysupersecretkey
SA Lifetime 3600

SA Encryption AES-128

SA Integrity SHA1

SA DH/MODP Group 2048 (14)
Local IPsec Address 172.32.0.1/30
Remote IPsec Address 172.32.0.2

12.2.2 Example Configuration

This configuration session implements the tunnel described by the settings in Example IPsec Configuration:

tnsr(config)# ipsec tunnel 0
tnsr(config-ipsec-tun)# local-address 203.0.113.2
tnsr(config-ipsec-tun)# remote-address 203.0.113.25

tnsr(config-ipsec-tun)# crypto config-type ike

tnsr(config-ipsec-tun)# crypto ike
tnsr(config-ipsec-crypto-ike)# version 2
tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr(config-ike-proposal)# encryption aes128
tnsr(config-ike-proposal)# integrity shal
tnsr(config-ike-proposal)# group modp2048
tnsr(config-ike-proposal)# exit
tnsr(config-ipsec-crypto-ike)# identity local
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.2
tnsr(config-ike-identity)# exit

tnsr(config-ipsec-crypto-ike)# identity remote

tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.25
tnsr(config-ike-identity)# exit
tnsr(config-ipsec-crypto-ike)# authentication local
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

109

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit
tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey
tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit
tnsr(config-ipsec-crypto-ike)# child 1
tnsr(config-ike-child)# lifetime 3600
tnsr(config-ike-child)# proposal 1
tnsr(config-ike-child-proposal)# encryption aes128
tnsr(config-ike-child-proposal)# integrity shal
tnsr(config-ike-child-proposal)# group modp2048
tnsr(config-ike-child-proposal)# exit
tnsr(config-ike-child)# exit
tnsr(config-ipsec-crypto-ike)# exit
tnsr(config-ipsec-tun)# exit

tnsr(config)# interface ipsecO®
tnsr(config-interface)# ip address 172.32.0.1/30
tnsr(config-interface)# exit

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-route-table-v4)# route 10.25.0.0/16
tnsr(config-rttbl4-next-hop)# next-hop ® via 172.32.0.2 ipsec®
tnsr(config-rttbl4-next-hop)# exit
tnsr(config-route-table-v4)# exit

tnsr(config)# exit

This example is used as a reference through the remainder of the chapter.

orphan

12.3 IPsec Configuration

The ipsec tunnel <n> command, issued from config mode, changes to IPsec tunnel mode. This is denoted by
config-ipsec-tun in the prompt.

The identifier number for tunnel entries starts at ® and increments by one. To determine the next tunnel number for a
new entry, run ipsec tunnel ? and TNSR will print the existing tunnel ID numbers.

This command creates an IPsec tunnel with an identifier of 0:

tnsr(config)# ipsec tunnel 0
tnsr(config-ipsec-tun)#

The remainder of the configuration is covered in the following sections.

orphan

© Copyright 2025 Rubicon Communications LLC 110

Product Manual TNSR v19.05

12.3.1 IPsec Endpoints

Next, the IPsec tunnel needs endpoints, defined using the following commands from within config-ipsec-tun mode:

local-address
Defines the IP address used by TNSR for this IPsec tunnel. This address must exist on a TNSR
interface.

remote-address
Defines the IP address or hostname of the remote peer.

IPsec Endpoint Example

tnsr(config-ipsec-tun)# local-address 203.0.113.2
tnsr(config-ipsec-tun)# remote-address 203.0.113.25

orphan

12.3.2 IPsec Keys

Inside config-ipsec-tun mode, the following commands are available for IPsec key management.

crypto config-type (ikejmanual)
Configures the type of key management TNSR will use for this tunnel.
ike
Internet Key Exchange (IKE). The most common method of key management. IPsec

tunnels utilize IKE to dynamically handle key exchange when both parties are negoti-
ating a security association.

manual
Static key management.

crypto ike
Enters IKE config-ipsec-crypto-ike mode to configure IPsec IKE behavior, which is the bulk
of the remaining work for most IPsec tunnels.

IKE Configuration

Inside config-ipsec-crypto-ike mode, the following commands are available to configure basic IKE behavior:

version <x>
Instructs TNSR to use either IKEv1 or IKEv2. Use 2 for IKEv2, which is more secure, or 1 for
IKEv1 which is more common and more widely supported.

lifetime <x>
Sets the maximum time for this IKE session to be valid, in seconds within the range 120..
214783647. Default value is 14400 seconds (4 hours). Commonly set to 28800 seconds (8 hours).
This value should be longer than the IKE child lifetime, discussed later.

dpd-interval <x>
Optional time to wait between sending Dead Peer Detection (DPD) polls, given in seconds within
the range 0-65535.

© Copyright 2025 Rubicon Communications LLC 111

Product Manual TNSR v19.05

key-renewal (reauth|rekey)
Controls the method used to update keys on an established IKE security association (SA) before the
lifetime expires.

reauth
TNSR performs a full teardown and re-establishment of IKE and child SAs.

rekey
Inline rekeying while SAs stay active. Only available in IKEv2.

proposal <name>
Configures a new /KE proposal and enters config-ike-proposal mode.

identity (locallremote)
Configures /KE identity validation and enters config-ike-identity mode.

authentication (localjremote)
Configures /KE authentication and enters config-ike-auth mode.

Additional config-ipsec-crypto-ike mode commands are available to configure other aspects of the IPsec tunnel,
such as proposals, identity, and authentication. These are covered next.

IKE Example

This example tells TNSR to use IKE for key management, and then sets the tunnel to IKEv2 and a lifetime of 8 hours.

tnsr(config-ipsec-tun)# crypto config-type ike
tnsr(config-ipsec-tun)# crypto ike
tnsr(config-ipsec-crypto-ike)# version 2
tnsr(config-ipsec-crypto-ike)# lifetime 28800

Additional IKE Configuration
The remainder of the IKE configuration is covered in the following sections.

orphan

IKE Proposal

IKE Proposals instruct TNSR how the key exchange will be encrypted and authenticated. TNSR supports a variety of
encryption algorithms, integrity/authentication hash algorithms, pseudo-random functions (PRF), and Diffie-Hellman
(DH) group specifications. These choices must be coordinated between both endpoints.

Tip: Some vendor [Psec implementations refer to IKE/ISAKMP as “Phase 17, which may help when attempting to
map values supplied by a peer to their corresponding values in TNSR.

From within config-ipsec-crypto-ike mode, use the proposal <name> command to start a new proposal and
enter config-ike-proposal mode. In config-ike-proposal mode, the following commands are available:

encryption <ea-name>
Configures the encryption algorithm to use for the proposal.

integrity <ia-name>
Configures the integrity algorithm to use for the proposal.

© Copyright 2025 Rubicon Communications LLC 112

Product Manual TNSR v19.05

prf <prf-name>
Configures the pseudo-random function (PRF) to use for the proposal.

group <group-name>
Configures the Diffie-Hellman group (DH Group) to use for the proposal.

Tip: To see a list of supported choices for each option, follow the initial command with a ?, such as encryption ?.

Each of these is described in more detail in the following sections.

Encryption Algorithms

TNSR supports many common, secure encryption algorithms. Some older and insecure algorithms are not supported.
Algorithms based on AES are common and secure, and are widely supported by other VPN implementations.

AES-GCM, or AES Galois/Counter Mode is an efficient and fast authenticated encryption algorithm, which means it
provides data privacy as well as integrity validation, without the need for a separate integrity algorithm.

Additionally, AES-based algorithms can often be accelerated by AES-NI.

Warning: TNSR includes the Triple-DES (3DES) algorithm for compatibility with legacy systems, but it is not
considered secure. Specifically, 3DES is considered broken by attacks such as Sweet32. Use stronger encryption
algorithms where possible.

A full list of encryption algorithms supported by TNSR:

tnsr(config-ike-proposal)# encryption ?

<cr>
3des Triple-DES

aes128 128 bit AES-CBC

aes128ccml?2 128 bit AES-CCM with 12 byte ICV
aes128ccml6 128 bit AES-CCM with 16 byte ICV
aes128ccm8 128 bit AES-CCM with 8 byte ICV
aesl28ctr 128 bit AES-Counter

aes128gcml2 128 bit AES-GCM with 12 byte ICV
aes128gcml6 128 bit AES-GCM with 16 byte ICV
aes128gcm8 128 bit AES-GCM with 8 byte ICV
aes192 192 bit AES-CBC

aes192ccml2 192 bit AES-CCM with 12 byte ICV
aes192ccml6 192 bit AES-CCM with 16 byte ICV
aes192ccm8 192 bit AES-CCM with 8 byte ICV
aesl92ctr 192 bit AES-Counter

aes192gcml2 192 bit AES-GCM with 12 byte ICV
aes192gcml6 192 bit AES-GCM with 16 byte ICV
aes192gcm8 192 bit AES-GCM with 8 byte ICV
aes256 256 bit AES-CBC

aes256ccml?2 256 bit AES-CCM with 12 byte ICV
aes256ccml6 256 bit AES-CCM with 16 byte ICV
aes256ccm8 256 bit AES-CCM with 8 byte ICV
aes256¢tr 256 bit AES-Counter

aes256gcml2 256 bit AES-GCM with 12 byte ICV

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 113

https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://sweet32.info/

Product Manual

TNSR v19.05

(continued from previous page)

aes256gcml6 256 bit AES-GCM with 16 byte ICV

aes256gcm8 256 bit AES-GCM with 8 byte ICV

camellial28 128 bit Camellia

camellial28ccml?2 128 bit Camellia-CCM with 12 byte ICV

camellial28ccml6 128 bit Camellia-CCM with 16 byte ICV

camellial28ccm8 128 bit Camellia-CCM with 8 byte ICV

camellial28ctr 128 bit Camellia-Counter

camellial92 192 bit Camellia

camellial92ccml?2 192 bit Camellia-CCM with 12 byte ICV

camellial92ccml6 192 bit Camellia-CCM with 16 byte ICV

camellial92ccm8 192 bit Camellia-CCM with 8 byte ICV

camellial92ctr 192 bit Camellia-Counter

camellia256 256 bit Camellia

camellia256ccml2 256 bit Camellia-CCM with 12 byte ICV

camellia256ccml6 256 bit Camellia-CCM with 16 byte ICV

camellia256ccm8 256 bit Camellia-CCM with 8 byte ICV

camellia256¢tr 256 bit Camellia-Counter

chacha20poly1305 256 bit ChaCha20/Poly1305 with 16 byte ICV
Integrity Algorithms

Integrity algorithms provide authentication of messages and randomness, ensuring that packets are authentic and were
not altered by a third party before arriving, and also for constructing keying material for encryption.

Note: When using an authenticated encryption algorithm like AES-GCM with a child Security Association (SA) as
opposed to IKE/ISAKMP, an integrity option should not be configured, as it is redundant and reduces performance.

When an authenticated encryption algorithm is used with IKE, configure a Pseudo-Random Function (PRF) instead of
an Integrity Algorithm. If an integrity algorithm is defined in this case, TNSR will attempt to map the chosen algorithm

to an equivalent PRF.

A full list of integrity algorithms supported by TNSR:

tnsr(config-ike-proposal)# integrity ?

<cr>
aescmac
aesxchc
md5
shal
sha256
sha384
sha512

AES-CMAC 96
AES-XCBC 96

MD5

96

SHA1 96
SHA2 256 bit blocks, 128 bits output
SHA2 384 bit blocks, 192 bits output
SHA2 512 bit blocks, 256 bits output

© Copyright 2025 Rubicon Communications LLC

114

Product Manual TNSR v19.05

Pseudo-Random Functions

A Pseudo-Random Function (PRF) is similar to an integrity algorithm, but instead of being used to authenticate mes-
sages, it is only used to provide randomness for purposes such as keying material. PRFs are primarily used with
an authenticated encryption algorithm type such as AES-GCM, but they can be explicitly defined for use with other
integrity algorithms.

If a PRF is not explicitly defined, TNSR will attempt to derive the PRF to use based on the integrity algorithm for a
given proposal.

Note: In the case of AES-NI, prfaesxcbc is likely the most appropriate choice as it can be accelerated by AES-NI,
and it is more widely supported than its improved successor prfaescmac.

A full list of pseudo-random function supported by TNSR:

tnsr(config-ike-proposal)# prf ?

<cr>

prfaescmac AES128-CMAC PRF
prfaesxchbc AES128-XCBC PRF
prfmd5 MD5 PRF

prfshal SHA1 PRF
prfsha256 SHA2-256 PRF
prfsha3g84 SHA2-384 PRF
prfsha512 SHA2-512 PRF

Diffie-Hellman Groups

Diffie-Hellman (DH) exchanges allow two parties to establish a shared secret across an untrusted connection. DH
choices can be referenced in several different ways depending on vendor implementations. Some reference a DH group
by number, others by size. When referencing by group number, generally speaking higher group numbers are more
secure.

Tip: In most cases, modp2048 (Group 14) is the lowest choice considered to provide sufficient security in a modern
computing environment.

A full list of DH Groups supported by TNSR:

tnsr(config-ike-proposal)# group ?

<cr>
ecp256 Group 19 (256 bit ECP)

ecp384 Group 20 (384 bit ECP)

ecp521 Group 21 (521 bit ECP)

modp1024 Group 2 (1024 bit modulus)

modp1024s160 Group 22 (1024 bit modulus, 160 bit POS)
modp1536 Group 5 (1536 bit modulus)

modp2048 Group 14 (2048 bit modulus)

modp2048s224 Group 23 (2048 bit modulus, 224 bit POS)
modp2048s256 Group 24 (2048 bit modulus, 256 bit POS)
modp3072 Group 15 (3072 bit modulus)

modp4096 Group 16 (4096 bit modulus)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 115

Product Manual TNSR v19.05

(continued from previous page)

modp6144 Group 17 (6144 bit modulus)
modp768 Group 1 (768 bit modulus)
modp8192 Group 18 (8192 bit modulus)

Warning: TNSR supports modp768 (Group 1) and modp1024 (Group 2) for compatibility purposes but they are
considered broken by the Logjam Attack and should be avoided.

TNSR also supports modp1024s160 (Group 22), modp2048s224 (Group 23), and modp2048s256 (Group 24) for
compatibility but they should also be avoided as they have a questionable source of primes.

IKE Proposal Example

This example configures one proposal. This proposal uses AES-128 encryption, SHA-1 for integrity hashing, and DH
group 14 (2048 bit modulus).

tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr(config-ike-proposal)# encryption aesl128
tnsr(config-ike-proposal)# integrity shal
tnsr(config-ike-proposal)# group modp2048
tnsr(config-ike-proposal)# exit

orphan

IKE Identity

In IKE, each party must ensure it is communicating with the correct peer. One aspect of this validation is the identity
information included in IKE. Each router tells the other its own local identity and they each validate it against the stored
remote identity. If they do not match, the peer is rejected.

From within config-ipsec-crypto-ike mode, use the identity local and identity remote com-
mands to configure local and remote identity information. In either case, the identity command enters
config-ike-identity mode.

IKE requires both local and remote identities. The local identity is sent to the remote peer during the exchange. The
remote identity is used to validate the identity received from the peer during the exchange.

In config-ike-identity, the following commands are available:

type <name>
Sets the type of identity value. The following types are available:

address
IPv4 or IPv6 address in the standard notation for either (e.g. 192.0.2.3 or
2001:db8:1:2::3)

This is the most common type, with the value set to the address on TNSR used as the
local-address for the IPsec tunnel.

dn
An X.509 distinguished name (e.g. certificate subject)

email
Email address (e.g. user@example.com).

© Copyright 2025 Rubicon Communications LLC 116

https://weakdh.org/
https://eprint.iacr.org/2016/961

Product Manual TNSR v19.05

fqdn

A fully qualified domain name (e.g. host.example.com)
key-id

An arbitrary string used as an identity

none
Automatically interpret the type based on the value

value <text>
The identity value, in a format corresponding to the chosen type.

Note: The local identity type and value must both be supplied to the administrator of the remote peer so that it can
properly identify this endpoint.

Identity Example

First configure the local identity of this firewall. The identity is an IP address, using the same value as the local address
of the IPsec tunnel.

tnsr(config-ipsec-crypto-ike)# identity local
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.2
tnsr(config-ike-identity)# exit

Next, configure the remote identity. The remote peer has also chosen to use an IP address, the value of which is the
remote address used for the IPsec tunnel.

tnsr(config-ipsec-crypto-ike)# identity remote
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.25
tnsr(config-ike-identity)# exit

orphan

IKE Authentication

After verifying the identity, TNSR will attempt to authenticate the peer using the secret from its configuration in one
or two round passes. In most common configurations there is only a single authentication round, however in IKEv2 a
tunnel may have two rounds of unique authentication.

From within config-ipsec-crypto-ike mode, use the authentication local and authentication remote
commands to configure local and remote authentication information. In either case, the authentication command
enters config-ike-auth mode.

TNSR will use the parameters under authentication local to authenticate outbound traffic and the
authentication remote parameters are used to authenticate inbound traffic.

Note: With pre-shared key mode, most real-world configurations use identical values for both local and remote au-
thentication.

© Copyright 2025 Rubicon Communications LLC 117

Product Manual TNSR v19.05

From config-ike-auth mode, the round <n> command configures parameters for round 1 or 2. As mentioned
previously, most configurations will only use round 1. The round command then enters config-ike-auth-round
mode.

In config-ike-auth-round mode, the following commands are available:

type <name>
The type of authentication to perform.

Currently the only authentication type supported by TNSR is psk (pre-shared key).

psk <text>
For psk type authentication, this command defines the pre-shared key value.

IKE Authentication Example

This example only has one single round of authentication, a pre-shared key of mysupersecretkey. Thus, the type
is set to psk and then the psk is set to the secret value.

Warning: Do not transmit the pre-shared key over an insecure channel such as plain text e-mail!

First, add the local authentication parameters:

tnsr(config-ipsec-crypto-ike)# authentication local
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey
tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit

Next, configure the remote authentication parameters. As in most practical uses, this is set identically to the local
authentication value.

tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey
tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit

orphan

12.3.3 Security Associations

After establishing a secure channel, the two endpoints can negotiate an IPsec security association (IPsec SA) as a
“child” entry. TNSR supports adding multiple children as needed, though with routed IPsec only one is necessary.

Tip: Some vendor IPsec implementations refer to IPsec security association child entries as “Phase 2, which may
help when attempting to map values supplied by a peer to their corresponding values in TNSR.

From within config-ipsec-crypto-ike mode, the child <n> command configures the child noted by the given
number. The child command enters ike-child mode.

© Copyright 2025 Rubicon Communications LLC 118

Product Manual TNSR v19.05

Within ike-child mode, the following commands are available:

lifetime <x>
Sets the maximum time for this child IPsec SA to be valid before it must be rekeyed. The value is
given in seconds within the range 120..214783647. Default value is 3600 seconds (one hour). This
value must be shorter than the IKE lifetime, discussed earlier.

replay-window (0/64)
Number of packets in replay window. The replay window is used to protect the tunnel against attacks
where the sequence number is re-used or has been processed recently. Some allowance is helpful
in dealing with network link issues that cause packets to arrive late or out-of-order. A value of 0
disables the replay window. A value of 64 enables a 64 packet replay window.

proposal <name>
Each child may have one or more proposal entries which define acceptable encryption, integrity,
and DH Group (Perfect Forward Security, PFS) parameters to encrypt and validate the IPsec SA
traffic.

Child SA proposals work similarly to IKE/ISAKMP proposals as described in /KE Proposal.

This command enters config-ike-child-proposal mode to configure these proposals. in
config-ike-child-proposal mode, the following commands are available:

encryption <ea-name>
Configures the encryption algorithm to use for the proposal.

integrity <ia-name>
Configures the integrity algorithm to use for the proposal.

group <group-name>
Configures the Diffie-Hellman group (DH Group) to use for the proposal.

sequence-number (esn|noesn)
Controls whether or not TNSR will attempt to negotiate extended sequence number
(ESN) support with the peer. ESN uses 64-bit sequence numbers instead of the 32-bit
sequence numbers. The default is noesn which disables ESN negotiation.

Child SA Example

This example only has a single child, thus child 1. The child has a lifetime of 3600.

tnsr(config-ipsec-crypto-ike)# child 1
tnsr(config-ike-child)# lifetime 3600

Next, create a child SA proposal. This example uses AES-128 for encryption, SHA-1 for an authentication hash, and
PFS group 14 (2048 bit modulus).

tnsr(config-ike-child)# proposal 1
tnsr(config-ike-child-proposal)# encryption aesl28
tnsr(config-ike-child-proposal)# integrity shal
tnsr(config-ike-child-proposal)# group modp2048

This completes the configuration for the IPsec tunnel, at this point after exiting back to basic mode the tunnel will
attempt to establish a connection to the peer.

tnsr(config-ike-child-proposal)# exit
tnsr(config-ike-child)# exit
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 119

Product Manual TNSR v19.05

(continued from previous page)
tnsr(config-ipsec-crypto-ike)# exit
tnsr(config-ipsec-tun)# exit

orphan

12.3.4 Configuring the IPsec Interface

TNSR supports routed IPsec via the ipsecX interface. The number of the ipsec interface corresponds to the index
number of the tunnel set previously. For example ipsec tunnel 0 is ipsec@®, and ipsec tunnel 2 is ipsec2.

These IPsec interfaces are used to configure routed IPsec connectivity and they behave like most other interfaces. For
example, they can have access lists defined to filter traffic.

The ipsecX interface should be configured with an IP address and the peer will have its own IP address in the same
subnet. This allows the two endpoints to communicate directly over the IPsec interface and also gives the peer an
address through which traffic for other subnets may be routed. When configured in this way, it acts like a directly
connected point-to-point link to the peer.

IPsec Interface Example

In this example, the ipsec® interface is given an address of 172.32.0.1/30. The remote peer will be 172.32.0.2/
30

tnsr(config)# interface ipsec®
tnsr(config-interface)# ip address 172.32.0.1/30
tnsr(config-interface)# exit

orphan

12.3.5 IPsec Routes

The IPsec interface allows the peers to talk directly, but in most cases with [Psec there is more interesting traffic to
handle. For example, a larger subnet on the LAN side of each peer that must communicate securely.

To allow these networks to reach one another, routes are required. These may be managed manually using static routes,
or a dynamic routing protocol such as BGP can manage the routes automatically.

IPsec Static Route Example

This example adds a static route to the main IPv4 routing table for a subnet located behind the peer. Any traffic trying
to reach a host inside the 10.25.0.0/16 subnet will be routed through the ipsec® interface using the peer address in
that subnet (172.32.0.2) as the next hop.

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-route-table-v4)# route 10.25.0.0/16
tnsr(config-rttbl4-next-hop)# next-hop 0 via 172.32.0.2 ipsec®
tnsr(config-rttbl4-next-hop)# exit
tnsr(config-route-table-v4)# exit

tnsr(config)# exit

© Copyright 2025 Rubicon Communications LLC 120

Product Manual TNSR v19.05

See also:
For a larger example involving BGP for dynamic route management, see TNSR [Psec Hub for pfSense.

orphan

12.4 IPsec Status Information

To view status information about active IPsec tunnels, use the show ipsec tunnel command. This command prints
status output for all [Psec tunnels, and it also supports printing tunnel information individually by providing the tunnel
ID. This command supports several additional parameters to increase or decrease the amount of information it displays.

The following forms of show ipsec tunnel are available:

show ipsec tunnel
Display a short summary of all IPsec tunnels.

show ipsec tunnel n
Display a short summary of a specific IPsec tunnel n.

show ipsec tunnel [n] verbose
Display a verbose list of all IPsec tunnels, optionally limited to a single tunnel n. The output shows
detailed information such as active encryption, hashing, DH groups, identifiers, and more.

show ipsec tunnel [n] ike [verbose]
Display only IKE parameters of all tunnels. Optionally limited to a single tunnel n and/or expanded
details with verbose.

show ipsec tunnel [n] child [verbose]
Display only IPsec child Security Association parameters of all tunnels. Optionally limited to a single
tunnel n and/or expanded details with verbose

12.4.1 IPsec Status Examples

Show the status of tunnel 0:

tnsr# show ipsec tunnel 0
IPsec Tunnel: 0
IKE SA: ipsec® ID: 13 Version: IKEvl
Local: 203.0.113.2 Remote: 203.0.113.25
Status: ESTABLISHED Up: 372s Reauth: 25275s
Child SA: child® ID: 7
Status: INSTALLED Up: 372s Rekey: 2523s Expire: 3228s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets
Child SA: child® ID: 8
Status: INSTALLED Up: 372s Rekey: 2813s Expire: 3228s
Received: 0 bytes, 0 packets
Transmitted: O bytes, 0 packets
Child SA: child® ID: 9
Status: INSTALLED Up: 372s Rekey: 2583s Expire: 3228s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets

Adding the verbose keyword also shows detailed information about the encryption parameters:

© Copyright 2025 Rubicon Communications LLC 121

Product Manual

TNSR v19.05

tnsr# show ipsec tunnel 0 verbose
IPsec Tunnel: ©®
IKE SA: ipsec® ID: 13 Version: IKEvl

Local: 203.0.113.2 Remote: 203.0.113.25

Status: ESTABLISHED Up: 479s Reauth: 25168s

Local ID: 203.0.113.2 Remote ID: 203.0.113.25

Cipher: AES_CBC 128 MAC: HMAC_SHA1_96

PRF: PRF_HMAC_SHA1 DH: MODP_2048

SPI Init: 1880997989256787091 Resp: 1437908875259838715

Initiator: yes

Child SA: child® ID: 7
Status: INSTALLED Up: 479s Rekey: 2416s Expire: 3121s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96 PFS: MODP_2048
SPI in: 3540263882 out: 974161796

Child SA: child® ID: 8
Status: INSTALLED Up: 479s Rekey: 2706s Expire: 3121s
Received: 0 bytes, 0 packets
Transmitted: O bytes, 0 packets
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96 PFS: MODP_2048
SPI in: 2432966668 out: 1361993947

Child SA: child® ID: 9
Status: INSTALLED Up: 479s Rekey: 2476s Expire: 3121s
Received: 0 bytes, 0 packets
Transmitted: O bytes, 0 packets
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96 PFS: MODP_2048
SPI in: 2318058408 out: 1979056986

Specifying the ike or child parameter filters the output, and these also support verbose output.

tnsr# show ipsec tunnel 0 ike
IPsec Tunnel: 0
IKE SA: ipsec® ID: 13 Version: IKEvl
Local: 203.0.113.2 Remote: 203.0.113.25
Status: ESTABLISHED Up: 372s Reauth: 25275s

tnsr# show ipsec tunnel O ike verbose
IPsec Tunnel: 0
IKE SA: ipsec® ID: 13 Version: IKEvl

Local: 203.0.113.2 Remote: 203.0.113.25
Status: ESTABLISHED Up: 479s Reauth: 25168s
Local ID: 203.0.113.2 Remote ID: 203.0.113.25
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96
PRF: PRF_HMAC_SHA1 DH: MODP_2048
SPI Init: 1880997989256787091 Resp: 1437908875259838715
Initiator: yes

orphan

© Copyright 2025 Rubicon Communications LLC

122

Product Manual TNSR v19.05

12.5 IPsec Cryptographic Acceleration

TNSR will automatically configure software cryptographic acceleration for VPP if an IPsec tunnel is defined in the
configuration. To enable this configuration, the VPP service must be restarted manually so it can enable the feature and
allocate additional memory.

Note: The cryptographic accelerator setting applies to all tunnels, so the restart is only required after the first [Psec
tunnel configured by TNSR. The restart is not required for additional tunnels or when changing IPsec settings.

Restart the VPP dataplane from the TNSR basic mode CLI using the following command:

tnsr# config
tnsr(config)# service dataplane restart

If the TNSR configuration contains no IPsec tunnels, TNSR will not require the memory resources associated with
cryptographic acceleration and TNSR will not require a restart of the VPP dataplane service.

See also:
See DPDK Configuration for information on further configuration of cryptographic acceleration in the dataplane.

orphan

© Copyright 2025 Rubicon Communications LLC 123

CHAPTER
THIRTEEN

NETWORK ADDRESS TRANSLATION

Network Address Translation, or NAT, involves changing properties of a packet as it passes through a router. Typically
this is done to mask or alter the source or destination to manipulate how such packets are processed by other hosts.

The most common examples are:

* Source NAT, also known as Outbound NAT, which translates the source address and port of a packet to mask its
origin.
¢ Destination NAT, commonly referred to as Static NAT or Port Forwards which translate the destination address

and port of a packet to redirect the packet to a different target host behind the router.

TNSR applies NAT based on the configured mode and the presence of directives that set inside (internal/local) and
outside (external/remote) interfaces.

An inside interface is a local interface where traffic enters and it will have its source hidden by NAT. An outside
interface is an interface where that translation will occur as a packet exits TNSR. An example of this is shown in
Outbound NAT .

Note: NAT is processed after ACL rules. For more information, see ACL and NAT Interaction.

orphan

13.1 Dataplane NAT Modes

The dataplane has several NAT modes that may be used. This mode is configured via the dataplane nat mode
<mode> command from config mode.

The following modes are available:

simple
Simple NAT mode. Holds less information for each session, but only works with outbound
NAT and static mappings.

endpoint-dependent
Endpoint-dependent NAT mode. The default mode. Uses more information to track each
session, which also enables additional features such as out-to-in-only and twice-nat.

deterministic
Deterministic NAT (CGN) mode. Used for large-scale deployments with a focus on per-
formance at a cost of using much more memory.

After changing the NAT mode, the dataplane must be restarted with service dataplane restart.

124

Product Manual TNSR v19.05

Note: There must be at least one inside and outside interface for NAT to function, see Network Address Translation
and Outbound NAT for more details.

13.1.1 Simple NAT

Simple NAT is the most basic NAT mode. It tracks sessions in a hash table using four items:
* Source IP address
 Source port
* Protocol
* FIB table index

Simple NAT has a couple basic options that may be adjusted using the dataplane nat mode-options simple
<option> command:

out2in-dpo
Enables out-to-in DPO

static-mapping-only
Static mapping only, disables dynamic translation of connections.

13.1.2 Endpoint-dependent NAT

Endpoint-dependent NAT mode is the default NAT mode on TNSR. Endpoint-dependent NAT mode tracks more in-
formation about each connection. As suggested by the name, the key difference is in tracking the destination of the
connection:

* Source IP address
* Source port

e Target IP address
* Target port

* Protocol

* FIB table index

Some NAT features require this extra information, notably out-to-in-only and twice-nat.

13.1.3 Deterministic NAT

Deterministic NAT mode, also known as Carrier-Grade NAT (CGN) mode, is geared for maximum performance at a
large scale. This performance comes at a price, however, in that it consumes greater amounts of memory to achieve its
goals.

For more information on Deterministic NAT, see Deterministic NAT .

orphan

© Copyright 2025 Rubicon Communications LLC 125

Product Manual TNSR v19.05

13.2 NAT Options

The NAT options described here control TNSR NAT behavior independent of the chosen mode.

13.2.1 NAT Forwarding

When NAT is active, it will affect traffic to and from services on TNSR, such as IPsec and BGP. When NAT is enabled,
by default TNSR will drop traffic that doesn’t match an existing NAT session or static NAT rule. To change this behavior,
enable NAT forwarding mode:

[tnsr(config)# nat global-options nat44 forwarding true }

If NAT is active and there are no services present on TNSR which need to communicate using an interface involved
with NAT, then it is more secure and efficient to disable forwarding:

[tnsr(config)# nat global-options nat44 forwarding false]

orphan

13.3 NAT Pool Addresses

Before TNSR can perform any type of NAT, an inside and outside interface must be set and the outside/external
addresses (e.g. WAN-side) must be listed in a NAT pool. These pools are added from configure mode (Configuration
Mode) in the TNSR CLI (Entering the TNSR CLI).

For a single external address, define a NAT pool like so:

[tnsr(config)# nat pool addresses 203.0.113.2]

For multiple addresses, use a range:

[tnsr(config)# nat pool addresses 203.0.113.2 - 203.0.113.5 J

TNSR also supports using an interface to automatically determine the pool addresses:

[tnsr(config)# nat pool interface GigabitEthernet0/14/1]

For Outbound NAT this is typically the interface set as ip nat outside.

orphan

13.4 Outbound NAT

Outbound NAT, sometimes referred to as Source NAT, Overload NAT or Port Address Translation (PAT), changes the
source address and port of packets exiting a given interface. This is most commonly performed in order to hide the
origin of a packet, allowing multiple IPv4 hosts inside a network to share one, or a limited number of, external or
outside addresses on a router.

In TNSR, this type of NAT is configured by marking the LAN or internal interface as inside and the WAN or external
interface as outside, for example:

© Copyright 2025 Rubicon Communications LLC 126

Product Manual TNSR v19.05

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# interface GigabitEthernet®/14/1
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet0/14/2
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit

tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)#

Traffic originating on the inside interface and exiting the outside interface will have its source address changed to match
that of the outside interface.

Warning: The address of the outside interface must exist as a part of a NAT pool (NAT Pool Addresses) or
connectivity from the inside interface will not function with NAT configured. Use either an address pool as shown
above, or nat pool interface <name> where <name> is the same interface that contains ip nat outside.

Warning: When activating ip nat outside, services on TNSR may fail to accept or initiate traffic on that
interface depending on the NAT mode. For services on TNSR to function in combination with ip nat outside,
endpoint-dependent NAT mode must be enabled. In TNSR 18.11 and later, this is the default mode.

The following commands set TNSR to endpoint-dependent NAT mode:

tnsr(config)# dataplane nat mode endpoint-dependent
tnsr(config)# service dataplane restart

Additionally, NAT forwarding must be enabled for this traffic to be accepted by TNSR. See NAT Forwarding for
details.

orphan

13.5 Static NAT

Static NAT entries alter traffic, redirecting it to a static host on an internal network, or mapping it to a static address on
the way out:

tnsr(config)# nat pool addresses <external address>

tnsr(config)# nat static mapping (icmp|tcp|udp) local <local address> [local port].
—,external (external address|external interface) [external port] [twice-nat] [out-to-in-
—only] [route-table <rt-tbl-name>]

There are two common use cases for static NAT in practice: Port Forwarding and 1:1 NAT.

Warning: Remember to add the address of the outside interface as a part of a NAT pool (NAT Pool Addresses) or
the static NAT entry will fail to commit.

© Copyright 2025 Rubicon Communications LLC 127

Product Manual TNSR v19.05

Warning: The out-to-in-only and twice-nat features require endpoint-dependent NAT mode. In TNSR
18.11 and later, this is the default mode.

The following commands set TNSR to endpoint-dependent NAT mode:

tnsr(config)# dataplane nat mode endpoint-dependent
tnsr(config)# service dataplane restart

13.5.1 Port Forwards

Port forwards redirect a port on an external NAT pool address to a port on a local host. A port forward is accomplished
by specifying ports in the static NAT command:

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# nat static mapping tcp local 10.2.0.5 22 external 203.0.113.2 222

In the above example, a TCP connection to port 222 on 203.0.113.2 will be forwarded to port 22 on 10.2.0.5. The
source address remains the same.

13.5.2 1:1 NAT

1:1 NAT, also called One-to-One NAT or in some cases “Network Address Translation”, maps all ports of an external
address for a given protocol to an an internal address. This mapping works for inbound and outbound packets. To
create a 1:1 mapping, make a static NAT entry which does not specify any ports:

tnsr(config)# nat pool addresses 203.0.113.3
tnsr(config)# nat static mapping tcp local 10.2.0.5 external 203.0.113.3

13.5.3 Twice NAT

Twice NAT changes both the source and destination address of inbound connection packets. This works similar to a
static NAT port forward, but requires an additional NAT address specification.

First, add the internal address for source translation:

[tnsr(config)# nat pool addresses 10.2.0.2 twice-nat J

Next, add the external address to which the client originally connects:

[tnsr(config)# nat pool addresses 203.0.113.2 J

Finally, add the static mapping which sets up the destination translation:

[tnsr(config)# nat static mapping tcp local 10.2.0.5 22 external 203.0.113.2 222 twice—nat]

In the above example, a TCP connection to port 222 on 203.0.113.2 will be forwarded to port 22 on 10.2.0.5. When
the packet leaves TNSR, the source is translated so the connection appears to originate from 10.2.0.2 using a random
source port.

Warning: This feature requires endpoint-dependent NAT mode. In TNSR 18.11 and later, this is the default mode.

The following commands set TNSR to endpoint-dependent NAT mode:

© Copyright 2025 Rubicon Communications LLC 128

Product Manual TNSR v19.05

tnsr(config)# dataplane nat mode endpoint-dependent
tnsr(config)# service dataplane restart

orphan

13.6 NAT Reassembly

If a packet is fragmented before it arrives on a TNSR interface, only the initial fragment packet contains header in-
formation needed to properly apply NAT. Later fragments lack these details, which prevents TNSR NAT from seeing
port data. This can lead to fragments being mishandled because TNSR has no way to determine what it should do to
these fragments. NAT reassembly works around this problem by holding fragments and reassembling entire packets
for inspection, allowing TNSR to properly act upon the full packet.

13.6.1 Configuration

The nat reassembly (ipv4|ipv6) command, available from config mode, enters config-nat-reassembly
mode to configure how NAT fragment reassembly behaves for either IPv4 or IPv6.

The following commands are available within config-nat-reassembly mode:

concurrent-reassemblies <max-reassemblies>
Configures the maximum number of packets held for reassembly at any time. Default 1024.

disable
Disables NAT reassembly

enable
Enables NAT reassembly

fragments <max-fragments>
Maximum number of fragments to reassemble. Default 5.

timeout <seconds>
Number of seconds to wait for additional fragments to arrive for reassembly. Default 2 seconds.

13.6.2 View Configuration

To view the current values in the configuration for NAT reassembly, use show nat reassembly:

tnsr# show nat reassembly

NAT Reassembly Parameters
Family: ipv4
Enabled : true
Timeout : 2 seconds
Max Fragments : 5
Max concurrent reassemblies: 1024
Family: ipv6
Enabled : true
Timeout : 2 seconds
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 129

Product Manual TNSR v19.05

(continued from previous page)

Max Fragments : 5
Max concurrent reassemblies: 1024

orphan

13.7 Dual-Stack Lite

Dual-Stack Lite, also knows as DS-Lite, is mechanism which facilitates large scale IPv4 NAT by encapsulating IPv4
packets inside IPv6 packets for delivery to a Carrier-Grade NAT (CGN) endpoint. This allows providers to provision
end users with only a routed IPv6 address, and any IPv4 traffic is carried through IPv6 to a CGN device. Once the IPv6
packet reaches the CGN device, the IPv4 packet is extracted, has NAT applied, and is forwarded. The CGN device will
apply NAT using one of its routable IPv4 addresses, shared between DS-Lite users.

By using encapsulation, DS-Lite avoids multiple layers of NAT between the customer and the Internet. An end-user
network which connects to a DS-Lite provider should not perform any IPv4-IPv4 NAT on the traffic before it reaches
a router configured for DS-Lite.

DS-Lite is considered an IPv6 transition mechanism as it allows providers to reduce their dependence on scarce IPv4
routable addresses, while still giving clients full access to IPv4 and IPv6 resources. It also removes the need to use
potentially conflicting IPv4 private address space for [Pv4 routing inside a provider network.

There are two endpoints to DS-Lite connections:
* DS-Lite Basic Bridging BroadBand (B4) element on the customer end
e DS-Lite Address Family Transition Router (AFTR) element at the provider end
From a customer perspective, their side is before (B4) DS-Lite and the ISP side is after (AFTR) DS-Lite.

TNSR can operate in either capacity: As a CPE DS-Lite B4 client endpoint, or as an AFTR endpoint providing DS-Lite
connectivity and IPv4 NAT to clients.

13.7.1 Acting as a B4 Endpoint

For a customer premise equipment (CPE) role which connects to an ISP offering DS-Lite service, the following steps
are required:

First, configure IPv6 connectivity to the ISP.

Next, configure the local IPv6 address TNSR will use for its DS-Lite B4 endpoint. For example, this might be the IPv6
WAN interface address:

[tnsr(config)# dslite b4 endpoint <ip6-address>

Finally, configure the remote IPv6 DS-Lite AFTR endpoint address given by the ISP:

[tnsr(config)# dslite aftr endpoint <ip6-address>

© Copyright 2025 Rubicon Communications LLC 130

Product Manual TNSR v19.05

13.7.2 Acting as an AFTR Endpoint

For a provider role as a DS-Lite AFTR endpoint serving customers, the following steps are required:

First, configure IPv6 and IPv4 connectivity such that this TNSR instance has both IPv6 and IPv4 connectivity to the
Internet.

Next, configure the local AFTR IPv6 address TNSR will use to receive DS-Lite encapsulated packets from customer
equipment:

[tnsr(config)# dslite aftr endpoint <ip6-address>]

Next, configure one or more routable (“public”) IPv4 addresses for the DS-Lite NAT pool. These addresses are used
by TNSR to apply NAT to outgoing IPv4 traffic which arrived via DS-Lite:

[tnsr(config)# dslite pool address <ipv4-addr-first> [- <ipv4-addr-last>]]

IPv4 packets arriving through DS-Lite from a customer will be removed from the encapsulation, have NAT applied,
and then be forwarded upstream (e.g. to the Internet). Reply packets will come back, and then go back through NAT
and DS-Lite to reach customers.

13.7.3 DS-Lite Status

To view active DS-Lite sessions, use the following command:

[tnsr# show dslite }

orphan

13.8 Deterministic NAT

Deterministic NAT mode, also known as Carrier-Grade NAT (CGN) mode, is geared for maximum performance at a
large scale. This performance comes at a price, however, in that it consumes greater amounts of memory to achieve its
goals.

To switch the NAT mode used by TNSR, see Dataplane NAT Modes.

Deterministic NAT pre-allocates 1000 external ports per inside address, which can increase memory requirements
significantly. Each single session requires approximately 15 Bytes of memory.

Deterministic NAT enforces maximum numbers of NAT sessions per user, and only works for TCP, UDP, and ICMP
protocols.

Deterministic NAT requires a mapping, configured as follows:

[tnsr(config)# nat deterministic mapping inside <inside-prefix> outside <outside-prefix> J

In this command, the parameters to replace are:

inside <inside-prefix>
The internal subnet containing local users, for example, 198.18.0.0/15.

outside <outside-prefix>
The external subnet to which these users will be mapped using deterministic NAT. For example,
203.0.113.128/25.

Configured mappings may be viewed as follows:

© Copyright 2025 Rubicon Communications LLC 131

Product Manual TNSR v19.05

tnsr(config)# show nat deterministic-mappings
Deterministic Mappings

Inside Outside Ratio Ports Sessions

198.14.0.0/15 203.0.113.128/25 1024 63 0

NAT Reassembly Parameters

13.9 NAT Status

TNSR offers several ways to view the active NAT configuration, rules, and sessions. These start with nat show, and
are all available in config and master mode.

13.9.1 View NAT Configuration

To view the current NAT configuration parameters (not rules), use show nat config:

tnsr# show nat config

NAT Configuration Parameters
translation hash buckets 1024
translation hash memory 134217728
deterministic false

user hash buckets 128

user hash memory 67108864

max translations per user 100
outside Route Table ipv4-VRF:0
inside Route Table ipv4-VRF:0
dynamic mapping enabled
forwarding is disabled

13.9.2 View Static Mappings

To view currently configured static NAT mappings, use show nat static-mappings:

tnsr# show nat static-mappings
Static Mappings
Proto Local IP Port External IP Port Interface Twice NAT Out to In Route Table

tcp 10.2.0.5 22 203.0.113.2 222 ipv4-VRF:0

© Copyright 2025 Rubicon Communications LLC 132

Product Manual TNSR v19.05

13.9.3 View Deterministic Mappings

To view currently configured deterministic NAT mappings, use show nat deterministic-mappings:

tnsr# show nat deterministic-mappings
Deterministic Mappings

Inside Outside Ratio Ports Sessions

198.14.0.0/15 203.0.113.128/25 1024 63 0

NAT Reassembly Parameters

13.9.4 View Dynamic Configuration

To view the IP addresses or interfaces currently assigned for use by NAT, use show nat dynamic addresses or
show nat dynamic interfaces, depending on the TNSR NAT configuration:

tnsr# show nat dynamic addresses

Pool Addresses Route Table Twice NAT

203.0.113.2

13.9.5 View Interfaces

To view the interfaces which are currently marked as inside and outside for NAT purposes, use show nat
interface-sides:

tnsr# show nat interface-sides

Interfaces Side

GigabitEthernet®/14/0 outside
GigabitEthernet3/0/0 inside

13.9.6 View NAT Fragment Reassembly

To view NAT packet fragment reassembly parameters, use show nat reassembly:

tnsr# show nat reassembly

NAT Reassembly Parameters
Family: ipv4
Enabled : true
Timeout : 2 seconds
Max Fragments : 5
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 133

Product Manual TNSR v19.05

(continued from previous page)

Max concurrent reassemblies: 1024
Family: ipv6

Enabled : true

Timeout : 2 seconds

Max Fragments : 5

Max concurrent reassemblies: 1024

13.9.7 View NAT Sessions

To view a summary of outgoing NAT sessions by source address, use show nat sessions:

tnsr# show nat sessions

NAT sessions

IP address Static Dynamic Route Table
10.2.0.1 0 4 ipv4-VRF:0
203.0.113.2 0 1 ipv4-VRF:0

To see more detail for each specific session, add verbose to the previous command, which becomes show nat
sessions verbose:

tnsr# show nat sessions verbose

NAT sessions detail

Proto Inside/Outside/Ext Type Route Table Last used Bytes/pkts

udp 10.2.0.1:123 dynamic ipv4-VRF:0 143 498
203.0.113.2:16253 6
52.6.160.3:123

udp 10.2.0.1:123 dynamic ipv4-VRF:0 143 498
203.0.113.2:18995 6
184.105.182.7:123

udp 10.2.0.1:123 dynamic ipv4-VRF:0 145 498
203.0.113.2:53893 6
69.36.182.57:123

udp 10.2.0.1:123 dynamic ipv4-VRF:0 207 498
203.0.113.2:44109 6

198.50.238.163:123

orphan

© Copyright 2025 Rubicon Communications LLC 134

Product Manual TNSR v19.05

13.10 NAT Examples

The examples in this section describe and demonstrate use cases and packet flows for typical scenarios involving NAT.

13.10.1 AWS NAT Examples

When using TNSR with AWS, it is relatively easy to unintentionally create an asymmetric routing situation. AWS
knows about your local networks and will happily egress traffic with NAT for them, when other networking setups
would otherwise drop or fail to hand off the traffic.

The examples in this section covers what would happen with a TNSR setup in AWS with two instances: An internal
LAN instance with a local “client” system making an outbound request, and an external WAN instance that is intended
to handle public-facing traffic. TNSR sits between the WAN and LAN instance to route traffic. In AWS, the VPC
routing table is configured such that the LAN instance uses TNSR for its default gateway. The expected flow is that
traffic flows from clients, through TNSR, to the Internet and back the same path.

This table lists the networks and addresses used by these examples.

Item Value

AWS Networks 192.0.2.0/24 (LAN), 198.18.5.0/24 (WAN), 203.0.113.0/24 (External)
AWS Gateways 192.0.2.1 (LAN), 198.18.5.1 (WAN), 203.0.113.1 (External)

TNSR LAN 192.0.2.2/24

TNSR WAN 198.18.5.2

TNSR GW 198.18.5.1 (AWS Gateway)
LAN Client 192.0.2.5/24

LAN Client GW 192.0.2.2 (TNSR LAN)
Server 198.51.100.19/24

Server GW 198.51.100.1

AWS Example without NAT

In this example, TNSR is not configured to perform NAT. This example steps through each portion of a packet and its
reply, and then discusses the problems at the end.

First, the client initiates a connection using a packet which arrives on the TNSR LAN interface

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 192.0.2.2

TNSR performs a FIB lookup. The destination IP address is not within the the subnets configured on the TNSR instance
interfaces, so it matches the default route

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 Default

TNSR forwards the packet out its WAN interface to its default gateway on the WAN. TNSR is not configured for NAT,
thus it does not perform any translation.

© Copyright 2025 Rubicon Communications LLC 135

Product Manual TNSR v19.05

m Example Without NAT

WAN Instance

Server

AWS NAT

LAN Instance

LN ’,

Fig. 1: AWS example packet flow without NAT

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 198.18.5.1

The packet reaches the AWS internet gateway connected to the VPC. Its source IP address is still the private IP address
of the LAN instance.

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 198.18.5.1

The AWS internet gateway performs NAT. It recognizes the source IP address as belonging to the LAN instance and
rewrites it to the public IP address of the LAN instance.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 Default

The AWS internet gateway forwards the packet to the internet.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 203.0.113.1

The destination host sends a reply to the public IP address of the LAN instance. It arrives at the AWS internet gateway.

© Copyright 2025 Rubicon Communications LLC 136

Product Manual TNSR v19.05

Proto Source Destination Via
TCP 198.51.100.19:443 203.0.113.50:40250 198.51.100.1

The AWS internet gateway performs NAT. It recognizes the destination IP address as belonging to LAN instance and
rewrites it to the private IP address of the LAN instance.

Proto Source Destination Via
TCP 198.51.100.19:443 192.0.2.5:1025 Direct L2 LAN

The AWS internet gateway knows how to reach the private IP address of the LAN instance directly, so it forwards the
reply packet directly to the LAN instance, skipping the TNSR instance.

Proto Source Destination Via
TCP 198.51.100.19:443 192.0.2.5:1025 Direct L2 LAN

The packet arrives at the client.

The return path skipped TNSR, so TNSR is only seeing half the packets for the connection. At best this means the asym-
metric routing will bypass any filtering or inspection of the replies (IDS/IPS), and at worst it could mean subsequent
packets would be dropped instead of passing through TNSR.

AWS Example with NAT

In this example, TNSR has NAT configured such that its LAN is defined as an inside interface and its WAN is an
outside interface. See Outbound NAT for details. Packets leaving the WAN will be translated such that they leave
with a source address set to the TNSR WAN interface IP address.

m Example With NAT

WAN Instance

r Server
TNSR NAT AWS NAT

LAN Instance

LN ’,

Fig. 2: AWS example packet flow with NAT

© Copyright 2025 Rubicon Communications LLC 137

Product Manual TNSR v19.05

First, the client initiates a connection using a packet which arrives on the TNSR LAN interface

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 192.0.2.2

TNSR performs a FIB lookup. The destination IP address is not within the the subnets configured on the TNSR instance
interfaces, so it matches the default route

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 Default

TNSR applies NAT and forwards the packet out its WAN interface to its default gateway on the WAN subnet.

Proto Source Destination Via
TCP 198.18.5.2:34567 198.51.100.19:443 198.18.5.1

The packet reaches the AWS internet gateway connected to the VPC. Its source IP address is the private IP address of
the TNSR WAN instance.

Proto Source Destination Via
TCP 198.18.5.2:34567 198.51.100.19:443 198.18.5.1

The AWS internet gateway performs NAT. It recognizes the source IP address as belonging to the WAN instance and
rewrites it to the public IP address of the WAN instance.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 Default

The AWS internet gateway forwards the packet to the internet.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 203.0.113.1

The destination host sends a reply to the public IP address of the WAN instance. It arrives at the AWS internet gateway.

Proto Source Destination Via
TCP 198.51.100.19:443 203.0.113.50:40250 198.51.100.1

The AWS internet gateway performs NAT. It recognizes the destination IP address as belonging to WAN instance and
rewrites it to the private IP address of the WAN instance. The AWS internet gateway knows how to reach the private
IP address of the WAN instance directly, so it forwards the reply packet directly to the WAN instance.

Proto Source Destination Via
TCP 198.51.100.19:443 198.18.5.2:34567 Direct L2 WAN

© Copyright 2025 Rubicon Communications LLC 138

Product Manual TNSR v19.05

The packet arrives at the TNSR WAN, which performs NAT. It recognizes the source and destination as matching an
existing NAT state belonging to the LAN client and rewrites the destination address to the LAN client. TNSR knows
how to reach the client LAN IP address directly, so it forwards the reply packet.

Proto Source Destination Via
TCP 198.51.100.19:443 192.0.2.5:1025 Direct L2 LAN

The packet arrives back at the client.

In this case, the NAT performed on TNSR ensured that the AWS gateway delivered the reply back to TNSR instead of
handing it off directly. This allowed the packet and its reply to use the same path outbound and inbound.

orphan

© Copyright 2025 Rubicon Communications LLC 139

CHAPTER
FOURTEEN

MAP (MAPPING OF ADDRESS AND PORT)

MAP is short for Mapping of Address and Port. It is a carrier-grade IPv6 transition mechanism capable of efficiently
transporting high volumes of IPv4 traffic across IPv6 networks.

There are two MAP implementations in TNSR Enterprise: MAP-T which uses translation and MAP-E which uses
encapsulation.

With MAP, IPv4 requests are forwarded from an end user Customer Edge (CE) device through an IPv6 Border Relay
(BR) router which processes and forwards the requests to IPv4 destinations. Customer IPv6 requests can can proceed
directly to IPv6 destinations without going through the BR, which lowers the burden on the BR.

MAP is stateless, thus capable of handling large scale traffic volume without additional overhead for tracking individual
connections. Each CE device receives a public IPv4 address but may only use a specific port range on that address.
In this way, multiple users may share a public address without an additional layer of NAT. Since this relationship is
predetermined, the ports are also available bidirectionally, which is not possible with other solutions such as Carrier-
Grade NAT/NAT444.

MAP-T and MAP-E require port information to operate, thus fragments must be reassembled at the BR before forward-
ing. This is due to the fact that protocol and port information are only present in the first packet. Intelligent caching &
forwarding may be employed for handling fragments.

TNSR can currently act as a BR, providing service to CE clients.

orphan

14.1 MAP Configuration

MAP configurations consist of MAP domains, MAP rules, and interface configuration.

14.1.1 MAP Domains

A MAP domain encompasses a set of addresses, translation parameters, and MAP rules. Groups of CE devices belong
to specific MAP domains.

A MAP domain is created in config mode using the nat nat64 map <domain name>command from within config
mode. That command enters config-map mode.

This mode, config-map, contains a number of MAP options specific to a MAP domain:

description
A short text description noting the name or purpose of this MAP domain.

port-set <length|offset>
A port set is, as the name implies, a set of ports. This is typically divided up into multiple sets of

140

Product Manual TNSR v19.05

ports, the exact size and ranges of which are calculated using the port set length and offset, discussed
next. With MAP, users are overloaded onto a single IP address, with different port sets on a single
IP address being allocated to multiple users. In this way, users can share individual IP addresses but
only have access to specific ranges of ports.

port-set length <psid-length>
Determines the number of port sets to allocate inside the available 16-bit port range (1-
65536). A larger port set length allows for more users to share an address, but allocates
them each a smaller number of ports. For example, a port set length of 8 uses 8 bits to
define the port set, leaving the remaining 8 bits for use by each customer, or 256 ports
each.

port-set offset <psid-offset>

Determines the position of the port set identifier inside the available bits which rep-
resent the port. An offset of O means the identifier is first, and the ports per user will
be contiguous. Placing the offset in the middle of the available space will allow users
to utilize multiple ranges that are not contiguous, but each user will have slightly less
ports available. For example, with a port set length of 8, but an offset of 2, each user can
utilize only 192 ports instead of 256, since it is split into three ranges of 64 ports each.
The offset cannot be larger than the port set length subtracted from the total available
bits (16).

There are minor security benefits when using multiple non-contiguous port ranges since
it is more difficult for an attacker to guess which ports belong to a given customer, but
the loss of port capacity may outweigh this benefit in most environments.

embedded-address bit-length <ea-width>
The Embedded Address Bits value is the sum of the bits needed for the IPv4 prefix and the port set
length. For example, if the IPv4 prefix is a /24, that requires 8 bits to embed and allows 256 addresses
for users. A port set length of 8 allows for 256 port sets. With a port set offset of 0, this yields a
maximum of 65,536 users sharing 256 IPv4 addresses, each of which can use 256 ports.

Note: To utilize MAP rules, this value must be 0.

ipv4 prefix <ip4-prefix>
The IPv4 Prefix is available pool of IPv4 addresses which can be utilized by MAP clients. The size
of this prefix must be represented in the Embedded Address Bits. For example, a /24 prefix network
requires 8 bits to uniquely identify an address.

ipv6 prefix <ip6-prefix>
The IPv6 prefix contains the range of possible addresses assigned to clients. The end-user network
must be at least a 64 prefix, leaving 64 bits to represent both this prefix and the embedded address
bits. The smallest possible IPv6 prefix will be 128 bits less the sum of the end user network and
embedded address bits. For example, with an embedded address length of 16, 48 bits remain for the
IPv6 prefix. Shorter prefixes (e.g. 44) allow for additional IPv6 subnets to be assigned to clients.

ipv6 source <ip6-src>
The IPv6 source address on the router used as the MAP domain BR address and Tunnel source. This
address should exist on the interface used for mapping. For MAP-T, this must have a prefix length of
either /64 or /96. For MAP-E, this is a single address (/128) and not a prefix.

mtu <mtu-val>
The Maximum Transmission Unit (MTU) is the largest packet which can traverse the link without
fragmentation. This must be set appropriately due to the importance of MAP fragment handling, as
required information to calculate targets is only in the first packet and not additional fragments.

© Copyright 2025 Rubicon Communications LLC 141

Product Manual TNSR v19.05

14.1.2 MAP Rules

MAP rules exist inside a MAP domain and are configured from within config-map mode. MAP rules map specific
port sets to specific MAP CE end user addresses. These are 1:1 manual mappings and take the place of automatic
calculation, and as such to use MAP rules, the embedded-address bit-length must be 0.

A map rule takes the following form:

[rule port-set <psid> ipv6-destination <ip6-destination>

The components of a rule are:

port-set <psid>
The port set ID (PSID) to match for this rule.

ipv6-destination <ip6-destination>
The MAP CE IPv6 address to associate with this specific port set ID.

14.1.3 MAP Interface Configuration

TNSR must be told which interface is used with MAP, and how that interface will operate.
Within config-interface mode (Configure Interfaces), there are two possible settings for MAP:

map <enable|disable>
Enables or disables MAP for this interface.

map translate
When present and MAP is enabled, the interface operates in translate mode (MAP-T). When not set,
encapsulation is used instead (MAP-E).

14.1.4 View MAP Configuration

The MAP configuration can be viewed with the show map [<map-domain-name>] command. Without a given do-
main name, information is printed for all MAP domains, plus the MAP parameters.

tnsr# show map cpoc

Name IP4 Prefix IP6 Prefix IP6 Src Pref EA Bits PSID Off PSID Len MTU

cpoc 192.168.1.0/24 2001:db8::/32 1234:5678:90ab:cdef::/64 16 6 4 1280

tnsr# show map

MAP Parameters

Fragment: outer

Fragment ignore-df: false

ICMP source address: 0.0.0.0
ICMP6 unreachable msgs: disabled
Pre-resolve IPv4 next hop: 0.0.0.0
Pre-resolve IPv6 next hop:

IPv4 reassembly lifetime: 100
IPv4 reassembly pool size: 1024
IPv4 reassembly buffers: 2048

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 142

Product Manual TNSR v19.05

(continued from previous page)

IPv4 reassembly HT ratio: 1.00

IPv6 reassembly lifetime: 100

IPv6 reassembly pool size: 1024

IPv6 reassembly buffers: 2048

IPv6 reassembly HT ratio: 1.00

Security check enabled: true

Security check fragments enabled: false
Traffic-class copy: enabled
Traffic-class value: 0

Name IP4 Prefix IP6 Prefix IP6 Src Pref EA Bits PSID Off PSID Len MTU
cpoc 192.168.1.0/24 2001:db8::/32 1234:5678:90ab:cdef::/64 16 6 4 1280
orphan

14.2 MAP Parameters

MAP Parameters control the behavior of MAP-T and MAP-E. These parameters are configured by the nat nat64
map parameters command from within config mode, which enters config-map-param mode where the individual
values are set.

From within config-map-param mode, the following commands are available:

fragment ignore-df
Allows TNSR to perform IPv4 fragmentation even when packets contain the do-not-fragment (DF)
bit. This improves performance by moving the burden of fragmentation to the endpoint rather than
the MAP relay.

fragment (inner|outer)
Controls whether TNSR will fragment the inner (encapsulated or translated) packets or the outer
(tunnel) packets.

icmp source-address <ipv4-address>
Sets the IPv4 address used by TNSR to send relayed ICMP error messages.

icmp6 unreachable-msgs (enable|disable)
When enabled, TNSR will generate ICMPv6 unreachable messages when a packet fails to match a
MAP domain or fails a security check.

pre-resolve (ipv4|ipv6) next-hop <ip46-address>
Manually configures the next hop for IPv4 or IPv6 routing of MAP traffic, which bypasses a rout-
ing table lookup. This increases performance, but means that the next hop cannot be determined
dynamically or by routing protocol.

reassembly (ipv4|ipv6) buffers <bufs>
The maximum number of cached fragment buffers. Setting a limit can improve resilience to
DoS/resource exhaustion attacks.

reassembly (ipv4|ipv6) ht-ratio <ratio>
The fragment hash table multiplier, expressed as a ratio such as 1:18. This ratio, multiplied by
pool-size, determines the number of buckets in the hash table.

© Copyright 2025 Rubicon Communications LLC 143

Product Manual TNSR v19.05

reassembly (ipv4|ipv6) lifetime <If>
The life time, in milliseconds, of a reassembly attempt. Longer times allow for more accurate re-
assembly at the expense of consuming more resources and potentially exhausting available fragment
resources.

reassembly (ipv4|ipv6) pool-size <ps>
The fragment pool size, in bytes. This controls how many sets of fragments can be allocated.

security-check (enable|disable)
Enables or disables validation of decapsulated IPv4 addresses against the external IPv6 address on
single packets or the first fragment of a packet. Disabling the check increases performance but po-
tentially allows IPv4 address spoofing.

security-check fragments (enable|disable)
Extends the previous security check to all fragments instead of only inspecting the first packet.

tcp mss <mss-value>
Sets the MSS value for MAP traffic, typically the MTU less 40 bytes.

traffic-class tc <tc-val>
Sets the Class/TOS field of outer IPv6 packets to the specified value.

traffic-class copy (enable|disable)
When enabled, copies the class/TOS field from the inner IPv4 packet header to the outer IPv6 header.
This is enabled by default, but disabling can slightly improve performance.

14.2.1 View MAP Parameters

The current value of MAP parameters can be displayed by the show map command:

tnsr# show map

MAP Parameters

Fragment: outer

Fragment ignore-df: false

ICMP source address: 0.0.0.0

ICMP6 unreachable msgs: disabled
Pre-resolve IPv4 next hop: 0.0.0.0
Pre-resolve IPv6 next hop:

IPv4 reassembly lifetime: 100

IPv4 reassembly pool size: 1024
IPv4 reassembly buffers: 2048

IPv4 reassembly HT ratio: 1.00
IPv6 reassembly lifetime: 100

IPv6 reassembly pool size: 1024
IPv6 reassembly buffers: 2048

IPv6 reassembly HT ratio: 1.00
Security check enabled: true
Security check fragments enabled: false
Traffic-class copy: enabled
Traffic-class value: 0

Name IP4 Prefix IP6 Prefix IP6 Src Pref EA Bits PSID Off PSID Len MTU

cpoc 192.168.1.0/24 2001:db8::/32 1234:5678:90ab:cdef::/64 16 6 4 1280

© Copyright 2025 Rubicon Communications LLC 144

Product Manual

TNSR v19.05

orphan

14.3 MAP Example

14.3.1 Environment

MAP Border Relay

Item Value

MAP Domain Name cpoc

IPv6 Prefix 2001:db8::/32

IPv6 Source Prefix 1234:5678:90ab:cdef::/64
IPv4 Prefix 192.168.1.0/24

Port Set Length 8

Port Set Offset 0

Embedded Address Bits 16

MTU 1300

Interface GigabitEthernet0/14/0
IPv6 Address fd01:2::1/64

IPv4 Address 203.0.113.2/24

14.3.2 TNSR Border Relay Configuration

This shows an example Border Relay (BR) configuration in TNSR to provide service to MAP-T Customer Edge (CE)
clients. This example assumes some configuration details are already in place, such as the IPv4 prefix already being

routed to the BR from upstream, and default routes configured in TNSR for upstream gateways.

First, configure the interface connected to the upstream network. There could be separate interfaces for reaching the
Internet and for reaching the CE network, but this example uses a single interface.

tnsr(config)# interface GigabitEthernet®/14/0

tnsr(config-interface)# ip address 203.0.113.2/24

tnsr(config-interface)# ipv6 address £fd01:2::

tnsr(config-interface)# exit

1/64

Next, configure the MAP domain:

tnsr(config)# nat nat64 map cpoc
tnsr(config-map)# ipv4 prefix 192.168.1.0/24
tnsr(config-map)# ipv6 prefix 2001:db8::/32

tnsr(config-map)# ipv6 source 1234:5678:90ab:cdef::/64
tnsr(config-map)# embedded-address bit-length 16

tnsr(config-map)# port-set length 4
tnsr(config-map)# port-set offset 6
tnsr(config-map)# mtu 1280
tnsr(config-map)# exit

Then add a static route:

© Copyright 2025 Rubicon Communications LLC

145

Product Manual TNSR v19.05

tnsr(config)# route ipv6 table ipv6-VRF:0

tnsr(config-route-table-v6)# route 2001:db8::/32
tnsr(config-rttbl6-next-hop)# next-hop 0 via fd01:2::2 GigabitEthernet0/14/0
tnsr(config-rttbl6-next-hop)# exit

tnsr(config-route-table-v6)# exit

Lastly, enable MAP and MAP-T translation for the interface:

tnsr(config)# interface GigabitEthernet0/14/0
tnsr(config-interface)# map translate
tnsr(config-interface)# map enable
tnsr(config-interface)# exit

See also:

For information on configuring other operating systems to act as a CE, consult their documentation or check the links
in Additional MAP Reading and Tools for additional information.

14.4 MAP Types

14.4.1 MAP-T (Translation)

With MAP-T, translations are made using mapping rules that can calculate addresses and ports based on information
embedded an in IPv6 address, along with several known parameters.

MAP-T clients determine where to send translated IPv4 traffic using the Default Mapping Rule (DMR) IPv6 /64 prefix.

14.4.2 MAP-E (Encapsulation)

MAP-E is similar to MAP-T, but instead of translating IPv4 traffic and encoding information in the address, the IPv4
requests are encapsulated in IPv6 between the CE and BR as described in RFC 2473.

MAP-E clients send all IPv4 encapsulated traffic to the BR IPv6 address.

14.4.3 Additional MAP Reading and Tools

MAP is a complex topic and much of it is outside the scope of TNSR documentation. There are a number of additional
resources that have information on MAP along with examples for other operating systems and example environments.

We recommend the following links as starting points for MAP information.
* CableLabs MAP Technical Report CL-TR-MAP-V01-160630
e Charter MAP-T deployment presentation MAP-T NANOG Video / MAP-T NANOG Slides
* Cisco MAP Simulation Tool
* MAP-E RFC 7597
MAP-T RFEC 7599

orphan

© Copyright 2025 Rubicon Communications LLC 146

https://tools.ietf.org/html/rfc2473
https://community.cablelabs.com/wiki/plugins/servlet/cablelabs/alfresco/download?id=9280e9b7-773e-4e11-ae84-68b09e32baf0
https://www.youtube.com/watch?v=ZmfYHCpfr_w
https://pc.nanog.org/static/published/meetings/NANOG71/1452/20171004_Gottlieb_Mapping_Of_Address_v1.pdf
http://6lab.cisco.com/map/MAP.php
https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc7599

CHAPTER
FIFTEEN

DYNAMIC HOST CONFIGURATION PROTOCOL

The Dynamic Host Configuration Protocol (DHCP) service on TNSR provides automatic addressing to clients on an
interface. Typically, this service uses a local, internal interface such as one connected to a LAN or DMZ.

orphan

15.1 DHCP Configuration

The main [Pv4 DHCP configuration mode, entered with dhcp4 server, defines global options for IPv4 DHCP that
affect the general behavior of DHCP as well as options that cover all subnets and pools.

To enter IPv4 DHCP configuration mode, enter:

tnsr# configure
tnsr(config)# dhcp4 server
tnsr(config-kea-dhcp4)#

From this mode, there are a variety of possibilities, including:

subnet
Subnet configuration, see Subnet Configuration.

description
Description of the DHCP server

option
A DHCP Option declaration, see DHCP Options.

decline-probation-period <n>
Decline lease probation period, in seconds.

echo-client-id <boolean>
Controls whether or not the DHCP server sends the client-id back to the client in its responses.

interface listen <if-name>
The interface upon which the DHCP daemon will listen. This is required.

interface socket (rawludp)
Controls whether the DHCP daemon uses raw or UDP sockets.

lease filename <path>
Lease database file

lease Ifc-interval <n>
Lease file cleanup frequency, in seconds.

147

Product Manual TNSR v19.05

lease persist <boolean>
Whether or not the lease database will persist.

logging <logger-name>
Controls which DHCP daemon logger names will create log entries, or * for all. See the Kea docu-
mentation for Logging. for a list of values and their meanings.

match-client-id <boolean>
When true, DHCP will attempt to match clients first based on client ID and then by MAC address if
the client ID doesn’t produce a match. When false, it prefers the MAC address.

next-server <IP Address>
Specifies a TFTP server to be used by a client.

rebind-timer <n>
Sets the period, in seconds, at which a client must rebind its address.

renew-timer <n>
Sets the period, in seconds, at which a client must renew its lease.

valid-lifetime <n>
The period of time, in seconds, for which a lease will be valid.

Some of these values may be set here globally, and again inside subnets or pools. In each case, the more specific value
will be used. For example, if an option is defined in a pool, that would be used in place of a global or subnet definition;
A subnet option will be favored over a global option. In this way, the global space may define defaults and then these
defaults can be changed if needed for certain areas.

orphan

15.1.1 DHCP Options

DHCP Options provide information to clients beyond the basic address assignment. These options give clients other
aspects of the network configuration, tell clients how they should behave on the network, and give them information
about services available on the network. Common examples are a default gateway, DNS Servers, Network Time Pro-
tocol servers, network booting behavior, and dozens of other possibilities.

See also:

For a list of Standard IPv4 DHCP options, see Standard IPv4 DHCP Options. This list also includes the type of data
expected and whether or not they take multiple values.

The general form of an option is:

tnsr(config-kea-dhcp4)# option <name>
tnsr(config-kea-dhcp4-opt)# data <comma-separated values>
tnsr(config-kea-dhcp4-opt)# exit

This example defines a global domain name for all clients in all subnets:

tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcp4-opt)# exit

This example defines a default gateway for a specific subnet:

tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 10.2.0.1
tnsr(config-kea-subnet4-opt)# exit

© Copyright 2025 Rubicon Communications LLC 148

https://ftp.isc.org/isc/kea/1.4.0/doc/kea-guide.html#supported-loggers-list
https://ftp.isc.org/isc/kea/1.4.0/doc/kea-guide.html#supported-loggers-list

Product Manual TNSR v19.05

To see a list of option names, enter:

[tnsr(config—kea—dhcp4)# option ? J

When defining options the data can take different forms. The DHCP daemon uses comma-separated value (CSV)
format by default and it will automatically convert the text representation of a value to the expected data in the daemon.

Inside the option configuration mode, the following choices are available:

always-send <boolean>
Controls whether the DHCP server will always send this option in a response, or only when requested
by aclient. The default behavior varies by option and is documented in Standard IPv4 DHCP Options

csv-format <boolean>
Toggles between either CSV formatted data or raw binary data. This defaults to true unless an
option does not have a default definition. In nearly all cases this option should be left at the default.

data <data>
Arbitrary option data. Do not enclose in quotes. To see option data types and expected formats, see
Standard IPv4 DHCP Options

space <name>
Option space in which this entry exists, defaults to dhcp4.

Standard IPv4 DHCP Options

This list contains information about the standard IPv4 DHCP options, sourced from the Kea Administrator Manual
section on DHCP Options.

For a list of the Types and their possible values, see DHCP Option Types.

Name Code Type Array Always Return
time-offset 2 int32 false false
routers 3 ipv4-address true true
time-servers 4 ipv4-address true false
name-servers 5 ipv4-address true false
domain-name-servers 6 ipv4-address true true
log-servers 7 ipv4-address true false
cookie-servers 8 ipv4-address true false
lpr-servers 9 ipv4-address true false
impress-servers 10 ipv4-address true false
resource-location-servers 11 ipv4-address true false
boot-size 13 uint16 false false
merit-dump 14 string false false
domain-name 15 fqdn false true
swap-server 16 ipv4-address false false
root-path 17 string false false
extensions-path 18 string false false
ip-forwarding 19 boolean false false
non-local-source-routing 20 boolean false false
policy-filter 21 ipv4-address true false
max-dgram-reassembly 22 uint16 false false
default-ip-ttl 23 uint8 false false
path-mtu-aging-timeout 24 uint32 false false
path-mtu-plateau-table 25 uintl6 true false

continues on next page

© Copyright 2025 Rubicon Communications LLC

149

https://ftp.isc.org/isc/kea/1.0.0-beta2/doc/kea-guide.html#dhcp4-std-options-list
https://ftp.isc.org/isc/kea/1.0.0-beta2/doc/kea-guide.html#dhcp4-std-options-list

Product Manual

TNSR v19.05

Table 1 - continued from previous page

Name Code Type Array Always Return
interface-mtu 26 uint16 false false
all-subnets-local 27 boolean false false
broadcast-address 28 ipv4-address false false
perform-mask-discovery 29 boolean false false
mask-supplier 30 boolean false false
router-discovery 31 boolean false false
router-solicitation-address 32 ipv4-address false false
static-routes 33 ipv4-address true false
trailer-encapsulation 34 boolean false false
arp-cache-timeout 35 uint32 false false
ieee802-3-encapsulation 36 boolean false false
default-tcp-ttl 37 uint8 false false
tcp-keepalive-interval 38 uint32 false false
tcp-keepalive-garbage 39 boolean false false
nis-domain 40 string false false
nis-servers 41 ipv4-address true false
ntp-servers 42 ipv4-address true false
vendor-encapsulated-options 43 empty false false
netbios-name-servers 44 ipv4-address true false
netbios-dd-server 45 ipv4-address true false
netbios-node-type 46 uint8 false false
netbios-scope 47 string false false
font-servers 48 ipv4-address true false
x-display-manager 49 ipv4-address true false
dhcp-option-overload 52 uint8 false false
dhcp-message 56 string false false
dhcp-max-message-size 57 uint16 false false
vendor-class-identifier 60 binary false false
nwip-domain-name 62 string false false
nwip-suboptions 63 binary false false
tftp-server-name 66 string false false
boot-file-name 67 string false false
user-class 77 binary false false
client-system 93 uint16 true false
client-ndi 94 record (uint8, uint8, uint8) false false
uuid-guid 97 record (uint8, binary) false false
subnet-selection 118 ipv4-address false false
domain-search 119 binary false false
vivco-suboptions 124 binary false false
vivso-suboptions 125 binary false false

© Copyright 2025 Rubicon Communications LLC

150

Product Manual TNSR v19.05

DHCP Option Types

binary
An arbitrary string of bytes, specified as a set of hexadecimal digits.

boolean
Boolean value with allowed values true or false.

empty
No value, data is carried in suboptions.

fqdn
Fully qualified domain name (e.g. www.example. com).

ipv4-address
IPv4 address in dotted-decimal notation (e.g. 192.0.2.1).

ipv6-address
IPv6 address in compressed colon notation (e.g. 2001:db8: :1).

record
Structured data of other types (except record and empty).

string
Any arbitrary text.

int32
32 bit signed integer with values between -2147483648 and 2147483647.

uint8
8 bit unsigned integer with values between 0 and 255.

uint16
16 bit unsigned integer with values between ® and 65535.

uint32
32 bit unsigned integer with values between 0 and 4294967295.

orphan

15.1.2 Subnet Configuration

A subnet defines a network in which the DHCP server will provide addresses to clients, for example:

tnsr(config-kea-dhcp4)# subnet 10.2.0.0/24
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2

From within the subnet4 configuration mode, the following commands can be used:
id <id>
Sets an optional unique identifier for this subnet.

interface <name>
Required. The interface on which the subnet is located.

option
Defines an option specific to this subnet (DHCP Options).

pool
Defines a pool of addresses to serve inside this subnet. (Address Pool Configuration).

© Copyright 2025 Rubicon Communications LLC 151

Product Manual TNSR v19.05

reservation <ipv4-address>
Defines a host reservation to tie a client MAC address to a static IP address assignment.

At a minimum, the subnet itself must contain an interface definition and a pool.

15.1.3 Address Pool Configuration

A pool controls which addresses inside the subnet can be used by clients, for example:

tnsr(config-kea-subnet4)# pool 10.2.0.128-10.2.0.191
tnsr(config-kea-subnet4-pool)#

A pool may be defined as an address range (inclusive) as shown above in <ipv4-addr>-<ipv4-addr> format, or as
a prefix, such as 10.2.0.128/26.

Options can be defined inside a pool that only apply to clients receiving addresses from that pool.

15.1.4 Host Reservations

A reservation sets up a static IP address reservation for a client inside a subnet. For example:

tnsr(config-kea-subnet4)# reservation 10.2.0.20
tnsr(config-kea-subnet4-reservation)#

This reservation ensures that a client always obtains the same IP address, and can also provide the client with DHCP
options that differ from the main subnet configuration.

Reservations are defined from within config-kea-subnet4 mode, and take the form of reservation
<ipv4-address>. That command then enters config-kea-subnet4-reservation mode, which contains the fol-
lowing options:

hostname <hostname>
The hostname for this client.

mac-address <mac-address>
Mandatory. The MAC address of the client, used to uniquely identify the client and assign this
reserved IP address. The same MAC address cannot be used in more than one reservation on a single
subnet.

option <dhcp4-option>
DHCEP options specific to this client. See DHCP Options for details on configuring DHCP options.

Ataminimum, areservation entry requires the ipv4-address which defines the reservation itself, and amac-address
to identify the client.

Warning: While it is possible to define a reservation inside a pool, this can lead to address conflicts in certain
cases, such as when a different client already holds a lease for the new reservation.

The best practice is to keep reservations outside of the dynamic assignment pool.

Host reservation example:

tnsr(config-kea-subnet4)# reservation 10.2.0.20
tnsr(config-kea-subnet4-reservation)# mac-address 00:0c:29:4c:b3:9b
tnsr(config-kea-subnet4-reservation)# hostname mint-desktop

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 152

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-kea-subnet4-reservation)# exit
tnsr(config-kea-subnet4)#

orphan

15.2 DHCP Service Control and Status

15.2.1 Enable the DHCP Service

Enable the DHCP4 server:

tnsr(config)# dhcp4 enable
tnsr(config)#

15.2.2 Disable the DHCP Service

Similar to the DHCP enable command, disable the DHCP4 service from configuration mode:

tnsr(config)# dhcp4 disable
tnsr(config)#

15.2.3 Check the DHCP Service Status

Check the status of the DHCP services from configuration mode:

tnsr(config)# service dhcp status

DHCPv4 server: active

DHCPv6 server: inactive

DHCP DDNS: inactive

Control Agent: inactive

Kea DHCPv4 configuration file: /etc/kea/kea-dhcp4.conf

Kea DHCPv6 configuration file: /etc/kea/kea-dhcp6.conf

Kea DHCP DDNS configuration file: /etc/kea/kea-dhcp-ddns.conf

Kea Control Agent configuration file: /etc/kea/kea-ctrl-agent.conf
keactrl configuration file: /etc/kea/keactrl.conf

15.2.4 View the DHCP Configuration

View the current Kea DHCP Daemon and Control TNSR Configuration:

[tnsr# show kea

View the current Kea DHCP Daemon TNSR Configuration:

[tnsr# show kea dhcp4

View the current Kea DHCP daemon configuration file:

© Copyright 2025 Rubicon Communications LLC 153

Product Manual

TNSR v19.05

[tnsr# show kea dhcp4 config-file

View the current Kea Control TNSR Configuration:

[tnsr# show kea keactrl

View the current Kea Control Configuration file:

[tnsr# show kea keactrl config-file

15.3 DHCP Service Example

Configure the DHCP IPv4 Service from configuration mode (Configuration Mode). This example uses the interface

and subnet from Example Configuration:

tnsr(config)# dhcp4 server

tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet®/14/2
tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcp4-opt)# exit

tnsr(config-kea-dhcp4)# subnet 10.2.0.0/24
tnsr(config-kea-subnet4)# pool 10.2.0.128-10.2.0.191
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 8.8.8.8, 8.8.4.4
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 10.2.0.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# exit

tnsr(config-kea-dhcp4)# exit

tnsr(config)# dhcp4 enable

tnsr(config)#

The above example configures example . com as the domain name supplied to all clients. For the specific subnet in the
example, the TNSR IP address inside the subnet is supplied by DHCP as the default gateway for clients, and DHCP

will instruct clients to use 8.8.8.8 and 8.8.4.4 for DNS servers.

Note: The subnet definition requires an interface.

orphan

© Copyright 2025 Rubicon Communications LLC

154

CHAPTER
SIXTEEN

DNS RESOLVER

TNSR uses the Unbound Domain Name System Resolver to handle DNS resolution and client queries.

Unbound is a recursive caching DNS resolver. Unbound can validate DNS data integrity with DNSSEC, and supports
query privacy using DNS over TLS.

By default Unbound will act as a DNS resolver, directly contacting root DNS servers and other authoritative DNS
servers in search of answers to queries. Unbound can also act as a DNS Forwarder, sending all DNS queries to specific
upstream servers.

orphan

16.1 DNS Resolver Configuration

Unbound can be configured with a wide array of optional parameters to fine-tune its behavior. Due to the large number
of options, this documentation is split into several parts, with related options listed together.

These options are all found in config-unbound mode, which is entered by the command unbound server from
configuration mode (Configuration Mode).

enable/disable
These commands enable or disable options that do not require additional parameters, they can only
be turned on or off. The specific options are discussed in other areas of this chapter such as Security
Tuning and Cache & Performance Tuning.

verbosity <n>
Sets the verbosity of the logs, from 0 (no logs) through 5 (high). Default value is 1. Each level
provides the information from the lower levels plus additional data.

* Level 1: Operational Information

* Level 2: Additional details

* Level 3: Per-query logs with query level information
* Level 4: Algorithm level information

 Level 5: Client identification for cache misses

interface <x.x.x.x> [port <n>]
Configures an interface that Unbound will use for binding, and an optional port specification. In
most cases there should be an interface definition for a TNSR IP address in each local network,
plus a definition for localhost (127.0.0.1 as shown in Resolver Mode Example). The port number
defaults to 53 and should not be changed in most use cases.

port <n>
Sets the default port which Unbound will use to listen for client queries. Defaults to 53.

155

https://nlnetlabs.nl/projects/unbound/about/

Product Manual TNSR v19.05

enable/disable ip4
Tells Unbound to use, or not use, IPv4 for answering or performing queries. Default is enabled.
Unless TNSR has no IPv4 connectivity, this should be left enabled.

enable/disable ip6
Tells Unbound to use, or not use, IPv6 for answering or performing queries. Default is enabled. Un-
less there is a situation where TNSR is configured with IPv6 addresses but lacks working connectivity
to upstream networks via IPv6, this should remain enabled.

enable/disable udp
Tells Unbound to use, or not use, UDP for answering or performing queries. Default is enabled. In
nearly all cases, DNS requires UDP to function, except special cases such as a pure DNS over TLS
environment. Thus, this should nearly always be left enabled.

enable/disable tcp
Tells Unbound to use, or not use, TCP for answering or performing queries. Default is enabled. TCP
is generally required for functional DNS, especially for queries with large answers. DNS over TLS
also requires TCP. Unless a use case specifically calls for UDP DNS only, this should remain enabled.

access-control
Configures access control list entries for Unbound. See Access Control Lists.

forward-zone
Enters config-unbound-fwd-zone mode. See Forward Zones.

orphan

16.1.1 Access Control Lists

Access Control Lists in Unbound determine which clients can and cannot perform queries against the DNS Resolver

as well as aspects of client behavior.
The default behavior is to allow access from TNSR itself (localhost), but refuse queries from other clients.

Example:

tnsr(config)# unbound server
tnsr(config-unbound)# access-control 10.2.0.0/24 allow

The general form of the command is:

[tnsr(config—unbound)# access-control <IPv4 or IPv6 Network Prefix> <action>

)

The IPv4 or IPv6 Network Prefix is a network specification, such as 10.2.0.0/24 or 2001:db8: : /64. For a single

address, use /32 for IPv4 or /128 for IPv6.
The Action types are:

allow
Allow access to recursive and local data queries for clients in the specified network.

allow_snoop
Allow access to recursive and local data queries for clients in the specified network, additionally
this allows access to cache snooping. Cache snooping is a technique to use nonrecursive queries to
examine the contents of the cache for debugging or identifying malicious data.

refuse
Stops queries from clients in the specified network, but sends a DNS response code REFUSED error.
This is the default behavior for networks other than localhost, since it is friendly and protocol-safe
response behavior.

© Copyright 2025 Rubicon Communications LLC

156

Product Manual TNSR v19.05

refuse_non_local
Similar to refuse but allows queries for authoritative local data. Recursive queries are refused.

deny
Drops and does not respond to queries from clients in the specified network. In most cases a refuse
action is preferable since DNS is not designed to handle a non-response. A lack of response may
cause clients to send additional unwanted queries.

deny_non_local
Allows queries for authoritative local-data only, all other queries are dropped without a response.

orphan

16.1.2 Forward Zones

In Unbound, a Forward Zone controls how queries are handled on a per-zone basis. This can be used to send queries
for a specific domain or zone to a specific DNS server, or it can be used to setup forwarding mode sending all queries
to one or more upstream recursive DNS servers.

Forward Zone Examples

Example to override the default resolver behavior and forward all queries to an upstream DNS server:

tnsr(config)# unbound server

tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4

This forwards the root zone (.) and all zones underneath to the specified servers, in this case, 8.8.8.8 and 8.8.4.4.

Example to send queries for one specific domain to an alternate server:

tnsr(config)# unbound server
tnsr(config-unbound)# forward-zone example.com
tnsr(config-unbound-fwd-zone)# nameserver address 192.0.2.5

This example sends all queries for example.com and subdomains underneath example.com to the server at 192.0.
2.5. This is useful for sending queries for internal domains to a local authoritative DNS server, or an internal DNS
server reachable through a VPN.

Forward Zone Configuration

To enter config-unbound-fwd-zone mode, start from config-unbound mode and use the forward-zone
<zone-name> command. The <zone-name> takes the form of the domain part of a fully qualified domain name
(FQDN), but may also be . to denote the root zone.

nameserver address <ip-address> [port <port>] [auth-name <name>]
Specifies a DNS server for this zone by IP address. Optionally, a port number may be given (default
53). auth-name sets the FQDN of the DNS server for use in validating certificates with DNS over
TLS.

nameserver host <host-name>
Specifies a DNS server for this zone by FQDN. This hostname will be resolved before use.

© Copyright 2025 Rubicon Communications LLC 157

Product Manual TNSR v19.05

enable/disable forward-first
When enabled, if a query fails to the forwarding DNS servers it will be retried using resolver mode
through the root DNS servers. By default this behavior is disabled.

enable/disable forward-tls-upstream
When enabled, queries to the DNS servers in this zone are sent using DNS over TLS, typically on
port 853. This mode provides query privacy by encrypting communication between Unbound and
upstream DNS servers in the zone. Default is disabled as this feature is not yet widely supported by
other platforms.

Multiple DNS server address or host entries may be given for a forward zone. These servers are not queried sequentially
and are not necessarily queried simultaneously. Unbound tracks the availability and performance of each DNS server
in the zone and will attempt to use the most optimal server for a query.

orphan

16.1.3 Local Zones

Unbound can host local zone data to complement, control, or replace upstream DNS data. This feature is commonly
used to supply local clients with host record responses that do not exist in upstream DNS servers, or to supply local
clients with a different response, akin to a DNS view.

Local Zone Example

This basic example configures a local zone for example.com and two hostnames inside. If a client queries TNSR
for these host records, it will respond with the answers configured in the local zone. If a client requests records for a
host under example.com not listed in this local zone, then the query is resolved as usual though the usual resolver or
forwarding server mechanisms.

tnsr(config)# unbound server

tnsr(config-unbound)# local-zone example.com
tnsr(config-unbound-local-zone)# type transparent
tnsr(config-unbound-local-zone)# hostname server.example.com
tnsr(config-unbound-local-host)# address 192.0.2.5
tnsr(config-unbound-local-host)# exit
tnsr(config-unbound-local-zone)# hostname db.example.com
tnsr(config-unbound-local-host)# address 192.0.2.6
tnsr(config-unbound-local-host)# exit

Local Zone Configuration

Local zones are configured in config-unbound mode (DNS Resolver Configuration) using the local-zone
<zone-name> command. This defines a new local zone and enters config-unbound-local-zone mode.

Within config-unbound-local-zone mode, the following commands are available:

description <descr>
A short text description of the zone

type <type>
The type for this local zone, which can be one of:

transparent
Gives local data, and resolves normally for other names. If the query matches a defined

© Copyright 2025 Rubicon Communications LLC 158

Product Manual TNSR v19.05

host but not the record type, the client is sent a NOERROR, NODATA response. This is the
most common type and most likely the best choice for most scenarios.

typetransparent
Similar to transparent, but will forward requests for records that match by name but not

by type.

deny
Serve local data, drop queries otherwise.

inform
Like transparent, but logs the client IP address.

inform_deny
Drops queries and logs the client IP address.

no_default
Normally resolve AS112 zones.

redirect
Serves zone data for any subdomain in the zone.

refuse
Serve local data, else reply with REFUSED error.

static
Serve local data, else NXDOMAIN or NODATA answer.

hostname <fqdn>
Defines a new hostname within the zone, and enters config-unbound-local-host mode. A local
zone may contain multiple hostname entries.

Note: Include the domain name when creating a hostname entry.

Inside config-unbound-local-host mode, the following commands are available:

description <descr>
A short text description of this host

address <ip-address>
The IPv4 or IPv6 address to associate with this hostname for forward and reverse (PTR)
lookups.

orphan

16.1.4 Security Tuning

Unbound can be tuned to provide stronger (or weaker) security and privacy, depending on the needs of the network and
features supported by clients and upstream servers.

enable caps-for-id
Experimental support for draft dns-0x20. This feature combats potentially spoofed replies by ran-
domly flipping the 0x20 bit of ASCII letters, which switches characters between upper and lower
case. The answer is checked to ensure the case in the response matches the request exactly. This is
disabled by default since it is experimental, but is safe to enable unless the upstream server does not
copy the query question to the response identically. Most if not all servers follow this convention,
but it is unknown if this behavior is truly universal.

© Copyright 2025 Rubicon Communications LLC 159

https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00

Product Manual TNSR v19.05

enable harden dnssec-stripped
Require DNSSEC for trust-anchored zones. If the DNSSEC data is absent, the zone is marked as
bogus. If disabled and no DNSSEC data is received in the response, the zone is marked insecure.
Default behavior is enabled. If disabled, there is a risk of a forced downgrade attack on the response
that disables security on the zone.

enable harden glue
Trust glue only if the server is authorized. Default is enabled.

enable hide identity
When enabled, queries are refused for id. server and hostname . bind, which prevents clients from
obtaining the server identity. Default behavior is disabled.

enable hide version
When enabled, queries are refused for version.server and version.bind, preventing clients
from determining the version of Unbound. Default behavior is disabled.

thread unwanted-reply-threshold <threshold>
When set, Unbound tracks the total number of unwanted replies in each thread. If the threshold is
reached, Unbound will take defensive action and logs a warning. This helps prevent cache poisoning
by clearing the RRSet and message caches when triggered. By default this behavior is disabled. If
this behavior is desired, a starting value of 10000000 (10 million) is best. Change the value in steps
of 5-10 million as needed.

jostle timeout <t>
Timeout in milliseconds, used when the server is very busy. This timeout should be approximately
the same as the time it takes for a query to reach an upstream server and receive a response (round trip
time). If a large number of queries are received by Unbound, than half the active queries are allowed
to complete and the other half are replaced by new queries. This helps reduce the effectiveness of a
denial of service attack by allowing the server to ignore slow queries when under load. The default
value is 200 msec.

orphan

16.1.5 Cache & Performance Tuning

port outgoing range <n>
Sets the number of source ports Unbound may use per thread to connect when making outbound
queries to upstream servers. A larger number of ports provides protection against spoofing. Default
value varies by platform. A large number of ports yields better performance but it also consumes
more host resources.

edns reassembly size <s>
Number to advertise as the EDNS reassembly buffer size, in bytes. This value is sent in queries and
must not be set larger than the default message buffer size, 65552. The default value is 4096, which
is recommended by RFC. May be set lower to alleviate problems with fragmentation resulting in
timeouts. If the default value is too large, try 1472, or 512 in extreme cases. Avoid setting that low
as it will cause many queries to fall back to TCP which can negatively impact performance.

host cache num-hosts <num>
Number of hosts to hold in the cache, defaults to 10000. Larger caches can result in increased
performance but consume more host resources.

host cache slabs <s>
Number of slabs in the host cache. Larger numbers help prevent lock contention by threads when
performing cache operations. The value is a power of 2, between 0. .10

© Copyright 2025 Rubicon Communications LLC 160

Product Manual TNSR v19.05

host cache ttl <t>
The amount of time, in seconds, that entries in the host cache are kept. Default value is 900 seconds.

enable key prefetch
When enabled, Unbound will start fetching DNSKEYS when it sees a DS record instead of waiting
until later in the process. Prefetching keys will consume more CPU, but reduces latency. The default
is disabled.

key cache slabs <s>
Number of slabs in the key cache. Larger numbers help prevent lock contention by threads when
performing key cache operations. The value is a power of 2, between 0. .10. Setting to a number
close to the number of CPUs/cores in the host is best.

enable message prefetch
Prefetch message cache items before they expire to keep entries in the cache updated. When enabled,
Unbound will consume approximately 10% more throughput and CPU time but it will keep popular
items primed in the cache for better client performance. Disabled by default.

message cache size <s>
Size of the message cache, in bytes. The message cache stores DNS meta-information such as mes-
sage formats. Default value is 4 MB.

message cache slabs <s>
Number of slabs in the message cache. Larger numbers help prevent lock contention by threads
when performing message cache operations. The value is a power of 2, between 0. .10. Setting to a
number close to the number of CPUs/cores in the host is best.

rrset cache size <s>
Size of the RRset cache, in bytes. The RRset cache stores resource records. Default value is 4 MB.

rrset cache slabs <s>
Number of slabs in the RRset cache. Larger numbers help prevent lock contention by threads when
performing RRset cache operations. The value is a power of 2, between 0. . 10. Setting to a number
close to the number of CPUs/cores in the host is best.

rrset-message cache ttl maximum <max>
Maximum time that values in the RRset and message caches are kept in the cache, specified in sec-
onds. The default value is 86400 (1 day). When set lower, Unbound will be forced to query for data
more often, but it will also ignore very large TTLs in DNS responses.

rrset-message cache ttl minimum <max>
Minimum time that values in the RRset and message caches are kept in the cache, specified in seconds.
The default value is 0, which honors the TTL specified in the DNS response. Higher values may
ignore the TTL set by the response, which means a record may be out of sync with the source, but it
also prevents queries from being repeated frequently when a very low TTL is set by the domain.

socket receive-buffer size <s>
SO_RCVBUEF socket receive buffer size for incoming queries on the listening port(s). Larger values
result in less drops during spikes in activity. The default is ® which uses the system default value.
Cannot be set higher than the maximum value for the operating system, such as the one shown in the
net.core.rmem_max sysctl OID.

tcp buffers incoming <n>
Number of incoming TCP buffers that Unbound will allocate per thread. Larger values can handle
higher loads, but will consume more resources. The default value is 10. A value of ® will disable
acceptance of TCP queries.

tcp buffers outgoing <n>
Number of outgoing TCP buffers that Unbound will allocate per thread. Larger values can handle

© Copyright 2025 Rubicon Communications LLC 161

Product Manual TNSR v19.05

higher loads, but will consume more resources. The default value is 10. A value of 0 will disable
TCP queries to authoritative DNS servers.

thread num-queries <n>
Number of queries serviced by each thread simultaneously. If more queries arrive and there is no
room to answer them, the new queries will be dropped, unless older/slower queries can be dropped
by using the jostle timeout. Default varies by platform but is typically 512 or 1024.

thread num-threads <n>
Number of threads created by Unbound for serving clients. Defaults to one thread per CPU/core. To
disable threading, set to 1.

enable serve-expired
When enabled, Unbound will immediately serve answers to clients using expired cache entries if they
exist. Unbound still performs the query and will update the cache with the result. This can result in
faster, but potentially incorrect, answers for client queries. Default is disabled.

orphan

16.2 DNS Resolver Service Control and Status

16.2.1 Enable the DNS Resolver

Enable the DNS Resolver:

tnsr(config)# unbound enable
tnsr(config)#

16.2.2 Disable the DNS Resolver

Similar to the enable command, disable the DNS Resolver from configuration mode:

tnsr(config)# unbound disable
tnsr(config)#

16.2.3 Check the DNS Resolver Status

Check the status of the DNS Resolver from configuration mode:

tnsr(config)# service unbound status
* unbound.service - Unbound recursive Domain Name Server

Loaded:

—disabled)

Active:
Process:

loaded (/usr/lib/systemd/system/unbound.service; disabled; vendor preset:.

active (running) since Wed 2018-08-22 15:26:05 EDT; 55min ago
26675 ExecStartPre=/usr/sbin/unbound-anchor -a /var/lib/unbound/root.key -c /

—etc/unbound/icannbundle.pem (code=exited, status=0/SUCCESS)

Process:
Main PID:
CGroup:

26673 ExecStartPre=/usr/sbin/unbound-checkconf (code=exited, status=0/SUCCESS)
26679 (unbound)

/system.slice/unbound.service

L26679 /usr/sbin/unbound -d

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 162

Product Manual TNSR v19.05

(continued from previous page)

Aug 22 15:26:05 tnsr.example.com systemd[1]: Starting Unbound recursive Domain Name.
—Server...

Aug 22 15:26:05 tnsr.example.com unbound-checkconf[26673]: unbound-checkconf: no errors..
—in /etc/unbound/unbound.conf

Aug 22 15:26:05 tnsr.example.com systemd[1]: Started Unbound recursive Domain Name,.
—Server.

Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] notice: init module 0: subnet
Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] notice: init module 1:.
—validator

Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] notice: init module 2:.

. iterator

Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] info: start of service.

— (unbound 1.6.6).

16.2.4 View the DNS Resolver Configuration

View the current Unbound DNS Resolver daemon configuration file:

[tnsr# show unbound config-file

16.3 DNS Resolver Examples

Configure the DNS Resolver Service from configuration mode (Configuration Mode). These examples use the interface
and subnet from Example Configuration.

16.3.1 Resolver Mode Example

For Resolver mode, the configuration requires only a few basic options:

tnsr# configure

tnsr(config)# unbound server

tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 10.2.0.1
tnsr(config-unbound)# access-control 10.2.0.0/24 allow
tnsr(config-unbound)# exit

tnsr(config)# unbound enable

This example enables the Unbound DNS Resolver and configures it to listen on localhost as well as 10.2.0.1
(GigabitEthernet®/14/2, labeled LAN in the example). The example also allows clients inside that subnet, 10.2.
0.0/24, to perform DNS queries and receive responses.

© Copyright 2025 Rubicon Communications LLC 163

Product Manual TNSR v19.05

16.3.2 Forwarding Mode Example

For Forwarding mode, use the configuration above plus these additional commands:

tnsr# configure

tnsr(config)# unbound server

tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.
tnsr(config-unbound-fwd-zone)# nameserver address 8.
tnsr(config-unbound-fwd-zone)# exit
tnsr(config-unbound)# exit

8.8.8
8.4.4

This example builds on the previous example but instead of working in resolver mode, it will send all DNS queries to
the upstream DNS servers 8.8.8.8 and 8.8.4.4.

orphan

© Copyright 2025 Rubicon Communications LLC 164

CHAPTER
SEVENTEEN

NETWORK TIME PROTOCOL

The Network Time Protocol (NTP) service on TNSR synchronizes the host clock with reference sources, typically
remote servers. It also acts as an NTP server for clients.

orphan

17.1 NTP Configuration

The NTP daemon has a variety of options to fine-tune its timekeeping behavior.

interface sequence <seq> <action> <address>
Interface binding options. The default behavior when no interface configuration entries are present
is to bind to all available addresses on the host.

seq
The sequence number controls the order of the interface definitions in the NTP daemon
configuration.

action
The action taken for NTP traffic on this interface, it can be one of:

drop
Bind the daemon to this interface, but drop NTP traffic.

ignore
Do not bind the daemon to this interface.

listen
Bind the daemon to this interface and use it for NTP traffic.

address
The address or interface to bind. This may be:

prefix
An IPv4/IPv6 prefix, which will bind to only that specific address.

interface
An interface name, which will bind to every address on that interface.

all
Bind to all interfaces and addresses on TNSR.

server <address|host> <server>
Defines an NTP peer with which the daemon will attempt to synchronize the clock. This command
enters config-ntp-server mode. The server may be specified as:

165

Product Manual TNSR v19.05

address <IPv4/IPv6 Address>
An IPv4 or IPv6 address specifying a single NTP server.

host <fqdn>
A fully qualified domain name, which will be resolved using DNS.

Within config-ntp-server mode, additional commands are available that control how NTP inter-
acts with the specified server:

iburst
Use 8 packets on unreachable servers, which results in faster synchronization at startup
and when a peer is recovering.

maxpoll <poll>
Maximum polling interval for NTP messages. This is specified as a power of 2, in
seconds. May be between 7 and 17, defaults to 10 (1024 seconds).

noselect
Instructs NTP to not use the server for synchronization, but it will still connect and
display statistics from the server.

prefer
When set, NTP will prefer this server if it and multiple other servers are all viable
candidates of equal quality.

operational-mode server
This entry is a single server. When the server is specified as an FQDN, if the DNS
response contains multiple entries then only one is selected. Can also be used with
IPv4/IPv6 addresses directly, rather than FQDN entries.

operational-mode pool
This entry is a pool of servers. Only compatible with FQDN hosts. NTP will expect
multiple records in the DNS response and will use all of these entries as distinct servers.
This is a reliable way to configure multiple NTP peers with minimal configuration.

Warning: An operational-mode is required.

tinker panic <n>
Sets the NTP panic threshold, in seconds. This is a sanity check which will cause NTP to fail if the
difference between the local and remote clocks is too great. Commonly set to 0 to disable this check
so that NTP will still synchronize when its clock is off by a large factor. The default value is 1000.

tos orphan <n>
Configures the stratum of orphan mode servers from 1 to 16. When all UTC reference peers below
this stratum are unreachable, clients in the same subnet may use each other as references as a last
resort.

driftfile <file>
Full path to the filename used by the NTP daemon to store clock drift information to improve accuracy
over time. This file and its directory must be writable by the ntp user or group.

statsdir <file>
Full path to statistics directory used by the NTP daemon. This directory must be writable by the ntp
user or group.

<enable|disable> monitor
Enables or disables the monitoring facility used to poll the NTP daemon for information about peers
and other statistics. This is enabled by default, and is also enabled if 1limited is present in any

© Copyright 2025 Rubicon Communications LLC 166

Product Manual TNSR v19.05

restrict entries. This is required for show ntp <x> commands which display peer information
to function.

orphan

17.1.1 NTP Restrictions

NTP restrictions control how NTP treats traffic from peers. The NTP Service Example at the start of this section
contains a good set of restrictions to use as a starting point.

These restrictions are configured using the restrict command from within config-ntp mode.

restrict <default|sourcelhost[prefix>
This command enters config-ntp-restrict mode.

The restriction is placed upon an address specified as:

default
The default restriction for any host.

source
Default restrictions for associated hosts.

host
An address specified as an FQDN to be resolved using DNS.

prefix
An IPv4 or IPv6 network specification.

In config-ntp-restrict mode, the following settings control what hosts matching this restriction
can do:

kod
Sends a Kiss of Death packet to misbehaving clients. Only works when paired with the
limited option.

limited
Enforce rate limits on clients. This does not apply to queries from ntpg/ntpdc or the
show ntp <x>commands.

nomodify
Allows clients to query read only server state information, but does not allow them to
make changes.

nopeer
Deny unauthorized associations. When using a server entry in pool mode, this should
be present in the default restriction but not in the source restriction.

noquery
Deny ntpg/ntpdc/show ntp <x> queries for NTP daemon information. Does not
affect NTP acting as a time server.

noserve
Disables time service. Still allows ntpg/ntpdc/show ntp <x> queries

notrap
Decline mode 6 trap service to clients.

orphan

© Copyright 2025 Rubicon Communications LLC 167

Product Manual TNSR v19.05

17.1.2 NTP Logging

The NTP Logging configuration controls which type of events are logged by the NTP daemon using syslog, and the
verboseness of the logs. By default, the NTP daemon will log all synchronization messages.

The logging configuration is set using the logconfig command from within config-ntp mode.

logconfig sequence <seq> <action> <class> <type>

orphan

seq
Specifies the sequence for log entries so that the order of parameters may be controlled
by the configuration.

action
Specifies the action for this log entry, as one of:

set
Set the mask for the log entry. Typically this would be used for the first entry to
control which message class+type is logged as the base set of log entries.

add
Add log entries matching this specification to the specified total set of logs.

delete
Do not log entries matching this specification in the total set of logs.

class
Specifies the message class, which can be one of:

all
All message classes

clock
Messages about local clock events and information.

peer
Messages about peers.

sync
Messages about the synchronization state.

Sys
Messages about system events and status.

type
Specifies the type of messages to log for each class:

all
All types of messages.

events
Event messages.
info
Informational messages.

statistics
Statistical information.

status
Status changes.

© Copyright 2025 Rubicon Communications LLC 168

Product Manual

TNSR v19.05

17.2 NTP Service Control and Status

17.2.1 Enable the NTP Service

Enable the NTP server:

tnsr(config)# ntp enable
tnsr(config)#

17.2.2 Disable the NTP Service

Similar to the NTP enable command, disable the NTP service from configuration mode:

tnsr(config)# ntp disable

tnsr(config)#

17.2.3 Check the NTP Service Status

Check the status of the NTP services from configuration mode:

tnsr(config)# service ntp status
* ntpd.service - Network Time Service

—disabled)

Main PID:
CGroup

Dec
Dec
Dec
Dec
Dec
Dec
Dec

04
04
04
04
04
04
04

11:
11:

11

11:
11:
11:
11:

: /system.slice/ntpd.service
L1744 /usr/sbin/ntpd -u ntp:ntp

38
38
138
38
38
38
38

144
144
144
144
144
144
144

ntpd[1744]:
ntpd[1744]:
ntpd[1744]:
ntpd[1744]:
ntpd[1744]:
ntpd[1744]:
ntpd[1744]:

Listen
Listen
Listen
Listen
Listen
Listen

normally
normally
normally
normally
normally
normally

-9

on
on
on
on
on
on

Loaded: loaded (/usr/lib/systemd/system/ntpd.service; disabled; vendor preset:.

Active: active (running) since Thu 2018-11-15 07:05:57 EST; 2 weeks 5 days ago
1744 (ntpd)

21 mytap 10.2.99.1 UDP 123

22
23
24
25

vpp5 fe80::208:a2ff:fe®9:95b5 UDP 123
vppl fe80::208:a2ff:fe®9:95b1 UDP 123
vppl fe80::5 UDP 123
vpp5 fe80::15 UDP 123

26 mytap fe80::c4le:7bff:fea5:462a UDP 123
new interface(s) found: waking up resolver

17.2.4 View NTP Peers

The NTP peer list shows the peers known to the NTP daemon, along with information about their network availability
and quality. For more information on peer associations, see View NTP Associations.

tnsr(config)# show ntp peers
Ref ID

Id

17417 5.9.80.113

17418 95.216.39.155
17419 145.239.118.233 85.199.214.98
17420 178.128.4.44

Host

131.188.3.223

204.123.2.5

Stratum Reach Poll

192.53.103.103

Delay Offset Jitter

134.456 -1.936 3.904
151.370 -1.582 4.883
126.181 4.112 21.541
80.998 2.906 4.140

© Copyright 2025 Rubicon Communications LLC

169

Product Manual TNSR v19.05

17.2.5 View NTP Associations

The NTP peer associations list shows how the NTP daemon is using each peer, along with its status. These peers are
listed by ID. For more information on each peer, see View NTP Peers.

tnsr(config)# show ntp associations

Id Status Persistent Auth En Authentic Reachable Broadcast Selection Event Count
17417 0x931a true false false true false outlier sys_peer 1
17418 0x941a true false false true false candidate sys_peer 1
17419 0x941a true false false true false candidate sys_peer 1
17420 0x961a true false false true false Sys.peer Sys_peer 1

17.2.6 View NTP Daemon Configuration File

View the current NTP Daemon configuration file, generated by the settings in TNSR:

tnsr# show ntp config-file

#

NTP config autogenerated

#

tinker panic 0

tos orphan 12

logconfig =syncall +clockall

restrict ::/0 kod limited nomodify nopeer notrap
restrict default kod limited nomodify nopeer notrap

restrict source kod limited nomodify notrap

pool pool.ntp.org maxpoll 9

17.3 NTP Service Example

Configure the NTP Service from configuration mode (Configuration Mode). This example uses pool.ntp.org in pool
mode so that multiple DNS results are used as reference servers.

tnsr(config)# ntp server

tnsr(config-ntp)# tos orphan 12

tnsr(config-ntp)# tinker panic 0

tnsr(config-ntp)# logconfig sequence 1 set sync all
tnsr(config-ntp)# logconfig sequence 2 add clock all
tnsr(config-ntp)# restrict default
tnsr(config-ntp-restrict)# kod
tnsr(config-ntp-restrict)# limited
tnsr(config-ntp-restrict)# nomodify
tnsr(config-ntp-restrict)# nopeer
tnsr(config-ntp-restrict)# notrap

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 170

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-ntp-restrict)# exit
tnsr(config-ntp)# restrict source
tnsr(config-ntp-restrict)# kod
tnsr(config-ntp-restrict)# limited
tnsr(config-ntp-restrict)# nomodify
tnsr(config-ntp-restrict)# notrap
tnsr(config-ntp-restrict)# exit
tnsr(config-ntp)# server host pool.ntp.org
tnsr(config-ntp-server)# operational-mode pool
tnsr(config-ntp-server)# maxpoll 9
tnsr(config-ntp-server)# exit
tnsr(config-ntp)# exit

tnsr(config)# ntp enable

tnsr(config)#

17.4 NTP Best Practices

Use a minimum of three servers, either as three separate server entries or a pool containing three or more servers. This
is to ensure that if the clock on any one server becomes skewed, the remaining two sources can be used to determine
that the skewed server is no longer viable. Otherwise NTP would have to guess which one is accurate and which is
skewed.

There are a large number of public NTP servers available under pool.ntp.org. The pool.ntp.org DNS entry will
return a number of randomized servers in each DNS query response. These can be used individually or as pools. The
easiest way is to use the pool operational mode, which uses all returned servers as if they were specified individually.

When using entries as individual server entries, these responses can be subdivided into mutually exclusive pools of
peers to avoid overlap. For example, if a configuration specifies pool.ntp.org multiple times for server entries,
the same IP address could accidentally be selected twice. In this case, use ®.pool.ntp.org, 1.pool.ntp.org,
2.pool.ntp.org, and so on. When queried in this way, the responses will be unique for each number.

Furthermore, there are also pools available for regional and other divisions. For example, to only receive responses
for servers in the United States, use us.pool.ntp.org as a pool or <n>.us.pool.ntp.org as servers. For more
information, see https://www.ntppool.org/en/

orphan

© Copyright 2025 Rubicon Communications LLC 171

https://www.ntppool.org/en/

CHAPTER
EIGHTEEN

LINK LAYER DISCOVERY PROTOCOL

The Link Layer Discovery Protocol (LLDP) service provides a method for discovering which routers are connected to
a LAN segment, and offers a way to discover the topology of a network.

18.1 Configuring the LLDP Service

LLDP is configured in two places: Global router parameters and per-interface parameters.

18.1.1 LLDP Router Configuration

Three LLDP commands are available in configuration mode (Configuration Mode) to configure global LLDP parame-
ters for this router:

lldp system-name
The router hostname advertised by LLDP.

Ildp tx-interval
Transmit interval, which controls the time between LLDP messages in seconds.

lidp tx-hold
Transmit hold time, which is a multiple of the transmit interval used for the Time-To-Live (TTL) of
the LLDP message.

Tip: If the transmit interval is 5 and the transmit hold time is 4, then the advertised TTL of the LLDP message is 20
(4%5=20).

Example:

tnsr(config)# 1ldp system-name MyRouter
tnsr(config)# 1ldp tx-hold 3
tnsr(config)# 1ldp tx-interval

These parameters can be changed at any time.

172

Product Manual TNSR v19.05

18.1.2 LLDP Interface Configuration

Additional LLDP commands are available in config-interface mode (Interface Command) to configure per-
interface LLDP identification:

lldp port-name
The name of the interface as advertised by LLDP.

Ildp management (ipv4|ipv6) <ip-address>
The IPv4 and/or IPv6 address advertised by LLDP as a means to manage this router on this interface.

lldp management oid <oid>
An object identifier associated with the management IP address on this interface.

Example:

tnsr(config)# interface TenGigabitEthernet3/0/0
tnsr(config-interface)# 1ldp port-name MyPort
tnsr(config-interface)# 1ldp management ipv4 192.0.2.123
tnsr(config-interface)# 1ldp management ipv6 2001:db8::1:2:3:4
tnsr(config-interface)# exit

tnsr(config)#

Warning: Due to a limitation of the underlying API, all LLDP interface parameters must be configured at the
same time and cannot be changed. This will be fixed in a later release.

orphan

© Copyright 2025 Rubicon Communications LLC 173

CHAPTER
NINETEEN

PUBLIC KEY INFRASTRUCTURE

TNSR supports Public Key Infrastructure (PKI) X.509 certificates for various uses by the router and supporting soft-
ware. PKI uses a pair of keys to encrypt and authenticate data, one public and one private. The private key is known
only to its owner, and the public key can be known by anyone.

PKI works in an asymmetric fashion. A message is encrypted using the public key, and can only be decrypted by the
private key. The private key can also be used to digitally sign a message to prove it originated from the key holder, and
this signature can be validated using the public key. Combined with certificates, this provides a means to identify an
entity and encrypt communications.

A Certificate Authority (CA) independently verifies the identity of the entity making a request for a certificate, and
then signs a request, yielding a certificate. This certificate can then be validated against the certificate of the CA itself
by anyone who has access to that CA certificate. In some cases, this CA may be an intermediate, meaning it is also
signed by another CA above it. All together, this creates a chain of trust starting with the root CA all the way down to
individual certificates. So as long as the CA is trustworthy, any certificate it has signed can be considered trustworthy.

Due to their size and private nature, certificates and keys are stored on the filesystem and not in the XML configuration.
PKIT files are stored under the following locations:

¢ Certificate Authorities: /etc/pki/tls/tnsr/CA/
¢ Certificates and Signing Requests: /etc/pki/tls/tnsr/certs/
* Private Keys: /etc/pki/tls/tnsr/private/
A key pair, CSR, and certificate associated with each other must all have the same name.
The process for creating a certificate is as follows:
* Create keys for name.
 Create a certificate signing request for name with the attributes to use for the certificate.
* Submit the CSR to a CA, which will sign the CSR and return a certificate.
 Enter or import the certificate contents for name into TNSR.

orphan

174

Product Manual TNSR v19.05

19.1 Key Management

Warning: Private keys are secret. These keys should never need to leave the firewall, with the exception of
backups. The CA does not need the private key to sign a request.

TNSR can generate RSA key pairs with sizes of 2048, 3072, or 4096 bits. Larger keys are more secure than shorter
keys. RSA Keys smaller than 2048 bits are no longer considered secure in practice, and are thus not allowed.

19.1.1 Generate a Key Pair

To generate a new key pair named mycert with a length of 4096 bits:

tnsr# pki private-key mycert generate key-length 4096

The key pair is stored in a file at /etc/pki/tls/tnsr/private/<name>.key.

Note: Remember that the private key, CSR, and certificate must all use identical names!

19.1.2 Importing a Key Pair

In addition to generating a key pair on TNSR, a private key may also be imported from an outside source. The key data
can be imported in one of two ways:
e Use pki private-key <name> enter then copy and paste the PEM data

* Copy the PEM format key file to the TNSR host, then use pki private-key <name> import <file> to
import from a file from the current working directory.

Copy and Paste

First, use the enter command:

tnsr# pki private-key mycert enter
Type or paste a PEM-encoded private key.
Include the lines containing 'BEGIN PRIVATE KEY' and 'END PRIVATE KEY'

Next, paste the key data:

© Copyright 2025 Rubicon Communications LLC 175

Product Manual TNSR v19.05

Import from File

First, make sure that the copy of the key file is in PEM format.

Next, copy the key file to TNSR and start the CLI from the directory containing this file. The filename extension is not
significant, and may be key, pem, txt, or anything else depending on how the file was originally created.

Next, use the import command:

[tnsr# pki private-key mycert import mycert.key]

19.1.3 Other Key Operations

To view a list of all current keys known to TNSR:

tnsr# pki private-key list
mycert

To view the contents of the private key named mycert in PEM format:

tnsr# pki private-key mycert get

Warning: When making a backup copy of this key, store the backup in a protected, secure location. Include the
armor lines (BEGIN, END) when making a backup copy of the key.

To delete a key pair which is no longer necessary:

[tnsr# pki private-key <name> delete J

Warning: Do not delete a private key associated with a CSR or Certificate which is still in use!

orphan

19.2 Certificate Sighing Request Management

A certificate signing request, or CSR, combines the public key along with a list of attributes that uniquely identify an
entity such as a TNSR router. Once created, the CSR is exported and sent to the Certificate Authority (CA). The CA
will sign the request and return a certificate.

© Copyright 2025 Rubicon Communications LLC 176

Product Manual

TNSR v19.05

19.2.1 Set Certificate Signing Request Attributes

The first step in creating a CSR is to set the attributes which identify this firewall. These attributes will be combined
to form the certificate Subject:

tnsr# pki
tnsr# pki
tnsr# pki
tnsr# pki
tnsr# pki
tnsr# pki

signing-request
signing-request
signing-request
signing-request
signing-request
signing-request

set
set
set
set
set
set

common-name tnsr.example.com
country US

state Texas

city Austin

org Example Co

org-unit IT

The attributes include:

common-name

The common name of the entity the certificate will identify, typically the fully qualified domain name
of this host, or a username.

country
The country in which the entity is located.

state

city

org

The state or province in which the entity is located.

The city in which the entity is located.

The company name associated with the entity.

org-unit
The department or division name inside the company.

Note: At a minimum, a common-name must be set to generate a CSR.

Next, set the required digest algorithm which will be used to create a hash of the certificate data:

[tnsr# pki signing-request set digest sha256

)

This algorithm can be any of the following choices, from weakest to strongest: md5, shal, sha224, sha256, sha384,

or sha512.

Note: SHA-256 is the recommended minimum strength digest algorithm.

Before generating the CSR, review the configured attributes for the CSR:

city:
org:

Austin
Example Co

org-unit: IT
digest: sha256

tnsr# pki signing-request settings show

Certificate signing request fields:
common-name: tnsr.example.com
country: US
state: Texas

© Copyright 2025 Rubicon Communications LLC

177

Product Manual

TNSR v19.05

If any attributes are incorrect, change them using the commands shown previously.

19.2.2 Generate a Certificate Signing Request

If the attributes are all correct, generate the CSR using the same name as the private key created previously. TNSR will

output CSR data to the terminal in PEM format:

tnsr# pki signing-request mycert generate

The CSR data is stored in a file at /etc/pki/tls/tnsr/certs/<name>.csr

Note: Remember that the private key, CSR, and certificate must all use identical names!

The CSR data for existing entries can be displayed in PEM format:

tnsr# pki signing-request mycert get

Copy and paste the CSR data, including the armor lines (BEGIN, END), from the terminal into a local file, and submit

that copy of the CSR to the CA for signing.

CA.

Warning: Remember, the private key for the CSR is not required for signing. Do not send the private key to the

19.2.3 Other CSR Operations

A CSR entry may be deleted once the certificate has been imported to TNSR:

{tnsr# pki signing-request <name> delete

To view a list of all CSR entries known to TNSR:

[tnsr# pki signing-request list

To reset the CSR attribute contents:

[tnsr# pki signing-request settings clear

orphan

© Copyright 2025 Rubicon Communications LLC

178

Product Manual TNSR v19.05

19.3 Certificate Management

After submitting the certificate signing request to the CA, the CA will sign the request and return a signed copy of the
certificate. Typically this will be sent in PEM format, the same format used for the CSR and private key.

The certificate data can be imported in one of two ways:
e Use pki certificate <name> enter then copy and paste the PEM data

» Copy the PEM format certificate file to the TNSR host, then use pki certificate <name> import <file>
to import from a file from the current working directory.

The certificate data is stored in a file at /etc/pki/tls/tnsr/certs/<name>.crt after entering or importing the
contents.

Warning: When importing a certificate created outside of TNSR, The private key must be imported and present
before TNSR can import the certificate.

19.3.1 Copy and Paste

First, use the enter command:

tnsr# pki certificate mycert enter
Type or paste a PEM-encoded certificate.
Include the lines containing 'BEGIN CERTIFICATE' and 'END CERTIFICATE'

Note: Remember that the private key, CSR, and certificate must all use identical names!

Next, paste the certificate data:

19.3.2 Import from File
First, make sure that the copy of the certificate file is in PEM format. The CA may have delivered the certificate in
PEM format, or another format. Convert the certificate to PEM format if it did not come that way.

Next, copy the certificate file to TNSR and start the CLI from the directory containing the certificate file. The filename
extension is not significant, and may be pem, crt, txt, or anything else depending on how the file was delivered from
the CA.

Next, use the import command:

[tnsr# pki certificate mycert import mycert.pem

© Copyright 2025 Rubicon Communications LLC 179

Product Manual TNSR v19.05

19.3.3 Other Certificate Operations

To view a list of all certificates known to TNSR:

{tnsr# pki certificate list

To view the PEM data for a specific certificate known to TNSR:

[tnsr# pki certificate <name> get

To delete a certificate:

[tnsr# pki certificate <name> delete

orphan

19.4 Certificate Authority Management

As mentioned in Public Key Infrastructure, a Certificate Authority (CA) provides a starting point for a chain of trust
between entities using certificates. A CA will sign a certificate showing that it is valid, and as long as an entity trusts
the CA, it knows it can trust certificates signed by that CA.

By creating or importing a CA into TNSR, TNSR can use that CA to validate other certificates or sign new certificate
requests. These certificates can then be used to identify clients connecting to the RESTconf service or other similar
purposes.

A CA can be managed in several ways in TNSR. For example:
» Import a CA generated by another device by copy/paste in the CLI
* Import a CA generated by another device from a file

* Generate a new private key and CSR, then self-sign the CSR and set the CA property. The resulting CA is
automatically available as a TNSR CA.

19.4.1 Importa CA

TNSR can import a CA from the terminal with copy/paste, or from a file. When importing a CA, the key is optional
for validation but required for signing. To import the key, see Key Management. Import the key with the same name
as the CA.

To import a CA from the terminal, use the enter command. In this example, a CA named tnsrca will be imported
from the terminal by TNSR:

pki ca tnsrca enter
Type or paste a PEM-encoded certificate.
Include the lines containing 'BEGIN CERTIFICATE' and 'END CERTIFICATE'

tnsr(config)#

Next, import the private key using the same name:

© Copyright 2025 Rubicon Communications LLC 180

Product Manual TNSR v19.05

tnsr(config)# pki private-key tnsrca enter
Type or paste a PEM-encoded private key.
Include the lines containing 'BEGIN PRIVATE KEY' and 'END PRIVATE KEY'

Alternately, import the CA and key from the filesystem:

tnsr(config)# pki ca otherca import otherca.crt
tnsr(config)# pki private-key otherca import otherca.key

19.4.2 Creating a Self-Signed CA

TNSR can also create a self-signed CA instead of importing an external CA. For internal uses, this is generally a good
practice since TNSR does not need to rely on public CA entries to determine trust for its own clients.

First, generate a new private key for the CA:

tnsr(config)# pki private-key selfca generate

Next, create a new CSR for the CA:

tnsr(config)# pki signing-request set common-name selfca
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request selfca generate

Finally, have TNSR self-sign the CSR while setting the CA flag on the resulting certificate:

tnsr(config)# pki signing-request selfca sign self enable-ca true

After signing, the newly created CA is ready for immediate use:

tnsr(config)# pki ca list
tnsrca
selfca

© Copyright 2025 Rubicon Communications LLC 181

Product Manual TNSR v19.05

19.4.3 Intermediate CAs

In some cases a CA may rely on another CA. For example, if a root CA signs an intermediate CA and the intermediate
CA signs a certificate, then both the root CA and intermediate CA are required by the validation process.

To show this relationship in TNSR, a CA may be appended to another CA:

[tnsr(config)# pki ca <root ca name> append <intermediate ca name>

In the above command, both CA entries must be present in TNSR before using the append command.

19.4.4 Using a CA to sign a CSR

A CA in TNSR with a private key present can also sign a client certificate. The typical use case for this is for RESTconf
clients which must have a certificate recognized by a known CA associated with the RESTconf service.

First, generate a client private key and CSR:

tnsr(config)# pki private-key tnsrclient generate

tnsr(config)# pki signing-request set common-name tnsrclient.example.com
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request tnsrclient generate

Then, sign the certificate:

tnsr(config)# pki signing-request tnsrclient sign ca-name tnsrca days-valid 365 digest..
—~sha512 enable-ca false

The sign command takes several parameters, each of which has a default safe for use with client certificates in this
context. The above example uses these defaults, but specifies them manually to show how the parameters function.
The available parameters are:

days-valid
The number of days the resulting certificate will be valid. The default is 365 days (one year). When
the certificate expires, it must be signed again for a new term. Certificates with a shorter lifetime are
more secure, but longer lifetimes are more convenient.

digest
The hash algorithm used to sign the certificate. The default value is sha512.

enable-ca
A boolean value which sets the CA flag in the resulting certificate. If a CSR is signed as a CA, the
resulting certificate can then be used to sign other certificates. For end user certificates this is not
necessary or desired, so the default is false.

© Copyright 2025 Rubicon Communications LLC 182

Product Manual

TNSR v19.05

19.4.5 Other CA Operations

The remaining basic CA operations allow management of CA entries.

To view a list of all CA entries:

tnsr(config)# pki ca list
tnsrca
selfca

To view the contents of a CA certificate:

tnsr(config)# pki ca tnsrca get

To delete a CA entry:

[tnsr(config)# pki ca tnsrca delete

orphan

© Copyright 2025 Rubicon Communications LLC

183

CHAPTER
TWENTY

BIDIRECTIONAL FORWARDING DETECTION

Bidirectional Forwarding Detection (BFD) is used to detect faults between two routers across a link, even if the physical
link does not support failure detection. TNSR uses UDP as a transport for BFD between directly connected routers
(single hop/next hop) as described in RFC 5880 and RFC 5881.

Each BFD session monitors one link. Multiple BFD sessions are necessary to detect faults on multiple links. BFD
sessions must be manually configured between endpoints as there is no method for automated discovery.

BFD supports session authentication using SHA1 and we recommend using authentication when possible to secure
BFD sessions.

When using BFD, both endpoints transmit “Hello” packets back and forth between each other. If these packets are not
received within the expected time frame, the link is considered down. Links may also be administratively configured
as down, and will not recover until manually changed.

orphan

20.1 BFD Sessions

A BFD session defines a relationship between TNSR and a peer so they can exchange BFD information and detect link
faults. These sessions are configured by using the bfd session <name>command, which enters config-bfd mode,
and defines a BFD session using the given word for a name.

Example:

tnsr# conf

tnsr(config)# bfd session otherrouter
tnsr(config-bfd)# interface GigabitEthernet0/14/0
tnsr(config-bfd)# local address 203.0.113.2
tnsr(config-bfd)# peer address 203.0.113.25
tnsr(config-bfd)# desired-min-tx 100000
tnsr(config-bfd)# required-min-rx 100000
tnsr(config-bfd)# detect-multiplier 3
tnsr(config-bfd)# exit

tnsr(config)# exit

tnsr#

184

https://tools.ietf.org/html/rfc5880
https://tools.ietf.org/html/rfc5881

Product Manual TNSR v19.05

20.1.1 Session Parameters

interface <if-name>
The Ethernet interface on which to enable BFD

local address <ip-address>
The local address used as a source for BFD packets. This address must be present on <if-name>.

peer address <ip-address>
The remote BFD peer address. The local and remote peer IP addresses must use the same address
family (either IPv4 or IPv6)

desired-min-tx <microseconds>
The desired minimum transmit interval, in microseconds

required-min-rx <microseconds>
The required minimum transmit interval, in microseconds

detect-multiplier <n-packets>
A non-zero value that is, roughly speaking, due to jitter, the number of packets that have to be missed
in a row to declare the session to be down. Must be between 1 and 255.

Additional parameters for authentication are covered in BFD Session Authentication.

20.1.2 Changing the BFD Administrative State

Under normal conditions the state of a link monitored by BFD is handled automatically. The link state can also be set
manually when necessary.

To disable a link and mark it administratively down:

tnsr# bfd session <name>
tnsr(config-bfd) # disable

To remove the administrative down and return the link to BFD management:

tnsr# bfd session <name>
tnsr(config-bfd) # enable

20.1.3 Viewing BFD Session Status

To see the configuration and status of a BFD session, use the show bfd session command:

tnsr# show bfd session

Session Number: O
Local IP Addr: 203.0.113.2
Peer 1IP Addr: 203.0.113.25
State: down
Required Min Rx Interval: 100000 usec
Desired Min Tx Interval: 100000 usec
Detect Multiplier: 3
BFD Key Id: 123
Configuration Key Id: 14
Authenticated: true

orphan

© Copyright 2025 Rubicon Communications LLC 185

Product Manual TNSR v19.05

20.2 BFD Session Authentication

TNSR supports SHA1 and meticulous SHA1 authentication. In either mode, a secret key is used to create a hash of
the outgoing packets. The key itself is not sent in the packets, only the hash and the ID of the key.

A sequence number is used to help avoid replay attacks. With SHA1, this sequence number is incremented occasionally.
With meticulous SHA1, the sequence number is incremented on every packet.

The receiving peer will check for a key matching the given ID and then compare a hash of the BFD payload against the
hash sent by the peer. If it matches and the sequence number is valid, the packet is accepted.

20.2.1 Define BFD Keys

There are two keys defined for each BFD session:

conf-key-id
The Configuration Key ID. An unsigned 32-bit integer which identifies an internal unique key in
TNSR. Neither the key itself nor this ID are ever communicated to peers. The secret component
of this key must be generated outside of TNSR. It is a group of 1 to 20 hex pair values, such as
4a40369b4d£32ed0652b548400.

bfd-key-id
The BFD key ID. An unsigned 8-bit integer (0-255) which is the key ID carried in BFD packets,
used for verifying authentication.

Warning: Both conf-key-id and bfd-key-id must be specified, or neither can be present.

To define a new configuration key ID:

tnsr(config)# bfd conf-key-id <conf-key-id>
tnsr(config-bfdkey)# authentication type (keyed-shal|meticulous-keyed-shal)
tnsr(config-bfdkey)# secret < (<hex-pair>)[1-20] >

For example:

tnsr(config)# bfd conf-key-id 123456789
tnsr(config-bfdkey)# authentication type meticulous-keyed-shal
tnsr(config-bfdkey)# secret 4a40369b4df32ed0652b548400

20.2.2 Setup BFD Authentication

Authentication will only be active if both the bfd-key-id and conf-key-id are defined for a BFD session.

An additional delayed keyword is also supported for BFD session which tells BFD to hold off any authentication
action until a peer attempts to authenticate.

To activate authentication, add the chosen identifiers to a BFD session:

tnsr(config)# bfd session <bfd-session>
tnsr(config-bfd)# bfd-key-id <bfd-key-id>
tnsr(config-bfd)# conf-key-id <conf-key-id>
tnsr(config-bfd)# delayed (true|false)
tnsr(config-bfd)# exit

© Copyright 2025 Rubicon Communications LLC 186

Product Manual

TNSR v19.05

For example:

tnsr(config)# bfd session otherrouter
tnsr(config-bfd)# bfd-key-id 123
tnsr(config-bfd)# conf-key-id 123456789
tnsr(config-bfd)# delayed false
tnsr(config-bfd)# exit

20.2.3 View BFD Keys

To view a list of keys and their types, use the show bfd keys command:

tnsr# show bfd keys

Conf Key Type Use Count
123456789 meticulous-keyed-shal 1
234567890 keyed-shal 0

To view only one specific key, pass its ID to the same command:

tnsr# show bfd keys conf-key-id 123456789
Conf Key Type Use Count

123456789 meticulous-keyed-shal 1

orphan

© Copyright 2025 Rubicon Communications LLC

187

CHAPTER
TWENTYONE

USER MANAGEMENT

TNSR includes a tnsr user by default. Administrators may create additional users to provide separate workspaces for
each user. In this workspace the user may save and load configurations.

Warning: User access is controlled by NACM and the NACM default behavior varies by platform and when the
TNSR installation was created. See NETCONF Access Control Model (NACM) for details.

21.1 User Configuration

Entering config-auth mode requires a username. When modifying an existing user, the username is available for
autocompletion. The command will also accept a new username, which it creates when the configuration is committed.
Creating a new user requires providing a means of authentication:

[tnsr(config)# auth user <user-name> J

A user may be deleted using the no form:

[tnsr(config)# no auth user <user-name>

The exit command leaves config-auth mode:

tnsr(config-auth)# exit
tnsr(config)#

When exiting config-auth mode, TNSR commits changes to the user, which will create or update the entry for the
user in the host operating system.

21.2 Authentication Methods

There are two methods for authenticating users: passwords and user keys.

188

Product Manual TNSR v19.05

21.2.1 Password Authentication

The password method takes a password entered in plain text, but stores a hashed version of the password in the config-
uration:

[tnsr(config—auth)# password <plain text password>]

Note: The password is hashed by the CLI prior to being passed to the backend. The plain text password is never stored
or passed outside the specific CLI instance.

If the configuration is viewed using the show configuration running command, the hashed password will be
present.

21.2.2 User Key Authentication

The second method of authentication is by user key. A user key is the same format as created by ssh-keygen.

To add a user key for authentication, use the user-keys command inside config-auth mode:

[tnsr(config—auth)# user-keys <key-name>]

The user key is read directly from the CLI. After the command is executed by pressing Enter, the CLI will wait for the
key to be entered, typically by pasting it into the terminal or by typing. The end of input is indicated by a blank line.
The normal CLI features are bypassed during this process.

orphan

© Copyright 2025 Rubicon Communications LLC 189

CHAPTER
TWENTYTWO

NETCONF ACCESS CONTROL MODEL (NACM)

NETCONF Access Control Model (NACM) provides a means by which access can be granted to or restricted from
groups in TNSR.

NACM is group-based and these groups and group membership lists are maintained in the NACM configuration.

User authentication is not handled by NACM, but by other processes depending on how the user connects. For examples,
see User Management and HTTP Server.

See also:

The data model and procedures for evaluating whether a user is authorized to perform a given action are defined in
RFC 8341.

Warning: TNSR Does not provide protection against changing the rules in such a way that causes a loss of access.
Should a lockout situation occur, see Regaining Access if Locked Out by NACM.

orphan

22.1 NACM Example

The example configuration in this section is the same default configuration shipped on TNSR version 18.08 mentioned
in NACM Defaults.

Warning: In the following example, NACM is disabled first and activated at the end of the configuration. This
avoids locking out the user when they are in the middle of creating the configuration, in case they unintentionally
exit or commit before finishing.

tnsr(config)# nacm disable
tnsr(config)# nacm exec-default deny
tnsr(config)# nacm read-default deny
tnsr(config)# nacm write-default deny
tnsr(config)# nacm group admin
tnsr(config-nacm-group)# member root
tnsr(config-nacm-group)# member tnsr
tnsr(config-nacm-group)# exit
tnsr(config)# nacm rule-list admin-rules
tnsr(config-nacm-rule-list)# group admin
tnsr(config-nacm-rule-list)# rule permit-all
(continues on next page)

190

https://tools.ietf.org/html/rfc8341

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action permit
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit
tnsr(config)# nacm enable

tnsr(config)# exit

orphan

22.2 View NACM Configuration

The current NACM configuration can be viewed with the show nacm command:

tnsr# show nacm

NACM

NACM Enable: true

Default Read policy : deny
Default Write policy: deny
Default Exec policy : deny

Rule List: admin-rules

permit-all permit *

This may be narrowed down to only show part of the configuration.

To view all groups:

tnsr# show nacm group

NACM

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 191

Product Manual TNSR v19.05

(continued from previous page)

Group: readonly

To view a specific group, use show nacm group <group-name>:

tnsr# show nacm group admin

NACM

To view all rule lists:

tnsr# show nacm rule-list

NACM

Rule List: admin-rules

Name Action Op Module Type

permit-all permit *

Rule List: ro-rules

Groups

Name Action Op Module Type
ro permit exec *

read deny

To view a specific rule list, use show nacm rule-list <list-name>

tnsr# show nacm rule-list admin-rules

NACHM

Rule List: admin-rules

Name Action Op Module Type

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 192

Product Manual TNSR v19.05

(continued from previous page)

permit-all permit *

orphan

22.3 Enable or Disable NACM

Warning: Do not enable NACM unless the rules and groups are correctly and completely configured, otherwise
access to TNSR may be cut off. If access is lost, see Regaining Access if Locked Out by NACM.

To enable NACM:

[tnsr(config) # nacm enable

To disable NACM:

[tnsr(config)# nacm disable

22.4 NACM Default Policy Actions

Alter the default policy for executing commands:

[tnsr(config)# nacm exec-default <deny|permit> J

Alter the default policy for reading status output:

[tnsr(config)# nacm read-default <deny|permit> }

Alter the default policy for writing configuration changes:

[tnsr(config)# nacm write-default <deny|permit>

orphan

22.5 NACM Username Mapping

NACM does not authenticate users itself, but it does need to know the username to determine group membership.

The method of authentication determines the username as seen by NACM. For example, users authenticated by user-
name and password (e.g. PAM auth for RESTCONF or the CLI) will have that same username in TNSR.

See also:

For more information on how users are authenticated, see User Management for CLI access and HTTP Server for
access via RESTCONEF.

CLI users can check their TNSR username with the whoami command.

NACM obeys the following rules to determine a username:

© Copyright 2025 Rubicon Communications LLC 193

Product Manual TNSR v19.05

SSH Password
NACM username is the same as the login username

SSH User Key
NACM username is the same as the login username

HTTP Server Password
NACM username is the same as the login username

HTTP Server Client Certificate
NACM username is the Common Name of the user certificate (cn= subject component)

22.6 NACM Groups

To create a group, use the nacm group <group-name> command:

[tnsr(config)# nacm group admin]

This changes to the config-nacm-group mode where group members can be defined using the member <username>
command:

tnsr(config-nacm-group)# member root
tnsr(config-nacm-group)# member tnsr

The username in this context is the mapped username described in NACM Username Mapping.

Warning: Host operating system users that were created manually and not managed through TNSR cannot be
used as group members. See User Management for information on managing users in TNSR.

To remove a member, use the no form of the command:

tnsr(config)# nacm group admin
tnsr(config-nacm-group)# no member tnsr

To remove a group, use N0 nacm group <group-name>:

[tnsr(config)# no nacm group admin J

orphan

22.7 NACM Rule Lists

NACM rules are contained inside a rule list. A rule list may contain multiple rules, and they are used in the order they
are entered. Rule lists are also checked in the order they were created. Consider the order of lists and rules carefully
when crafting rule lists.

Create a rule list:

[tnsr(config)# nacm rule-list ro-rules]

Set the group to which the rule list applies, use group <group-name>:

© Copyright 2025 Rubicon Communications LLC 194

Product Manual TNSR v19.05

[tnsr (config-nacm-rule-list)# group readonly

See also:

For information on defining groups, see NACM Username Mapping.

22.8 NACM Rules

When configuring a rule list (config-nacm-rule-1ist mode), the rule <name> command defines a new rule:

[tnsr(config—nacm—rule—list)# rule permit-all

After entering this command, the CLI will be in config-nacm-rule mode.
From here, a variety of behaviors for the rule can be set, including:

access-operations <name>
The type of operation matched by this rule. Allowed values include:
*
Match all operations

create
Any protocol operation that creates a new data node.

delete
Any protocol operation that removes a data node.

exec
Execution access to the specified protocol operation.

read
Any protocol operation or notification that returns the value of a data node.

update
Any protocol operation that alters an existing data node.

action <deny|permit>
The action to take when this rule is matched, either deny to deny access or permit to allow access.

comment <text>
Arbitrary text describing the purpose of this rule.

Next, the following types can be used to specify the restriction to be enacted by this rule:

module <*>
The name of the Yang module covered by this rule, for example netgate-nat.

The complete list of modules can be viewed in the CLI by entering module ? from this mode. The
REST API documentation also contains a list of modules.

path <path-name>
XML path to restrict with this rule.

rpc <rpc-name>
The name of an RPC call to be restricted by this rule, such as edit-config, get-config, and so
on.

© Copyright 2025 Rubicon Communications LLC

195

Product Manual TNSR v19.05

22.8.1 NACM Rule Examples

As shown in NACM Example, the following set of commands defines a rule list and then creates a rule to permit access
to everything in TNSR:

tnsr(config)# nacm rule-list admin-rules
tnsr(config-nacm-rule-list)# group admin
tnsr(config-nacm-rule-list)# rule permit-all
tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action permit
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit

Using the available module and access-operation, rules are possible that limit in more fine-grained ways.

This next example will allow a user in the 1imited group to see information from commands like show, but not make
changes to the configuration:

tnsr(config)# nacm rule-list limited-rules
tnsr(config-nacm-rule-list)# group limited
tnsr(config-nacm-rule-list)# rule read-only
tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations read
tnsr(config-nacm-rule)# access-operations exec
tnsr(config-nacm-rule)# action permit
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit

Selective restrictions are also possible with rules that limit access to specific modules while allowing access to every-
thing else. In this example, users in the 1imited group may access any module except for NTP.

tnsr(config)# nacm rule-list limited-rules
tnsr(config-nacm-rule-list)# group limited
tnsr(config-nacm-rule-list)# rule no-ntp
tnsr(config-nacm-rule)# module netgate-ntp
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action deny
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# rule permit-all
tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action permit
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit

© Copyright 2025 Rubicon Communications LLC 196

Product Manual TNSR v19.05

22.9 NACM Rule Processing Order

When consulting defined rule lists, NACM acts in the following manner:

If NACM is disabled, it skips all checks, otherwise it proceeds
NACM consults group lists to find which groups contain this user
NACM checks each rule list in the order they are defined

NACM checks the group membership for each of these rule lists

NACM compares the group defined on the rule list to the groups for this user, and if there is a match, it checks
rules in the list

NACM checks the rules in the order they are defined inside the rule list
NACM compares the current access operation to the rule and if it matches, the rest of the rule is tested
NACM attempts to match the following criteria, if defined on the rule:

— The module on the rule name must match the requested module or *.

— The rpc-name matches the RPC call in the request

— The path matches the XML path to the requested data

If the rule is matched, NACM consults the action on the rule and acts as indicated, either permitting or denying
access

NACM repeats these checks until there are no more rules, and then no more rule lists

If no rules matched, NACM consults the default policies for the attempted operation and takes the indicated
action

orphan

22.10 Regaining Access if Locked Out by NACM

If the NACM configuration prevents an administrator from accessing TNSR in a required way, NACM can be disabled

or its

configuration removed to regain access.

22.10.1 Method 1: Temporarily Disable NACM

With
tion,

a complicated NACM configuration, the easiest way to regain access is to disable NACM, fix the configura-
and then enable it again. This involves disabling NACM in /etc/tnsr.xml, which is copied from one of the

following locations, depending on which services are stopped/started: /etc/tnsr/tnsr-none.xml, /etc/tnsr/
tnsr-running.xml, and /etc/tnsr/tnsr-startup.xml. The best practice is to edit all three files.

Stop TNSR
Edit /etc/tnsr/tnsr-startup.xml

Locate the line with CLICON_NACM_MODE and change it to:

[<CLICON_NACM_MODE>di sabled</CLICON_NACM_MODE>

Repeat the edit in /etc/tnsr/tnsr-none.xml and /etc/tnsr/tnsr-running.xml

Restart TNSR

© Copyright 2025 Rubicon Communications LLC 197

Product Manual TNSR v19.05

Use the TNSR CLI to fix the broken NACM rules
 Save the new configuration

Stop TNSR

Edit /etc/tnsr/tnsr-startup.xml

* Locate the line with CLICON_NACM_MODE and change it to:

[<CLICON_NACM_MODE>int ernal</CLICON_NACM_MODE>]

* Repeat the edit in /etc/tnsr/tnsr-none.xml and /etc/tnsr/tnsr-running.xml
¢ Restart TNSR

TNSR will start with the new, fixed, NACM configuration. If access is still not working properly, repeat the process
making changes to NACM until it is, or proceed to the next method to start over.

22.10.2 Method 2: Remove NACM Configuration

» Stop TNSR

e Edit /var/tnsr/startup_db

¢ Remove the entire <nacm>. . .</nacm> section from startup_db
 Start TNSR

TNSR will restart without any NACM configuration and it can then be reconfigured from scratch as shown in NACM
Example.

22.11 NACM Defaults

TNSR version 18.08 or later includes a default set of NACM rules. These rules allow members of group admin to
have unlimited access and sets the default policies to deny. This configuration includes the users tnsr and root in
the group admin.

See also:

To see the specific rules from the default configuration, see NACM Example or view the current NACM configuration
as described in View NACM Configuration.

For users of older installations or those who have removed the default NACM configuration, NACM defaults to disabled
with no defined groups or rule lists, and with the following default policies:

Default Read policy : permit
Default Write policy: deny
Default Exec policy : permit

orphan

© Copyright 2025 Rubicon Communications LLC 198

CHAPTER
TWENTYTHREE

HTTP SERVER

TNSR includes an HTTP server, currently powered by nginx. This HTTP server provides clients with access to the
RESTCONF API, and there are plans to extend it to provide other services in the future.

23.1 HTTP Server Configuration

The server is configured using the http server command to enter http mode:

tnsr# configure
tnsr(config)# http server
tnsr(config-http)#

The server can be disabled with the following command:

[tnsr(config)# no http server

23.1.1 Managing the HTTP Server Process

The HTTP server process can be managed using the service command:

tnsr# configure
tnsr(config)# service http <command>

Where <command> can be any of:

start
Start the HTTP server

stop
Stop the HTTP server

restart
Restart (stop and then start) the HTTP server

status
Print the status of the HTTP server process

199

https://nginx.org/

Product Manual TNSR v19.05

23.2 HTTPS Encryption

The HTTP server can optionally utilize TLS (HTTPS) to secure communications between the client and server.

Warning: Though HTTPS is optional, we strongly recommend its use for optimal security.

HTTPS requires a server certificate present on the TNSR device, and this server certificate must be configured in the
HTTP server:

tnsr(config)# http server
tnsr(config-http)# server certificate <cert-name>

See also:

For more information on managing certificates on TNSR, see Public Key Infrastructure.

23.3 Authentication

The HTTP server supports three types of client authentication to protect access to its resources: Client certificate
authentication, password authentication, and none (no authentication):

[tnsr(config—http)# authentication type (client-certificate|password|none)

23.3.1 Client Certificate

The most secure means of protecting access to the HTTP server is via client certificates:

tnsr(config-http)# authentication type client-certificate
tnsr(config-http)# authentication client-certificate-ca <cert-name>

To verify client certificates, a Certificate Authority (CA) is configured in TNSR and all client certificates must be signed
by this CA. The client certificate must be used by the client when attempting to connect to the HTTP server. Clients
without a certificate are rejected.

See also:
For more information on managing certificates on TNSR, see Public Key Infrastructure.

When using client certificates the Common Name (cn= parameter) of the client certificate is taken as the username.
That username is then processed through NACM to determine group access privileges for the RESTCONF API.

23.3.2 Password

Password authentication for the HTTP server is handled via Pluggable Authentication Modules (PAM) support:

[tnsr(config-http)# authentication type password

Users can be authenticated against any source supported by PAM modules in the operating system.

Once authenticated, the username is processed through NACM to determine group access privileges for the REST-
CONF APL

© Copyright 2025 Rubicon Communications LLC 200

Product Manual TNSR v19.05

23.3.3 None

The least secure option is to disable authentication entirely:

[tnsr(config—http)# authentication type none]

Warning: This option must only be used for testing and never in a production environment.

This removes all security protecting the RESTCONF API. Without authentication, any client can send requests or
make changes using the API, which is extremely dangerous.

23.4 RESTCONF Server

The primary service provided by the HTTP server is the AP/ Endpoints which uses RESTCONF. This RESTCONF
service can be enabled and disabled as needed within the HTTP server configuration.

To enable access to the RESTCONF API:

[tnsr(config—http) # enable restconf

To disable access to the RESTCONF API:

[tnsr (config-http)# disable restconf

orphan

© Copyright 2025 Rubicon Communications LLC 201

CHAPTER
TWENTYFOUR

TNSR CONFIGURATION EXAMPLE RECIPES

This section is a cookbook full of example recipes which can be used to quickly configure TNSR in a variety of ways.
The use cases covered by these recipes are real-world problems encoutered by Netgate customers.

These example scenarios pull together concepts discussed in more detail throguhout the rest of this documentation to
accomplish larger goals.

orphan

24.1 RESTCONEF Service Setup with Certificate-Based Authentication
and NACM

Covered Topics

* Use Case

* Example Scenario

* TNSR Setup

* Client Configuration

* Example Usage

* Adding More Users

24.1.1 Use Case

RESTCONEF is desirable for its ability to implement changes to TNSR remotely using the API, but allowing remote
changes to TNSR also raises security concerns. When using RESTCONTF, security is extremely important to protect
the integrity of the router against unauthorized changes.

Note: RESTCONF deals in JSON output and input, which is easily parsed by a variety of existing libraries for
programming and scripting languages.

202

Product Manual TNSR v19.05

24.1.2 Example Scenario
In this example, TNSR will be configured to allow access via RESTCONTF, but the service will be protected in several
key ways:

» The RESTCONTF service is configured for TLS to encrypt the transport

* The RESTCONTF service is configured to require a client certificate, which is validated against a private Certifi-
cate Authority known to TNSR

* NACM determines if the certificate common-name (username) is allowed access to view or make changes via
RESTCONF

ltem Value

TNSR Hostname tnsr.example.com
RESTCONF Username myuser

NACM Group Name admins
Additional User anotheruser

24.1.3 TNSR Setup

Generate Certificates

Create a self-signed Certificate Authority:

tnsr(config)# pki private-key selfca generate

tnsr(config)# pki signing-request set common-name selfca
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request selfca generate

tnsr(config)# pki signing-request selfca sign self enable-ca true

Create a certificate for the user myuser, signed by selfca:

tnsr(config)# pki private-key myuser generate key-length 4096

tnsr(config)# pki signing-request set common-name myuser

tnsr(config)# pki signing-request set digest sha256

tnsr(config)# pki signing-request myuser generate

tnsr(config)# pki signing-request myuser sign ca-name selfca days-valid 365 digest..
—»sha512 enable-ca false

Create a certificate for the RESTCONF service to use. The common-name should be the hostname of the TNSR router,
which should also exist in DNS:

tnsr(config)# pki private-key restconf generate key-length 4096

tnsr(config)# pki signing-request set common-name tnsr.example.com

tnsr(config)# pki signing-request set digest sha256

tnsr(config)# pki signing-request restconf generate

tnsr(config)# pki signing-request restconf sign ca-name selfca days-valid 365 digest.
—»sha512 enable-ca false

© Copyright 2025 Rubicon Communications LLC 203

Product Manual

TNSR v19.05

Setup NACM

Disable NACM while making changes, to avoid locking out the account making the changes:

[tnsr(config)# nacm disable

Set default policies:

tnsr(config)# nacm exec-default deny
tnsr(config)# nacm read-default deny
tnsr(config)# nacm write-default deny

Setup an admin group containing the default users plus myuser, which will match the common-name of the user

certificate created above:

tnsr(config)# nacm group admin
tnsr(config-nacm-group)# member root
tnsr(config-nacm-group)# member tnsr
tnsr(config-nacm-group)# member myuser
tnsr(config-nacm-group)# exit

Setup rules to permit any action by members of the admin group:

tnsr(config)# nacm rule-list admin-rules
tnsr(config-nacm-rule-list)# group admin
tnsr(config-nacm-rule-list)# rule permit-all
tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action permit
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit

Enable NACM:

tnsr(config)# nacm enable
tnsr(config)# exit

Enable RESTCONF

Enable RESTCONF and configure it for TLS and client certificate authentication:

tnsr(config)# http server

tnsr(config-http)# server certificate restconf
tnsr(config-http)# authentication type client-certificate
tnsr(config-http)# authentication client-certificate-ca selfca
tnsr(config-http)# enable restconf

© Copyright 2025 Rubicon Communications LLC

204

Product Manual TNSR v19.05

24.1.4 Client Configuration

On TNSR, export the CA certificate, user certificate, and user certificate key. Place the resulting files in a secure place
on a client system, in a directory with appropriate permissions, readable only by the user. Additionally, the private key
file must only be readable by the user. For this example, the files will be placed in ~/tnsr/.

First, export the CA certificate. Copy and paste this into a local file, named tnsr-selfca.crt:

tnsr# pki ca selfca get

Next, export the user certificate, copy and paste it and save in a local file named tnsr-myuser.crt:

tnsr# pki certificate myuser get

Finally, export the user certificate private key, copy and paste it and save in a local file named tnsr-myuser.key.
Remember to protect this file so it is only readable by this user:

tnsr# pki private-key myuser get

This example uses curl to access RESTCONEF, so ensure it is installed and available on the client computer.

24.1.5 Example Usage
This simple example shows fetching the contents of an ACL from RESTCONF as well as adding a new ACL entry.
There are numerous possibilities here, for more details see the REST API documentation.

In this example, there is an existing ACL named blockbadhosts. It contains several entries including a default allow
rule with a sequence number of 5000.

These examples are all run from the client configured above.

Note: This is a simple demonstration using cURL and shell commands. This makes it easy to demonstrate how the
service works, and how RESTCONF URLs are formed, but does not make for a good practical example.

In real-world cases these types of queries would be handled by a program or script that interacts with RESTCONF,
manipulating data directly and a lot of the details will be handled by RESTCONF and JSON programming libraries.

© Copyright 2025 Rubicon Communications LLC 205

Product Manual TNSR v19.05

Retrive a specific ACL

Retrieve the entire contents of the blockbadhosts ACL:

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X GET \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-
—list=blockbadhosts

Output:
{
"acl-list": [
{
"acl-name": "blockbadhosts",
"acl-description": "Block bad hosts",
"acl-rules": {
"acl-rule": [
{
"sequence": 1,
"action": "deny",
"src-ip-prefix": "203.0.113.14/32"
B
{
"sequence": 2,
"action": "deny",
"src-ip-prefix": "203.0.113.15/32"
e
{
"sequence": 555,
"action": "deny",
"src-ip-prefix": "5.5.5.5/32"
e
{
"sequence": 5000,
"acl-rule-description": "Default Permit",
"action": "permit"
}
]
}
}

The cURL parameters and RESTCONF URL can be dissected as follows:

© Copyright 2025 Rubicon Communications LLC 206

Product Manual TNSR v19.05

Item Value

cURL Client Certificate —cert ~/tnsr/tnsr-myuser.crt
cURL Client Certificate Key —key ~/tnsr/tnsr-myuser.key
cURL CA Cert to validate TLS —cacert ~/tnst/tnsr-selfca.crt
Request type (GET) -X GET

RESTCONF Server protocol/host https://tnsr.example.com
RESTCONF API location: /restconf/data/

ACL config area (prefix:name) netgate-acl:acl-config/

ACL table acl-table/

ACL List, with restriction acl-list=blockbadhosts

Note: Lists of items with a unique key can be restricted as shown above. The API documentation also calls this out
as well, showing an optional ={name} in the query.

Retrieve a specific rule of a specific ACL

View only the default permit rule of the ACL:

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X GET \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-
—1list=blockbadhosts/acl-rules/acl-rule=5000

Output:
{
"netgate-acl:acl-rule": [
{
"sequence": 5000,
"acl-rule-description": "Default Permit",
"action": "permit"
}

]
}

The query is nearly identical to the previous one, with the following additional components:

ltem Value

ACL rules list acl-rules/
ACL rule, with restriction acl-rule=5000

© Copyright 2025 Rubicon Communications LLC 207

https://tnsr.example.com

Product Manual TNSR v19.05

Add a new rule to an existing ACL

Insert a new ACL rule entry with the following parameters:

ltem Value

Request Type -X PUT (add content)
ACL Name blockbadhosts

ACL Rule Sequence 10

ACL Rule Action deny

ACL Rule Source Address 10.222.111.222/32

The new data passed in the -d parameter is JSON but with all whitespace removed so it can be more easily expressed
on a command line.

The URL is the same as if the query is retrieving the rule in question.

Warning: Note the presence of the sequence number in both the supplied JSON data and in the URL. This must
match.

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \

--key ~/tnsr/tnsr-myuser.key \

--cacert ~/tnsr/tnsr-selfca.crt \

-X PUT \

-d '"{"netgate-acl:acl-rule":[{"sequence": 10,"action":"deny","src-ip-prefix":"10.222.
—111.222/32"313}" \

https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-
—.1ist=blockbadhosts/acl-rules/acl-rule=10

Output: This command has no output when it works successfully.
Retrieve the contents of the ACL again to see that the new rule is now present:

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X GET \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-
—.list=blockbadhosts

Output:
{

"netgate-acl:acl-list": [
{
"acl-name": "blockbadhosts",
"acl-description": "Block bad hosts",
"acl-rules": {
"acl-rule": [

{

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 208

Product Manual

TNSR v19.05

(continued from previous page)

"sequence": 1,
"action": "deny",
"src-ip-prefix": "203.0.113.14/32"

B
{
"sequence": 2,
"action": "deny",
"src-ip-prefix": "203.0.113.15/32"
e
{
"sequence": 10,
"action": "deny",
"src-ip-prefix": "10.222.111.222/32"
e
{
"sequence": 555,
"action": "deny",
"src-ip-prefix": "5.5.5.5/32"
e
{
"sequence": 5000,
"acl-rule-description": "Default Permit",
"action": "permit"
}

Remove a specific rule from an ACL

Say that entry is no longer needed and it is safe to remove. That can be done with a DELETE request for the URL

corresponding to its sequence number:

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X DELETE \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-
—list=blockbadhosts/acl-rules/acl-rule=10

Output: This does not produce any output if it completed successfully.

Retrieve the contents of the ACL again to confirm it was removed.

© Copyright 2025 Rubicon Communications LLC

209

Product Manual TNSR v19.05

24.1.6 Adding More Users

To create additional RESTCONF users, only two actions are required on TNSR: Generate a certificate for the new user,
and then add the user to NACM. This example adds a new user named anotheruser.

Generate a new user certificate:

tnsr(config)# pki private-key anotheruser generate key-length 4096

tnsr(config)# pki signing-request set common-name anotheruser

tnsr(config)# pki signing-request set digest sha256

tnsr(config)# pki signing-request anotheruser generate

tnsr(config)# pki signing-request anotheruser sign ca-name selfca days-valid 365 digest.
—sha512 enable-ca false

Add this user to the NACM admin group:

tnsr(config)# nacm group admin
tnsr(config-nacm-group)# member anotheruser
tnsr(config-nacm-group)# exit

Then, the user certificate can be copied to a new client and used as explained previously.

orphan

24.2 TNSR IPsec Hub for pfSense

Current scenario:

HQ (hub) with 3 branch (spoke) sites, with secure interconnection between thier local networks. One of the branch
routers is assumed to be BGP capable. Internet access for one of the sites should be provided through the hub node.

Covered Topics

* Input Data
— Scenario Topology
— TNSR and Peer Network Configuration
— TNSR and Peer IPsec Configuration
* Setup Details
— Initial setup
* TNSR Setup
% Peer 1 Basic Setup
% Peer 2 Basic Setup
% Peer 3 Basic Setup
* Access between local and remote networks via IPsec

— TNSR

* IPsec Configuration

© Copyright 2025 Rubicon Communications LLC 210

Product Manual TNSR v19.05

* Routing
% Peer I Setup
% Peer 2 Setup
% Peer 3 Setup
— Access to the internet for remote network

* TNSR

% Peer 1 Policy Route

24.2.1 Input Data

The information in this section defines the local configuration which is covered in this recipe. These input values can
be substituted by the actual corresponding values for a real-world implementation.

Scenario Topology

The internet

® ipsect 101811180

LAN 192.168.0.1 ipsec3 10.131.3.1/30

m-m
] WAN 10.129.0.10
LAN TNSR

192.168.0.0/24

WAN 10.129.0.11

@LAN 192.168.1.1

0 @

Peer 1
192.168.1.0/24
.2/30 :
LAN 192.168.2.1 o
: []
Peer 2 LAN
192.168.2.0/24
ipsec3 10.131.3.2/30 @
WAN 10.129.0.13 LAN 192.168.3.1 iy
Peer 3 LAN

192.168.3.0/24

Fig. 1: TNSR IPsec Hub

© Copyright 2025 Rubicon Communications LLC 211

Product Manual TNSR v19.05
TNSR and Peer Network Configuration
Table 1: TNSR Setup
Item Value
LAN Interface GigabitEthernetb/0/0
LAN Network 192.168.0.0/24
LAN IP Address static 192.168.0.1/24
WAN Interface GigabitEthernet13/0/0
WAN IP Address DHCP 10.129.0.10/24
IPsec VTI Peer 1 IP Address 10.131.1.1/30
IPsec VTI Peer 2 IP Address 10.131.2.1/30
IPsec VTI Peer 3 IP Address 10.131.3.1/30
Table 2: Peer 1 Network Setup
Item Value
LAN Interface LAN
LAN Network 192.168.1.0/24
LAN IP Address static 192.168.1.1/24
WAN Interface WAN
WAN IP Address DHCP 10.129.0.11/24
IPsec VTT TNSR IP Address 10.131.1.2/30
Table 3: Peer 2 Network Setup
ltem Value
LAN Interface LAN
LAN Network 192.168.2.0/24
LAN IP Address static 192.168.2.1/24
WAN Interface WAN
WAN IP Address DHCP 10.129.0.12/24
IPsec VTT TNSR IP Address 10.131.2.2/30
Table 4: Peer 3 Network Setup
Item Value
LAN Interface LAN
LAN Network 192.168.3.0/24
LAN IP Address static 192.168.3.1/24
WAN Interface WAN
WAN IP Address DHCP 10.129.0.13/24
IPsec VTI TNSR IP Address 10.131.3.2/30
© Copyright 2025 Rubicon Communications LLC 212

Product Manual

TNSR v19.05

TNSR and Peer IPsec Configuration

General IPsec settings are the same for every node.

Table 5: IPsec IKE/Phase 1 Settings

Item Value

Network Interface WAN Interface

IKE type IKEv2

Authentication method PSK

Pre-Share Key 01234567

Local identifier WAN IP Address
Remote identifier Remote WAN IP Address
Encryption AES-128-CBC

Hash SHA1

DH group 14 (2048 bit modulus)
Lifetime 28800

Table 6: IPsec SA/Phase 2 Settings

ltem Value

Mode Routed IPsec (VTI)
Protocol ESP

Encryption AES-128-CBC
Hash SHAL1

PES group 14 (2048)

Lifetime 3600

24.2.2 Setup Details

Initial setup

It is assumed that devices have generic default setup, do not have any existing configuration errors, and are ready to be

configured.

Note: In this scenario every device obtains its own static IP address on its WAN interface from an external lab gateway

which is not a part of the considered scenario.

TNSR Setup
LAN settings

Setup LAN interface with static IP address:

tnsr tnsr# configure

tnsr tnsr(config)# interface GigabitEthernetb/0/0

tnsr tnsr(config-interface)# description LAN

tnsr tnsr(config-interface)# ip address 192.168.0.1/24

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

213

Product Manual

TNSR v19.05

tnsr
tnsr
tnsr

tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit

(continued from previous page)

WAN settings

Setup WAN interface for obtaining IP address via DHCP:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr# configure

tnsr(config)# interface GigabitEthernet13/0/0
tnsr(config-interface)# description WAN
tnsr(config-interface)# dhcp client ipv4 hostname tnsr
tnsr(config-interface)# enable

tnsr(config-interface)# exit

tnsr(config)# exit

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 7: TNSR DHCP Server Setup

Item Value

DHCP IP address pool 192.168.0.100 to 192.168.0.199
Default gateway TNSR LAN IP address

DNS 8.8.8.8 and 1.1.1.1

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr# configure

tnsr(config)# dhcp4 server

tnsr(config-kea-dhcp4)# description LAN DHCP
tnsr(config-kea-dhcp4)# interface listen GigabitEthernetb/0/0
tnsr(config-kea-dhcp4)# subnet 192.168.0.0/24
tnsr(config-kea-subnet4)# interface GigabitEthernetb/0/0
tnsr(config-kea-subnet4)# pool 192.168.0.100-192.168.0.199
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 192.168.0.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 8.8.8.8, 1.1.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# exit

tnsr(config-kea-dhcp4)# exit

tnsr(config)# dhcp4 enable

tnsr(config)# exit

© Copyright 2025 Rubicon Communications LLC

214

Product Manual TNSR v19.05

NAT

tnsr tnsr# configure

tnsr tnsr(config)# nat global-options nat44 forwarding true
tnsr tnsr(config)# nat pool interface GigabitEthernet13/0/0
tnsr tnsr(config)# interface GigabitEthernetb/0/0

tnsr tnsr(config-interface)# ip nat inside

tnsr tnsr(config-interface)# exit

tnsr tnsr(config)# interface GigabitEthernet13/0/0

tnsr tnsr(config-interface)# ip nat outside

tnsr tnsr(config-interface)# exit

tnsr tnsr(config)# exit

Peer 1 Basic Setup
LAN settings

Setup LAN interface with static IP address.
* Navigate to Interfaces > LAN
* Set IPv4 Configuration Type to Static IPv4

Set IPv4 Address to 192.168.1.1 and mask as 24
¢ Click Save

Click Apply Changes

WAN settings

Setup WAN interface for obtaining an IP address via DHCP. This could also be a static setup, following a similar form
to the LAN settings above.

¢ Navigate to Interfaces > WAN

 Set IPv4 Configuration Type to DHCP
* Click Save

* Click Apply Changes

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 8: Peer | DHCP Server Setup

Item Value

DHCP IP address pool 192.168.1.100 to 192.168.1.199
Default gateway LAN IP address (pfSense Default)
DNS LAN IP address (pfSense Default)

¢ Navigate to Services > DHCP Server, LAN tab

© Copyright 2025 Rubicon Communications LLC 215

Product Manual TNSR v19.05

¢ Set Range From as 192.168.1.100 and To as 192.168.1.199
* Click Save

Peer 2 Basic Setup
LAN settings

Setup LAN interface with static IP address.
¢ Navigate to Interfaces > LAN
¢ Set IPv4 Configuration Type to Static IPv4
e Set IPv4 Address to 192.168.2.1 and mask as 24
* Click Save

¢ Click Apply Changes

WAN settings

Setup WAN interface for obtaining an IP address via DHCP. This could also be a static setup, following a similar form
to the LAN settings above.

* Navigate to Interfaces > WAN
 Set IPv4 Configuration Type to DHCP
* Click Save

* Click Apply Changes

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 9: Peer 2 DHCP Server Setup

Item Value

DHCP IP address pool 192.168.2.100 to 192.168.2.199
Default gateway LAN IP address (pfSense Default)
DNS LAN IP address (pfSense Default)

* Navigate to Services > DHCP Server, LAN tab
* Set Range From as 192.168.2.100 and To as 192.168.2.199
¢ Click Save

© Copyright 2025 Rubicon Communications LLC 216

Product Manual TNSR v19.05

Peer 3 Basic Setup
LAN settings

Setup LAN interface with static IP address.
* Navigate to Interfaces > LAN
* Set IPv4 Configuration Type to Static IPv4
e Set IPv4 Address to 192.168.3.1 and mask as 24
* Click Save
¢ Click Apply Changes

WAN settings

Setup WAN interface for obtaining an IP address via DHCP. This could also be a static setup, following a similar form
to the LAN settings above.

¢ Navigate to Interfaces > WAN

¢ Set IPv4 Configuration Type to DHCP
* Click Save

* Click Apply Changes

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 10: Peer 3 DHCP Server Setup

Item Value

DHCP IP address pool 192.168.3.100 to 192.168.3.199
Default gateway LAN IP address (pfSense Default)
DNS LAN IP address (pfSense Default)

¢ Navigate to Services > DHCP Server, LAN tab
* Set Range From as 192.168.3.100 and To as 192.168.3.199
¢ Click Save

24.2.3 Access between local and remote networks via IPsec
This section describes minimal IPsec and routing settings in order to obtain secure interconnectivity between LAN
networks for every device.

This document assumes that devices have generic initial setup successfully completed and are able to reach each other
via WAN network.

© Copyright 2025 Rubicon Communications LLC 217

Product Manual

TNSR v19.05

TNSR

IPsec Configuration

IPsec setup for each pfSense node

IPsec to Peer 1

Enter config state:

[tnsr

tnsr# configure

Creating [Psec instance with id 1:

tnsr
tnsr
tnsr
tnsr

tnsr(config)# ipsec tunnel 1
tnsr(config-ipsec-tunnel)# local-address 10.129.0.10
tnsr(config-ipsec-tunnel)# remote-address 10.129.0.11
tnsr(config-ipsec-tunnel)# crypto config-type ike

P1 encryption settings:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config-ipsec-tunnel)# crypto ike
tnsr(config-ipsec-crypto-ike)# version 2
tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr(config-ike-proposal)# encryption aes128
tnsr(config-ike-proposal)# integrity shal
tnsr(config-ike-proposal)# group modp2048
tnsr(config-ike-proposal)# exit

Creating peer IDs:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config-ipsec-crypto-ike)# identity local
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 10.129.0.10
tnsr(config-ike-identity)# exit
tnsr(config-ipsec-crypto-ike)# identity remote
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 10.129.0.11
tnsr(config-ike-identity)# exit

Authentication:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config-ipsec-crypto-ike)# authentication local
tnsr(config-ike-authentication)# round 1
tnsr(config-ike-authentication-round)# type psk
tnsr(config-ike-authentication-round)# psk 01234567
tnsr(config-ike-authentication-round)# exit
tnsr(config-ike-authentication)# exit
tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr(config-ike-authentication)# round 1
tnsr(config-ike-authentication-round)# type psk
tnsr(config-ike-authentication-round)# psk 01234567

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

218

Product Manual TNSR v19.05

(continued from previous page)

tnsr tnsr(config-ike-authentication-round)# exit
tnsr tnsr(config-ike-authentication)# exit

P2 settings:

tnsr tnsr(config-ipsec-crypto-ike)# child 1

tnsr tnsr(config-ike-child)# lifetime 3600

tnsr tnsr(config-ike-child)# proposal 1

tnsr tnsr(config-ike-child-proposal)# encryption aes128
tnsr tnsr(config-ike-child-proposal)# integrity shal
tnsr tnsr(config-ike-child-proposal)# group modp2048
tnsr tnsr(config-ike-child-proposal)# exit

tnsr tnsr(config-ike-child)# exit

tnsr tnsr(config-ipsec-crypto-ike)# exit

tnsr tnsr(config-ipsec-tunnel)# exit

Configuring tunnel interface

tnsr tnsr(config)# interface ipsecl

tnsr tnsr(config-interface)# ip address 10.131.1.1/30
tnsr tnsr(config-interface)# exit

tnsr tnsr(config)# exit

IPsec to Peer 2

Enter config state:

[tnsr tnsr# configure

Creating [Psec instance with id 2:

tnsr tnsr(config)# ipsec tunnel 1

tnsr tnsr(config-ipsec-tunnel)# local-address 10.129.0.10
tnsr tnsr(config-ipsec-tunnel)# remote-address 10.129.0.12
tnsr tnsr(config-ipsec-tunnel)# crypto config-type ike

P1 encryption settings:

tnsr tnsr(config-ipsec-tunnel)# crypto ike

tnsr tnsr(config-ipsec-crypto-ike)# version 2

tnsr tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr tnsr(config-ike-proposal)# encryption aesl28
tnsr tnsr(config-ike-proposal)# integrity shal
tnsr tnsr(config-ike-proposal)# group modp2048
tnsr tnsr(config-ike-proposal)# exit

Creating peer ID’s:

tnsr tnsr(config-ipsec-crypto-ike)# identity local
tnsr tnsr(config-ike-identity)# type address
tnsr tnsr(config-ike-identity)# value 10.129.0.10
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 219

Product Manual

TNSR v19.05

tnsr tnsr(config-ike-identity)# exit

tnsr tnsr(config-ipsec-crypto-ike)# identity remote
tnsr tnsr(config-ike-identity)# type address

tnsr tnsr(config-ike-identity)# value 10.129.0.12
tnsr tnsr(config-ike-identity)# exit

(continued from previous page)

Authentication:

tnsr tnsr(config-ipsec-crypto-ike)# authentication local
tnsr tnsr(config-ike-authentication)# round 1

tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit

tnsr tnsr(config-ike-authentication)# exit

tnsr tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr tnsr(config-ike-authentication)# round 1

tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit

tnsr tnsr(config-ike-authentication)# exit

P2 settings:

tnsr tnsr(config-ipsec-crypto-ike)# child 1

tnsr tnsr(config-ike-child)# lifetime 3600

tnsr tnsr(config-ike-child)# proposal 1

tnsr tnsr(config-ike-child-proposal)# encryption aes128
tnsr tnsr(config-ike-child-proposal)# integrity shal
tnsr tnsr(config-ike-child-proposal)# group modp2048
tnsr tnsr(config-ike-child-proposal)# exit

tnsr tnsr(config-ike-child)# exit

tnsr tnsr(config-ipsec-crypto-ike)# exit

tnsr tnsr(config-ipsec-tunnel)# exit

Configuring tunnel interface:

tnsr tnsr(config)# interface ipsec2

tnsr tnsr(config-interface)# ip address 10.131.2.1/30
tnsr tnsr(config-interface)# exit

tnsr tnsr(config)# exit

IPsec to Peer 3

Enter config state:

[tnsr tnsr# configure

Creating [Psec instance with id 1:

tnsr tnsr(config)# ipsec tunnel 1
tnsr tnsr(config-ipsec-tunnel)# local-address 10.129.0.10

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

220

Product Manual

TNSR v19.05

tnsr
tnsr

tnsr(config-ipsec-tunnel)# remote-address 10.129.0.13
tnsr(config-ipsec-tunnel)# crypto config-type ike

(continued from previous page)

P1 encryption settings:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config-ipsec-tunnel)# crypto ike
tnsr(config-ipsec-crypto-ike)# version 2
tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr(config-ike-proposal)# encryption aes128
tnsr(config-ike-proposal)# integrity shal
tnsr(config-ike-proposal)# group modp2048
tnsr(config-ike-proposal)# exit

Creating peer ID’s:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config-ipsec-crypto-ike)# identity local
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 10.129.0.10
tnsr(config-ike-identity)# exit
tnsr(config-ipsec-crypto-ike)# identity remote
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 10.129.0.13
tnsr(config-ike-identity)# exit

Authentication:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config-ipsec-crypto-ike)# authentication local
tnsr(config-ike-authentication)# round 1
tnsr(config-ike-authentication-round)# type psk
tnsr(config-ike-authentication-round)# psk 01234567
tnsr(config-ike-authentication-round)# exit
tnsr(config-ike-authentication)# exit
tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr(config-ike-authentication)# round 1
tnsr(config-ike-authentication-round)# type psk
tnsr(config-ike-authentication-round)# psk 01234567
tnsr(config-ike-authentication-round)# exit
tnsr(config-ike-authentication)# exit

P2 settings:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config-ipsec-crypto-ike)# child 1
tnsr(config-ike-child)# lifetime 3600
tnsr(config-ike-child)# proposal 1
tnsr(config-ike-child-proposal)# encryption aesl128
tnsr(config-ike-child-proposal)# integrity shal
tnsr(config-ike-child-proposal)# group modp2048
tnsr(config-ike-child-proposal)# exit
tnsr(config-ike-child)# exit
tnsr(config-ipsec-crypto-ike)# exit
tnsr(config-ipsec-tunnel)# exit

Configuring tunnel interface:

© Copyright 2025 Rubicon Communications LLC

221

Product Manual

TNSR v19.05

tnsr
tnsr
tnsr
tnsr

tnsr(config)# interface ipsec3
tnsr(config-interface)# ip address 10.131.3.1/30
tnsr(config-interface)# exit

tnsr(config)# exit

Routing

This section describes routing setup. This scenario assumes one of the pfSense IPsec peers, Peer 1, uses a dynamic
routing protocol (BGP) and the remaining two IPsec peers use static routing.

Peer 1 BGP Routing

Enter config state:

[tnsr

tnsr# configure

Defining redistributed networks, peer 2 and 3:

tnsr
tnsr
tnsr
tnsr
tnsr
tnsr

tnsr(config)# prefix-list VPN-ROUTES

tnsr(config-prefix-list)# sequence 1 permit 192.168.2.0/23 le 24
tnsr(config-prefix-list)# exit

tnsr(config)# route-map VPN-ROUTES-MAP permit sequence 1
tnsr(config-route-map)# match ip address prefix-list VPN-ROUTES
tnsr(config-route-map)# exit

Setup BGP instance:

tnsr
tnsr
tnsr

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server 65000
tnsr(config-bgp)# router-id 192.168.0.1

Defining neighbor:

tnsr
tnsr
tnsr
tnsr

tnsr(config-bgp)# neighbor 10.131.1.2
tnsr(config-bgp-neighbor)# remote-as 65001
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

Setup peer in certain address-family space:

tnsr
tnsr
tnsr
tnsr

tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# neighbor 10.131.1.2
tnsr(config-bgp-ip4uni-nbr)# activate
tnsr(config-bgp-ip4uni-nbr)# exit

Defining local network in certain address-family space:

[tnsr

tnsr(config-bgp-ip4uni)# network 192.168.0.0/24

Defining redistributed networks

© Copyright 2025 Rubicon Communications LLC

222

Product Manual TNSR v19.05
tnsr tnsr(config-bgp-ip4uni)# redistribute kernel route-map VPN-ROUTES-MAP
tnsr tnsr(config-bgp-ipduni)# exit
tnsr tnsr(config-bgp)# exit
Enabling BGP if one is not enabled:
tnsr tnsr(config-frr-bgp)# enable
tnsr tnsr(config-frr-bgp)# exit
Better to restart service in order to be sure changes applied effectively:
tnsr tnsr(config)# service bgp restart
tnsr tnsr(config)# exit
Peer 2 Static Routing
tnsr tnsr# configure
tnsr tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr tnsr(config-route-table-v4)# route 192.168.2.0/24
tnsr tnsr(config-rttbl4-next-hop)# next-hop 0 via 10.131.2.2 ipsec3
tnsr tnsr(config-rttbl4-next-hop)# exit
tnsr tnsr(config-route-table-v4)# exit
tnsr tnsr(config)# exit
Peer 3 Static Routing
tnsr tnsr# configure
tnsr tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr tnsr(config-route-table-v4)# route 192.168.3.0/24
tnsr tnsr(config-rttbl4-next-hop)# next-hop 0 via 10.131.3.2 ipsec3
tnsr tnsr(config-rttbl4-next-hop)# exit
tnsr tnsr(config-route-table-v4)# exit
tnsr tnsr(config)# exit
Peer 1 Setup
IPsec Settings
Phase 1
* Navigate to VPN > IPsec
¢ Click Add P1
¢ Set Key Exchange version to /KEv2
* Set Internet Protocol to /Pv4
¢ Set Interface to WAN
¢ Set Remote Gateway to 10.129.0.10
© Copyright 2025 Rubicon Communications LLC 223

Product Manual TNSR v19.05

* Set Authentication Method to Mutual PSK
¢ Set My identifier to My IP address
¢ Set Peer identifier to Peer IP address
¢ Set Pre-Shared Key to 01234567
* Set Encryption:
— Algorithm to AES
— Key length to 128 bit
— Hash to SHAI
— DH Group to /4 (2048 bit)
¢ Set Lifetime as 28800
* Click Save

Phase 2

* On the newly created Phase 1 entry, click Show Phase 2 Entries
* Click Add P2

¢ Set Mode to Routed (VTI)

* Set Local Network to 10.131.2.2 and mask 30
¢ Set Remote Network to 10.131.2.1

* Set Protocol to ESP

* Set Encryption Algorithms to AES and /28 bit

¢ Uncheck all other Encryption Algorithms entries
* Set Hash Algorithms to SHA

¢ Uncheck all other Hash Algorithms entries

» Set PFS key group to 14 (2048 bit)

* Set Lifetime as 3600

* Click Save

¢ Click Apply Changes

Interface

* Navigate to Interfaces > Interface Assignments

¢ From the Available network ports list, choose ipsecNNNN (IPsec VTI) (The ID number will vary)
* Click Add

* Note the newly created interface name, such as OPTX

* Navigate to Interfaces > OPTX

¢ Check Enable

© Copyright 2025 Rubicon Communications LLC 224

Product Manual TNSR v19.05

* Click Save
* Click Apply Changes

Routing

» Navigate to System > Package Manager and install the FRR package
¢ Browse to Services > FRR Global/Zebra
¢ Check Enable FRR

» Set Master Password to any value

Note: This is a requirement for the zebra management daemon to run, this password is not used by clients.

¢ Check Enable logging
e Set Router ID to 192.168.1.1

In this case, it is the LAN interface IP address, assuming it will be always be available for routing between LAN
subnets.

* Click Save

¢ Navigate to the [BGP] tab

¢ Check Enable BGP Routing

¢ Check Log Adjacency Changes

» Set Local AS to 65001

* Set Router ID to 192.168.1.1

¢ Set Networks to Distribute to 192.168.1.0/24
* Navigate to the Neighbors tab

* Click Add

¢ Set Name/Address to 10.131.1.1 (TNSR VTI interface IP address)
* Set Remote AS to 65000

* Click Save

At this point, routes to 192.168.0.0/24, 192.168.2.0/24, and 192.168.3.0/24 will be learned by BGP and
installed in the routing table. If it is not so, check Status > FRR on the BGP tab. That page contains useful BGP
troubleshooting information. Additionally, check the routing log at Status > System Logs on the Routing tab under
System.

© Copyright 2025 Rubicon Communications LLC 225

Product Manual TNSR v19.05

Firewall

To allow connections into the local LAN from remote IPsec sites, create necessary pass rules under Firewall > Rules
on the IPsec tab. These rules would have a Source set to the remote LAN or whichever network is the source of the
traffic to allow.

For simplicity, this example has a rule to pass IPv4 traffic from any source to any destination since the only IPsec
interface traffic will be from 192.168.0.0/22.

NAT

TNSR will perform NAT for this peer, so outbound NAT is not necessary. It may be left at the default, which will not
touch IPsec traffic, or outbound NAT may be disabled entirely which will also prevent LAN subnet traffic from exiting
out the WAN unintentionally.

Peer 2 Setup
IPsec Settings
Phase 1

* Navigate to VPN > IPsec

* Click Add P1

* Set Key Exchange version to /IKEv2

* Set Internet Protocol to /Pv4

¢ Set Interface to WAN

¢ Set Remote Gateway to 10.129.0.10
* Set Authentication Method to Mutual PSK
* Set My identifier to My IP address

* Set Peer identifier to Peer IP address
* Set Pre-Shared Key to 01234567

* Set Encryption:

Algorithm to AES

Key length to 128 bit
Hash to SHAI

DH Group to 14 (2048 bit)
* Set Lifetime as 28800

* Click Save

© Copyright 2025 Rubicon Communications LLC 226

Product Manual TNSR v19.05

Phase 2

* On the newly created Phase 1 entry, click Show Phase 2 Entries
* Click Add P2

¢ Set Mode to Routed (VTI)

* Set Local Network to 10.131.3.2 and mask 30
* Set Remote Network to 10.131.3.1

* Set Protocol to ESP

* Set Encryption Algorithms to AES and /28 bit

¢ Uncheck all other Encryption Algorithms entries
* Set Hash Algorithms to SHA

* Uncheck all other Hash Algorithms entries

¢ Set PFS key group to 14 (2048 bit)

* Set Lifetime as 3600

* Click Save

¢ Click Apply Changes

Interface

* Navigate to Interfaces > Interface Assignments

¢ From the Available network ports list, choose ipsecNNNN (IPsec VTI) (The ID number will vary)
* Click Add

* Note the newly created interface name, such as OPTX

* Navigate to Interfaces > OPTX

¢ Check Enable

* Click Save

¢ Click Apply Changes

Routing

¢ Navigate to System > Routing, Static Routes tab

* Click Add

 Set Destination network to 192.168.0.0 and mask 23

* Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.2.1
¢ Click Save

* Click Add

 Set Destination network to 192.168.3.0 and mask 24

¢ Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.2.1

© Copyright 2025 Rubicon Communications LLC 227

Product Manual TNSR v19.05

* Click Save
* Click Apply Changes

Firewall

To allow connections into the local LAN from remote IPsec sites, create necessary pass rules under Firewall > Rules
on the IPsec tab. These rules would have a Source set to the remote LAN or whichever network is the source of the
traffic to allow.

For simplicity, this example has a rule to pass IPv4 traffic from any source to any destination since the only IPsec
interface traffic will be from 192.168.0.0/22.

NAT

TNSR will perform NAT for this peer, so outbound NAT is not necessary. It may be left at the default, which will not
touch IPsec traffic, or outbound NAT may be disabled entirely which will also prevent LAN subnet traffic from exiting
out the WAN unintentionally.

Peer 3 Setup
IPsec Settings
Phase 1

* Navigate to VPN > IPsec

* Click Add P1

* Set Key Exchange version to /KEv2

* Set Internet Protocol to /Pv4

 Set Interface to WAN

¢ Set Remote Gateway to 10.129.0.10
¢ Set Authentication Method to Mutual PSK
¢ Set My identifier to My IP address

* Set Peer identifier to Peer IP address
¢ Set Pre-Shared Key to 81234567

¢ Set Encryption:

Algorithm to AES

Key length to 128 bit

Hash to SHAI

DH Group to /4 (2048 bit)

* Set Lifetime as 28800

* Click Save

© Copyright 2025 Rubicon Communications LLC 228

Product Manual TNSR v19.05

Phase 2

* On the newly created Phase 1 entry, click Show Phase 2 Entries
* Click Add P2

¢ Set Mode to Routed (VTI)

* Set Local Network to 10.131.4.2 and mask 30
¢ Set Remote Network to 10.131.4.1

* Set Protocol to ESP

* Set Encryption Algorithms to AES and /28 bit

¢ Uncheck all other Encryption Algorithms entries
* Set Hash Algorithms to SHA

* Uncheck all other Hash Algorithms entries

¢ Set PFS key group to 14 (2048 bit)

* Set Lifetime as 3600

* Click Save

¢ Click Apply Changes

Interface

* Navigate to Interfaces > Interface Assignments

¢ From the Available network ports list, choose ipsecNNNN (IPsec VTI) (The ID number will vary)
* Click Add

* Note the newly created interface name, such as OPTX

* Navigate to Interfaces > OPTX

¢ Check Enable

* Click Save

¢ Click Apply Changes

Routing

¢ Navigate to System > Routing, Static Routes tab

* Click Add

 Set Destination network to 192.168.0.0 and mask 23

* Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.3.1
¢ Click Save

* Click Add

 Set Destination network to 192.168.2.0 and mask 24

¢ Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.3.1

© Copyright 2025 Rubicon Communications LLC 229

Product Manual TNSR v19.05

* Click Save
* Click Apply Changes

Firewall

To allow connections into the local LAN from remote IPsec sites, create necessary pass rules under Firewall > Rules
on the IPsec tab. These rules would have a Source set to the remote LAN or whichever network is the source of the
traffic to allow.

For simplicity, this example has a rule to pass IPv4 traffic from any source to any destination since the only IPsec
interface traffic will be from 192.168.0.0/22.

NAT

TNSR will perform NAT for this peer, so outbound NAT is not necessary. It may be left at the default, which will not
touch IPsec traffic, or outbound NAT may be disabled entirely which will also prevent LAN subnet traffic from exiting
out the WAN unintentionally.

Access to the internet for remote network

This section describes minimal routing and NAT settings which provide access to the Internet for one of the remote
networks. In current case this is Peer 1 that exchanges routing information with TNSR via BGP.

This document assumes that devices have IPsec setup successfully completed, able to reach each other via IPsec tunnel
using path information from the dynamic routing protocol.

TNSR
NAT/PAT

Setup NAT for remote network, in this case PAT is used.

Note: Defining NAT inside interface for internet traffic sourced from Peer 1. Outside interface and PAT were defined
earlier.

tnsr tnsr# configure

tnsr tnsr(config)# interface ipsecl

tnsr tnsr(config-interface)# ip nat inside
tnsr tnsr(config-interface)# exit

© Copyright 2025 Rubicon Communications LLC 230

Product Manual TNSR v19.05

Peer 1 Policy Route
Routing

Setup access to the internet via IPsec VTI interface with a policy-based routing rule.
* Navigate to Firewall > Rules
* Create (or modify existing default pass ipv4 LAN any) rule:

Set Address Family to IPv4

Set Protocol to ANY

Set Source to LAN net

Set Destination to ANY
Click Display Advanced

Set Gateway to <IPsec interface name>_VTIV4

Click Save

Note: VTI on pfSense does not support reply-to. Despite this policy routing rule on Peerl which covers all traffic,
there must also be kernel routes to remote LANs for the return traffic to find the way back.

orphan

24.3 Edge Router Speaking eBGP with Static Redistribution for IPv4
And IPv6

Covered Topics

* Use Case
» Example Scenario

* TNSR Configuration Steps

* JSON Configuration

24.3.1 Use Case

Especially in cases where an enterprise is multi-homed with it’s own block of network addresses, it may become
necessary to configure dynamic routing between network service providers. This is accomplished by use of external
BGP (eBGP).

In this use case, the enterprise will use TNSR to speak eBGP with two network service providers, in order to exchange
routes which may be redistributed from static/connected routing.

© Copyright 2025 Rubicon Communications LLC 231

Product Manual TNSR v19.05

24.3.2 Example Scenario
In this example, the enterprise using TNSR will have a fictitious autonomous system number (ASN) of 65505. The
network service providers in this example will have ASNs of 65510 and 65520. The enterprise using TNSR will

redistribute a single /24 network from static into BGP. That network will then be advertised to each of the service
providers. The service providers will announce a full routing table to the TNSR instance.

Scenario Topology

Example: IPv4

/

4 N

ISP_A Network ISP_B Network

ASN 65510 ‘ ASN 65520

- -
ISP_A Router | = q - q ISP_B Router

\\ 203.0.113.10 / \\ 100.64.0.50 /
) ~

203.0113.9 iy - 100.64.0.49

TNSR

Advertising

192.0.2.0/24 ASN 65505

Enterprise

MNetwork

Fig. 2: TNSR BGP Router (IPv4)

© Copyright 2025 Rubicon Communications LLC 232

Product Manual TNSR v19.05

Example: IPv6

e

4 N

ISP_A Network ISP_B MNetwork

ASN 65510 ‘ ASN 65520

h- i h- i
ISP_A Router ﬁ ‘g ISP_B Router

@1 :db8:1000:aaaa: 1 / \ 2001 :de:QQQQ:ﬂﬁy
. 7

Gm :dbE:1ﬂDD:aaaa\:} o | a 2001 :db8:9999ffff::2 \

THNSH

Advertising

2001:db8:a100:1005:/64 ASHN B5606

Enterprise

MNetwork

Fig. 3: TNSR BGP Router (IPv6)

© Copyright 2025 Rubicon Communications LLC

233

Product Manual

TNSR v19.05

Table 11: BGP Router Setup Parameters

ltem Value
TNSR Autonomous System Number 65505
ISP_A Autonomous System Number 65510
ISP_B Autonomous System Number 65520
IPv4 Network to be announced 192.0.2.0/24

IPv6 Network to be announced

TNSR to ISP_A IPv4 Network Address
TNSR to ISP_A IPv6 Global Address
TNSR to ISP_B IPv4 Network Address
TNSR to ISP_B IPv6 Global Address

2001:db8:a100:1005::/64
203.0.113.8/30
2001:db8:fa00:ffaa::/64
100.64.0.48/30
2001:db8:fb00:ffbb::/64

24.3.3 TNSR Configuration Steps

 Step 2: Enable BGP

Steps needed in TNSR to complete this configuration

o Step 1: Configure Interfaces

 Step 3: Create prefix-lists for route export via BGP

o Step 4: Create static route for networks to be advertised in BGP
o Step 5: Configure BGP global options

» Step 6: Configure BGP global neighbor options

Step 1: Configure Interfaces

o Step 7: Configure BGP neighbor address-family IPv4 unicast options

o Step 8: Configure BGP neighbor address-family IPv6 unicast options

tnsr# conf
tnsr(config)# interface
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config)#
tnsr(config)# interface
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config)#

GigabitEthernet0/13/0
description "To ISP A"

ip address 203.0.113.9/30

ipv6 address 2001:db8:1000:aaaa
enable

exit

GigabitEthernet®/14/0
description "To ISP B"

ip address 100.64.0.49/30

ipv6 address 2001:db8:9999:ffff
enable

exit

1:2/64

1:2/64

© Copyright 2025 Rubicon Communications LLC

234

Product Manual

TNSR v19.05

Step 2: Enable BGP

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# enable
tnsr(config-frr-bgp)# exit
tnsr(config)#

Step 3: Create prefix-lists for route export via BGP

tnsr(config)# route dynamic prefix-list EXPORT_IPv4

tnsr(config-prefix-list)# description "IPv4 Routes to Export"

tnsr(config-prefix-list)# seq 10 permit 192.0.2.0/24
tnsr(config-prefix-list)# exit

tnsr(config)#

tnsr(config)# route dynamic prefix-list EXPORT_IPv6

tnsr(config-prefix-list)# description "IPv6 Routes to Export"
tnsr(config-prefix-list)# seq 10 permit 2001:db8:a100:1005::/64

tnsr(config-prefix-list)# exit
tnsr(config)#

Step 4: Create static route for networks to be advertised in BGP

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-route-table-v4)# route 192.0.2.0/24
tnsr(config-rttbl4-next-hop)# next-hop 1 via local
tnsr(config-rttbl4-next-hop)# exit
tnsr(config-route-table-v4)# exit

tnsr(config)# route ipv6 table ipv6-VRF:0

tnsr(config-route-table-v6)# route 2001:db8:a100:1005:

tnsr(config-rttbl6-next-hop)# next-hop 1 via local
tnsr(config-rttbl6-next-hop)# exit
tnsr(config-route-table-v6)# exit

tnsr(config)#

:/64

Step 5: Configure BGP global options

tnsr(config)# route dynamic bgp
tnsr(config-frr-bgp)# server 65505
tnsr(config-bgp)# router-id 203.0.113.9
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# redistribute kernel
tnsr(config-bgp-ipduni)# exit
tnsr(config-bgp)# address-family ipv6 unicast
tnsr(config-bgp-ip4uni)# redistribute kernel
tnsr(config-bgp-ipduni)# exit
tnsr(config-bgp)#

© Copyright 2025 Rubicon Communications LLC

235

Product Manual

TNSR v19.05

Step 6: Configure BGP global neighbor options

tnsr(config-bgp)# neighbor 203.0.113.10
tnsr(config-bgp-neighbor)# remote-as 65510
tnsr(config-bgp-neighbor)# description "ISP_A IPv4"
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

tnsr(config-bgp)# neighbor 2001:db8:1000:aaaa::1
tnsr(config-bgp-neighbor)# remote-as 65510
tnsr(config-bgp-neighbor)# description "ISP_A IPv6"
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

tnsr(config-bgp)# neighbor 100.64.0.50
tnsr(config-bgp-neighbor)# remote-as 65520
tnsr(config-bgp-neighbor)# description "ISP_B IPv4"
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

tnsr(config-bgp)# neighbor 2001:db8:9999:ffff::1
tnsr(config-bgp-neighbor)# remote-as 65520
tnsr(config-bgp-neighbor)# description "ISP_B IPv6"
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

tnsr(config-bgp)#

Step 7: Configure BGP neighbor address-family IPv4 unicast options

tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-ip4uni)# neighbor 203.0.113.10
tnsr(config-bgp-ip4uni-nbr)# prefix-list EXPORT_IPv4 out
tnsr(config-bgp-ip4uni-nbr)# activate
tnsr(config-bgp-ip4uni-nbr)# exit
tnsr(config-bgp-ip4uni)# neighbor 100.64.0.50
tnsr(config-bgp-ip4uni-nbr)# prefix-list EXPORT_IPv4 out
tnsr(config-bgp-ip4uni-nbr)# activate
tnsr(config-bgp-ip4uni-nbr)# exit
tnsr(config-bgp-ip4uni)# exit

tnsr(config-bgp)#

© Copyright 2025 Rubicon Communications LLC

236

21

22

23

24

25

26

27

28

29

30

31

Product Manual TNSR v19.05

Step 8: Configure BGP neighbor address-family IPv6 unicast options

tnsr(config-bgp)# address-family ipv6 unicast
tnsr(config-bgp-ip4uni)# neighbor 2001:db8:1000:aaaa::1
tnsr(config-bgp-ip4uni-nbr)# prefix-list EXPORT_IPv6 out
tnsr(config-bgp-ip4uni-nbr)# activate
tnsr(config-bgp-ip4uni-nbr)# exit
tnsr(config-bgp-ip4uni)# neighbor 2001:db8:9999:ffff::1
tnsr(config-bgp-ip4uni-nbr)# prefix-list EXPORT_IPv6 out
tnsr(config-bgp-ip4uni-nbr)# activate
tnsr(config-bgp-ip4uni-nbr)# exit
tnsr(config-bgp-ip4uni)# exit

tnsr(config-bgp)# exit

tnsr(config-frr-bgp)# exit

tnsr(config)#

24.3.4 JSON Configuration

Listing 1: Download: tnsr-bgp-edge-router. json

{
"data": {
"bgp-config": {
"global-options": {
"enable": true
1,
"routers": {
"router": [
{
"asn": 65505,
"router-id": "203.0.113.9",
"address-families": {
"address-family": [

{
"family": "ipv4",
"subfamily": "labeled-unicast"
B
{
"family": "ipv4",
"subfamily": "multicast"
B
{

"family": "ipv4",
"subfamily": "unicast",
"neighbors": {
"neighbor": [
{
"peer": "100.64.0.50",
"activate": true,
"prefix-list-out": "EXPORT_IPv4"
B

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 237

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

57

58

60

61

62

63

64

65

66

67

69

70

71

72

73

74

75

76

77

78

79

Product Manual TNSR v19.05

(continued from previous page)

{
"peer": "203.0.113.10",
"activate": true,
"prefix-list-out": "EXPORT_IPv4"
}
]
o

"redistributions": {
"named-sources": {
"route-source": [
{
"source": "kernel",
"present": true

3
1
}
}
B
{
"family": "ipv4",
"subfamily": "vpn"
B
{
"family": "ipv6",
"subfamily": "labeled-unicast"
e
{
"family": "ipv6",
"subfamily": "multicast"
3,
{

"family": "ipv6",

"subfamily": "unicast",

"neighbors": {
"neighbor": [

{
"peer": "2001:db8:1000:aaaa::1",
"activate": true,
"prefix-list-out": "EXPORT_IPv6"
e
{
"peer": "2001:db8:9999:ffff::1",
"activate": true,
"prefix-list-out": "EXPORT_IPv6"
}
1
g

"redistributions": {
"named-sources": {
"route-source": [
{
"source": "kernel",

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 238

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Product Manual

TNSR v19.05

"present": true

"family": "ipv6",

"subfamily": "vpn

"family": "12vpn",
"subfamily": "evpn"

"family": "vpnv4",
"subfamily": "unicast"

"family": "vpnv6",
"subfamily": "unicast"
}
]
e
"neighbors": {
"neighbor": [
{
"peer": "100.64.0.50",
"capability-negotiate": true,
"description": "<![CDATA[\"ISP_B IPv4\"]]>",
"interface": "GigabitEthernet®/14/0",
"remote-asn": 65520,
"enable": true

"peer": "2001:db8:1000:aaaa::1",
"capability-negotiate": true,

"description": "<![CDATA[\"ISP_A IPv6\"]]1>",
"interface": "GigabitEthernet®/13/0",
"remote-asn": 65510,

"enable": true

"peer": "2001:db8:9999:ffff::1",
"capability-negotiate": true,
"description": "<![CDATA[\"ISP_B IPv6\"]]>",
"interface": "GigabitEthernet®/14/0",
"remote-asn": 65520,
"enable": true

Ko

{
"peer": "203.0.113.10",

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

239

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Product Manual

TNSR v19.05

"capability-negotiate": true,

"description": "<![CDATA[\"ISP_A IPv4\"]]1>",
"interface": "GigabitEthernet0/13/0",

"remote-asn": 65510,
"enable": true

o
"interfaces-config": {
"interface": [
{

"name": "GigabitEthernet0/13/0",

"description": "<![CDATA[\"To ISP A\"]1]1>",

"enabled": true,

"ipv4": {
"enabled": true,
"forwarding": false,
"address": {

"ip": "203.0.113.9/30"

}

3

"ipve": {
"enabled": true,
"forwarding": false,
"address": {

"ip": "2001:db8:1000:aaaa::2/64"

}

3

"name": "GigabitEthernet®/14/0",
"description": "<![CDATA[\"To ISP B\"11>",
"enabled": true,
"ipv4": {
"enabled": true,
"forwarding": false,
"address": {
"ip": "100.64.0.49/30"
}
3,
"ipve": {
"enabled": true,
"forwarding": false,
"address": {
"ip": "2001:db8:9999:ffff::2/64"

3,

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

240

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

205

206

207

208

210

211

212

213

214

215

216

217

218

219

221

222

223

224

226

227

228

229

230

231

232

233

234

235

237

238

239

Product Manual TNSR v19.05

(continued from previous page)

"name": "GigabitEthernet®/15/0",
"enabled": true,
"ipv4": {
"enabled": true,
"forwarding": false,
"address": {
"ip": "10.255.255.19/24"

]
o
"http-config": {
"restconf": {
"enable": true
1,
"authentication": {
"auth-type": "none"
}
1
"prefix-list-config": {
"prefix-lists": {
"list": [

{
"name": "EXPORT_IPv4",
"description": "<![CDATA[\"IPv4 Routes to Export\"]]>",
"rules": {
"rule": [
{
"sequence": 10,
"action": "permit",
"prefix": "192.0.2.0/24"
}
]
}
3,
{
"name": "EXPORT_IPv6",
"description": "<![CDATA[\"IPv6 Routes to Export\"]]>",
"rules": {
"rule": [
{
"sequence": 10,
"action": "permit",
"prefix": "2001:db8:a100:1005::/64"
}
]
}
}

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 241

241

242

243

244

246

247

248

249

250

251

252

253

254

255

257

258

259

260

262

263

264

265

266

267

268

269

270

271

273

274

275

276

278

279

280

281

282

283

284

285

286

Product Manual

TNSR v19.05

o
"route-table-config": {
"static-routes": {
"route-table": [
{
"name": "ipv4-VRF:0",
"address-family": "ipv4",
"ipv4-routes": {
"route": [

{

"destination-prefix": "192.0.2.0/24",

"next-hop": {
llhopll : [
{
"hop-id": 1,
"local": true

name": "ipv6-VRF:0",
"address-family": "ipv6",
"ipv6-routes": {

"route": [

{

"destination-prefix": "2001:db8:a100:1005::/64",

"next-hop": {
llhopll : [
{
"hop-id": 1,
"local": true

(continued from previous page)

orphan

© Copyright 2025 Rubicon Communications LLC

242

Product Manual TNSR v19.05

24.4 Service Provider Route Reflectors and Client for iBGP IPv4

Covered Topics

e Use Case

* Example Scenario

TNSR Configuration Steps

JSON Configuration

24.4.1 Use Case

In large service provider networks it is necessary to divide the routing functionality into two or more layers: a backbone
layer and a gateway layer. This allows backbone routers to be focused on core routing and switching to/from other areas
of the routing domain, and gateway routers may then be focused on interconnecting other service provider customers.

24.4.2 Example Scenario

In this example, the service provider will have a fictitious autonomous system number (ASN) of 65585, Each network
POP, of which only one will be detailed here, will feature 2 backbone routers which will be configured as route-
reflectors. These backbone routers will be participating in BGP Cluster ID 100. Other POPs will likely be different
Cluster IDs.

There will also be a single gateway router which will be a client of the backbone route-reflectors. Of course, in real
world scenarios there would likely be many more gateway routers, each serving a full complement of customers.

Table 12: BGP Route Reflector Setup Parameters

ltem Value

TNSR Autonomous System Number 65505

IPv4 Networks to be announced 192.0.2.0/24, 203.0.113.0/24
BGP Route-Reflector Cluster ID 100

Scenario Topology

24.4.3 TNSR Configuration Steps

Steps needed in TNSR to complete this configuration

o Step 1: Configure Interfaces
» Step 2: Enable BGP
» Step 3: Create prefix-lists for route import into BGP on Route-Reflectors

o Step 4: Create route-map for route import into iBGP on route-reflectors

» Step 5: Create static route for networks to be advertised in BGP

© Copyright 2025 Rubicon Communications LLC 243

Product Manual TNSR v19.05

Example: IPv4

ASN 65505

203011312.1’30/ \2030113184’30

/ 01310~ 593 0.113.20/30 “”3"“
RR1

"ﬁ_-

0150 0150
2ﬂ3ﬂ113ﬂ3\ ABDHS&"S{J
0130 UHdJ'EI

GW

\ clustar ID 100 /

Fig. 4: TNSR BGP Route Reflector

© Copyright 2025 Rubicon Communications LLC 244

Product Manual TNSR v19.05

e Step 6: Configure BGP global options
 Step 7: Configure iBGP peer-group for backbone route-reflectors and add neighbor
e Step 8: Configure RR-CLIENT peer-group for route-reflector clients and add neighbor

o Step 9: Configure both peer-group address-family options on route-reflectors

e Step 10: Configure iBGP on gateway router to both route-reflectors

Step 1: Configure Interfaces

RR1:

rrl tnsr# conf

rrl tnsr(config)# interface GigabitEthernet®/13/0

rrl tnsr(config-interface)# description "To Backbone Network"
rrl tnsr(config-interface)# ip address 203.0.113.13/30
rrl tnsr(config-interface)# enable

rrl tnsr(config-interface)# exit

rrl tnsr(config)# interface GigabitEthernet0/14/0

rrl tnsr(config-interface)# description "To RR2 Router"
rrl tnsr(config-interface)# ip address 203.0.113.21/30
rrl tnsr(config-interface)# enable

rrl tnsr(config-interface)# exit

rrl tnsr(config)# interface GigabitEthernet®/15/0

rrl tnsr(config-interface)# description "To GW router"
rrl tnsr(config-interface)# ip address 203.0.113.5/30
rrl tnsr(config-interface)# enable

rrl tnsr(config-interface)# exit

rrl tnsr(config)#

RR2:

rr2 tnsr# conf

rr2 tnsr(config)# interface GigabitEthernet®/13/0

rr2 tnsr(config-interface)# description "To Backbone Network"
rr2 tnsr(config-interface)# ip address 203.0.113.17/30
rr2 tnsr(config-interface)# enable

rr2 tnsr(config-interface)# exit

rr2 tnsr(config)# interface GigabitEthernet®/14/0

rr2 tnsr(config-interface)# description "To RR1 Router"
rr2 tnsr(config-interface)# ip address 203.0.113.22/30
rr2 tnsr(config-interface)# enable

rr2 tnsr(config-interface)# exit

rr2 tnsr(config)# interface GigabitEthernet®/15/0

rr2 tnsr(config-interface)# description "To GW router"
rr2 tnsr(config-interface)# ip address 203.0.113.9/30
rr2 tnsr(config-interface)# enable

rr2 tnsr(config-interface)# exit

rr2 tnsr(config)#

GW:

© Copyright 2025 Rubicon Communications LLC

245

Product Manual TNSR v19.05

gw tnsr# conf

gw tnsr(config)# interface GigabitEthernet®/13/0

gw tnsr(config-interface)# description "To RR1 Router"
gw tnsr(config-interface)# ip address 203.0.113.6/30
gw tnsr(config-interface)# enable

gw tnsr(config-interface)# exit

gw tnsr(config)# interface GigabitEthernet®/14/0

gw tnsr(config-interface)# description "To RR2 Router"
gw tnsr(config-interface)# ip address 203.0.113.10/30
gw tnsr(config-interface)# enable

gw tnsr(config-interface)# exit

gw tnsr(config)# interface GigabitEthernet®/15/0

gw tnsr(config-interface)# desc "To Customer Router"
gw tnsr(config-interface)# ip address 203.0.113.25/30
gw tnsr(config-interface)# enable

gw tnsr(config-interface)# exit

gw tnsr(config)#

Step 2: Enable BGP

RR1:

rrl tnsr(config)# route dynamic bgp
rrl tnsr(config-frr-bgp)# enable
rrl tnsr(config-frr-bgp)# exit

rrl tnsr(config)#

RR2:

rr2 tnsr(config)# route dynamic bgp
rr2 tnsr(config-frr-bgp)# enable
rr2 tnsr(config-frr-bgp)# exit

rr2 tnsr(config)#

GW:

gw tnsr(config)# route dynamic bgp
gw tnsr(config-frr-bgp)# enable

gw tnsr(config-frr-bgp)# exit

gw tnsr(config)#

Step 3: Create prefix-lists for route import into BGP on Route-Reflectors

RR1:

rrl tnsr(config)# route dynamic prefix-list REDISTRIBUTE_IPv4

rrl tnsr(config-prefix-list)# description "IPv4 Routes to Import"
rrl tnsr(config-prefix-list)# seq 10 permit 192.0.2.0/24

rrl tnsr(config-prefix-list)# seq 20 permit 203.0.113.0/24

rrl tnsr(config-prefix-list)# exit

rrl tnsr(config)#

© Copyright 2025 Rubicon Communications LLC 246

Product Manual

TNSR v19.05

RR2:

rr2 tnsr(config)# route dynamic prefix-list REDISTRIBUTE_IPv4

rr2 tnsr(config-prefix-list)# description "IPv4 Routes to Import"
rr2 tnsr(config-prefix-list)# seq 10 permit 192.0.2.0/24

rr2 tnsr(config-prefix-list)# seq 20 permit 203.0.113.0/24

rr2 tnsr(config-prefix-list)# exit

rr2 tnsr(config)#

Step 4: Create route-map for route import into iBGP on route-reflectors

RR1:

rrl tnsr(config)# route dynamic route-map REDISTRIBUTE_IPv4 permit sequence 10
rrl tnsr(config-route-map)# match ip address prefix-list REDISTRIBUTE_IPv4

rrl tnsr(config-route-map)# set origin igp

rrl tnsr(config-route-map)# exit

rrl tnsr(config)#

RR2:

rr2 tnsr(config)# route dynamic route-map REDISTRIBUTE_IPv4 permit sequence 10
rr2 tnsr(config-route-map)# match ip address prefix-list REDISTRIBUTE_IPv4

rr2 tnsr(config-route-map)# set origin igp

rr2 tnsr(config-route-map)# exit

rr2 tnsr(config)#

Step 5: Create static route for networks to be advertised in BGP

RR1:

rrl tnsr(config)# route ipv4 table ipv4-VRF:0

rrl tnsr(config-route-table-v4)# route 192.0.2.0/24
rrl tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rrl tnsr(config-rttbl4-next-hop)# exit

rrl tnsr(config-route-table-v4)# route 203.0.113.0/24
rrl tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rrl tnsr(config-rttbl4-next-hop)# exit

rrl tnsr(config-route-table-v4)# exit

rrl tnsr(config)#

RR2:

rr2 tnsr(config)# route ipv4 table ipv4-VRF:0

rr2 tnsr(config-route-table-v4)# route 192.0.2.0/24
rr2 tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rr2 tnsr(config-rttbl4-next-hop)# exit

rr2 tnsr(config-route-table-v4)# route 203.0.113.0/24
rr2 tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rr2 tnsr(config-rttbl4-next-hop)# exit

rr2 tnsr(config-route-table-v4)# exit

rr2 tnsr(config)#

© Copyright 2025 Rubicon Communications LLC

247

Product Manual

TNSR v19.05

Step 6: Configure BGP global options

RR1:

rrl
rrl
rrl
rrl
rrl
rrl
rrl
rrl

tnsr(config)# route dynamic bgp
(config-frr-bgp)# server 65505

tnsr(config-bgp)# cluster-id 100
tnsr(config-bgp)# address-family ipv4
tnsr(config-bgp-ip4uni)# redistribute
tnsr(config-bgp-ip4uni)# exit
tnsr(config-bgp)#

tnsr(config-bgp)# router-id 203.0.113.

21

unicast
kernel route-map REDISTRIBUTE_IPv4

RR2:

rrl
rrl
rr2
rr2
rr2
rr2

tnsr(config)# route dynamic bgp
(config-frr-bgp)# server 65505

tnsr(config-bgp)# cluster-id 100
tnsr(config-bgp)# address-family ipv4
tnsr(config-bgp-ip4uni)# redistribute

tnsr(config-bgp)# router-id 203.0.113.

22

unicast
kernel route-map REDISTRIBUTE_IPv4

rr2
rr2

tnsr(config-bgp-ip4uni)# exit

tnsr(config-bgp)#

GW:

gw
gw
gw
gw

tnsr(config)# route dynamic

bgp

(config-frr-bgp)# server 65505

tnsr(config-bgp)# router-id
tnsr(config-bgp)#

203.0.113.6

Step 7: Configure iBGP peer-group for backbone route-reflectors and add neighbor

RR1:

rrl

tnsr(config-bgp)# neighbor

iBGP

rrl tnsr(config-bgp-neighbor)# remote-as 65505

rrl tnsr(config-bgp-neighbor)# description "iBGP Sessions"

rrl tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/14/0
rrl tnsr(config-bgp-neighbor)# enable

rrl tnsr(config-bgp-neighbor)# exit

rrl tnsr(config-bgp)# neighbor 203.0.113.22

rrl tnsr(config-bgp-neighbor)# peer-group iBGP

rrl tnsr(config-bgp-neighbor)# enable

rrl tnsr(config-bgp-neighbor)# exit

RR2:

rr2 tnsr(config-bgp)# neighbor iBGP

rr2 tnsr(config-bgp-neighbor)# remote-as 65505

rr2 tnsr(config-bgp-neighbor)# description "iBGP Sessions"

rr2 tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/14/0
rr2 tnsr(config-bgp-neighbor)# enable

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

248

Product Manual TNSR v19.05

(continued from previous page)

rr2 tnsr(config-bgp-neighbor)# exit

rr2 tnsr(config-bgp)# neighbor 203.0.113.21
rr2 tnsr(config-bgp-neighbor)# peer-group iBGP
rr2 tnsr(config-bgp-neighbor)# enable

rr2 tnsr(config-bgp-neighbor)# exit

Step 8: Configure RR-CLIENT peer-group for route-reflector clients and add neighbor

RR1:

rrl tnsr(config-bgp)# neighbor RR-CLIENT

rrl tnsr(config-bgp-neighbor)# remote-as 65505

rrl tnsr(config-bgp-neighbor)# description "RR-Client Sessions"
rrl tnsr(config-bgp-neighbor)# update-source GigabitEthernet®/15/0
rrl tnsr(config-bgp-neighbor)# enable

rrl tnsr(config-bgp-neighbor)# exit

rrl tnsr(config-bgp)# neighbor 203.0.113.6

rrl tnsr(config-bgp-neighbor)# peer-group RR-CLIENT

rrl tnsr(config-bgp-neighbor)# enable

rrl tnsr(config-bgp-neighbor)# exit

rrl tnsr(config-bgp)#

RR2:

rr2 tnsr(config-bgp)# neighbor RR-CLIENT

rr2 tnsr(config-bgp-neighbor)# remote-as 65505

rr2 tnsr(config-bgp-neighbor)# description "RR-Client Sessions"
rr2 tnsr(config-bgp-neighbor)# update-source GigabitEthernet®/15/0
rr2 tnsr(config-bgp-neighbor)# enable

rr2 tnsr(config-bgp-neighbor)# exit

rr2 tnsr(config-bgp)# neighbor 203.0.113.10

rr2 tnsr(config-bgp-neighbor)# peer-group RR-CLIENT

rr2 tnsr(config-bgp-neighbor)# enable

rr2 tnsr(config-bgp-neighbor)# exit

rr2 tnsr(config-bgp)#

Step 9: Configure both peer-group address-family options on route-reflectors

RRI1:

rrl tnsr(config-bgp)# address-family ipv4 unicast
rrl tnsr(config-bgp-ip4uni)# neighbor iBGP

rrl tnsr(config-bgp-ip4uni-nbr)# next-hop-self
rrl tnsr(config-bgp-ip4uni-nbr)# activate

rrl tnsr(config-bgp-ip4uni-nbr)# exit

rrl tnsr(config-bgp-ip4uni)# neighbor RR-CLIENT
rrl tnsr(config-bgp-ip4uni-nbr)# route-reflector-client
rrl tnsr(config-bgp-ip4uni-nbr)# activate

rrl tnsr(config-bgp-ip4uni-nbr)# exit

rrl tnsr(config-bgp-ipduni)# exit

rrl tnsr(config-bgp)#

© Copyright 2025 Rubicon Communications LLC 249

Product Manual TNSR v19.05

RR2:

rr2 tnsr(config-bgp)# address-family ipv4 unicast
rr2 tnsr(config-bgp-ip4uni)# neighbor iBGP

rr2 tnsr(config-bgp-ip4uni-nbr)# next-hop-self
rr2 tnsr(config-bgp-ip4uni-nbr)# activate

rr2 tnsr(config-bgp-ip4uni-nbr)# exit

rr2 tnsr(config-bgp-ip4uni)# neighbor RR-CLIENT
rr2 tnsr(config-bgp-ip4uni-nbr)# route-reflector-client
rr2 tnsr(config-bgp-ip4uni-nbr)# activate

rr2 tnsr(config-bgp-ip4uni-nbr)# exit

rr2 tnsr(config-bgp-ip4uni)# exit

rr2 tnsr(config-bgp)#

Step 10: Configure iBGP on gateway router to both route-reflectors

GW:

gw tnsr(config-bgp)# neighbor 203.0.113.5

gw tnsr(config-bgp-neighbor)# remote-as 65505

gw tnsr(config-bgp-neighbor)# description "RR1 Session"
gw tnsr(config-bgp-neighbor)# update-source GigabitEthernet®/13/0
gw tnsr(config-bgp-neighbor)# enable

gw tnsr(config-bgp-neighbor)# exit

gw tnsr(config-bgp)# neighbor 203.0.113.9

gw tnsr(config-bgp-neighbor)# remote-as 65505

gw tnsr(config-bgp-neighbor)# description "RR2 Session"
gw tnsr(config-bgp-neighbor)# update-source GigabitEthernet®/14/0
gw tnsr(config-bgp-neighbor)# enable

gw tnsr(config-bgp-neighbor)# exit

gw tnsr(config-bgp)# address-family ipv4 unicast

gw tnsr(config-bgp-ip4uni)# neighbor 203.0.113.5

gw tnsr(config-bgp-ip4uni-nbr)# activate

gw tnsr(config-bgp-ip4uni-nbr)# exit

gw tnsr(config-bgp-ip4uni)# neighbor 203.0.113.9

gw tnsr(config-bgp-ip4uni-nbr)# activate

gw tnsr(config-bgp-ip4uni-nbr)# exit

gw tnsr(config-bgp-ipduni)# exit

gw tnsr(config-bgp)#

24.4.4 JSON Configuration

RR1

Listing 2: Download: tnsr-bgp-router-reflector-rrl. json

{
"data": {
"bgp-config": {
"global-options": {
"enable": true

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 250

20

21

22

23

24

25

26

27

28

43

44

45

46

47

48

49

50

52

53

54

55

56

Product Manual

TNSR v19.05

1,
"routers": {
"router": [
{
"asn": 65505,
"cluster-id": "100",
"router-id": "203.0.113.21",
"address-families": {
"address-family": [
{
"family": "ipv4",
"subfamily": "labeled-unicast"
Yo
{
"family": "ipv4",
"subfamily": "multicast"
Ko
{
"family": "ipv4",
"subfamily": "unicast",
"neighbors": {
"neighbor": [
{
"peer": "RR-CLIENT",
"activate": true,
"route-reflector-client": true

"peer": "iBGP",
"activate": true,
"next-hop-self": true

]
o
"redistributions": {
"named-sources": {
"route-source": [
{
"source": "kernel",
"route-map": "REDISTRIBUTE_IPv4"

"family": uipv4n ,

"subfamily": "vpn

{
"family": "ipv6",
"subfamily": "labeled-unicast"

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

251

58

59

60

6

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Product Manual

TNSR v19.05

"family": "ipv6",
"subfamily": "multicast"

“fa_tnily" : "ipv6" s
"subfamily": "unicast"

"family": "ipV6",

"subfamily": "vpn"

"family": "12vpn",
"subfamily": "evpn"

"family": "vpnv4",
"subfamily": "unicast"

"family": "vpnve",
"subfamily": "unicast"
}
]
e
"neighbors": {
"neighbor": [
{
"peer": "203.0.113.22",
"capability-negotiate": true,
"peer-group-name": "iBGP",
"enable": true

"peer": "203.0.113.6",
"capability-negotiate": true,
"peer-group-name": "RR-CLIENT",
"enable": true

"peer": "RR-CLIENT",
"capability-negotiate": true,
"description": "<![CDATA[\"RR-Client Sessions\"]]>",

"remote-asn": 65505,

"enable": true,

"update-source": "GigabitEthernet®/15/0"
Ko
{

npeern: "iBGP",
"capability-negotiate": true,

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

252

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Product Manual TNSR v19.05

(continued from previous page)
"description": "<![CDATA[\"iBGP Sessions\"]]>",
"remote-asn": 65505,
"enable": true,
"update-source": "GigabitEthernet®/14/0"

Fo
"interfaces-config": {
"interface": [
{
"name": "GigabitEthernet0/13/0",
"description": "<![CDATA[\"To Backbone Network\"]]>",
"enabled": true,
"ipv4": {
"enabled": true,
"forwarding": false,
"address": {
"ip": "203.0.113.13/30"
}
b
"ipve": {
"enabled": true,
"forwarding": false

¥

"name": "GigabitEthernet0/14/0",
"description": "<![CDATA[\"To RR2 Router\"]]>",
"enabled": true,
"ipv4": {

"enabled": true,

"forwarding": false,

"address": {

"ip": "203.0.113.21/30"

}
3
"ipve": {

"enabled": true,

"forwarding": false

¥

"name": "GigabitEthernet0/15/0",
"description": "<![CDATA[\"To GW router\"]]>",
"enabled": true,
"ipv4": {

"enabled": true,

"forwarding": false,

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 253

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

211

212

213

Product Manual

TNSR v19.05

"address": {
"ip": "203.0.113.5/30"
}
}’
"ipve": {
"enabled": true,
"forwarding": false
3
}
]
1
"prefix-list-config": {
"prefix-lists": {
"list": [

{
"name": "REDISTRIBUTE_IPv4",
"description": "<![CDATA[\"IPv4 Routes to Import\"]]>",
"rules": {
"rule": [
{
"sequence": 10,
"action": "permit",
"prefix": "192.0.2.0/24"
Yo
{
"sequence": 20,
"action": "permit",
"prefix": "203.0.113.0/24"
}
]
}
3

Yo
"route-map-config": {
"route-maps": {
"map": [
{
"name": "REDISTRIBUTE_IPv4",
"rules": {
"rule": [
{
"sequence": 10,
"policy": "permit",
"match": {
"ip-address-prefix-list": "REDISTRIBUTE_IPv4"
1,
"set": {
"origin":

}

19p

3

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

254

215

216

217

218

220

221

222

223

224

225

226

227

228

229

231

232

233

234

236

237

238

239

240

241

242

243

244

245

247

248

249

250

252

253

254

255

256

257

Product Manual

TNSR v19.05

}

oute-table-config": {
"static-routes": {
"route-table": [
{
"name": "ipv4-VRF:0",
"address-family": "ipv4",
"ipv4-routes": {
"route": [
{
"destination-prefix":
"next-hop": {
"hop": [
{
"hop-id": 1,
"local": true

}
B
{
"destination-prefix":
"next-hop": {
"hop": [
{
"hop-id": 1,
"local": true

"192.0.2.0/24",

"203.0.113.0/24",

(continued from previous page)

© Copyright 2025 Rubicon Communications LLC

255

20

21

22

23

24

25

26

27

39

40

41

42

43

44

45

46

47

48

49

Product Manual

TNSR v19.05

RR2

Listing 3: Download: tnsr-bgp-router-reflector-rr2.json

{
"data": {
"bgp-config": {
"global-options": {
"enable": true
1,
"routers": {
"router": [
{
"asn": 65505,
"cluster-id": "100",
"router-id": "203.0.113.22",
"address-families": {
"address-family": [
{
"family": "ipv4",
"subfamily": "unicast",
"neighbors": {
"neighbor": [
{
"peer": "RR-CLIENT",
"activate": true,

"route-reflector-client": true

"peer": "iBGP",
"activate": true,
"next-hop-self": true
}
]
Fo
"redistributions": {
"named-sources": {
"route-source": [
{
"source": '"kernel",
"route-map": "REDISTRIBUTE_IPv4"

"family": "ipv6",
"subfamily": "unicast",
"redistributions": null

3,

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

256

50

51

52

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

Product Manual

TNSR v19.05

"neighbors": {
"neighbor": [
{
"peer": "203.0.113.10",
"capability-negotiate": true,
"peer-group-name": "RR-CLIENT",
"enable": true

"peer": "203.0.113.21",
"capability-negotiate": true,
"peer-group-name": "iBGP",
"enable": true

"peer": "RR-CLIENT",

"capability-negotiate": true,

"description": "<![CDATA[\"RR-Client Sessions\"]]>",
"remote-asn": 65505,

"enable": true,

"update-source": "GigabitEthernet®/15/0"

"peer": "iBGP",

"capability-negotiate": true,

"description”: "<![CDATA[\"iBGP Sessions\"]]1>",
"remote-asn": 65505,

"enable": true,

"update-source": "GigabitEthernet0/14/0"

1,
"interfaces-config": {
"interface": [
{
"name": "GigabitEthernet®/13/0",
"description": "<![CDATA[\"To Backbone Network\"]]>",

"enabled": true,

"ipv4": {
"enabled": true,
"forwarding": false,
"address": {

"ip": "203.0.113.17/30"

}

3,

"ipve": {
"enabled": true,

"forwarding": false

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

257

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Product Manual

TNSR v19.05

"name": "GigabitEthernet0/14/0",
"description": "<![CDATA[\"To RR1 Router\"]]>",
"enabled": true,
"ipv4": {

"enabled": true,

"forwarding": false,

"address": {

"ip": "203.0.113.22/30"

}
b
"ipve": {

"enabled": true,

"forwarding": false

}

name": "GigabitEthernet0/15/0",
"description": "<![CDATA[\"To GW router\"]]>",
"enabled": true,
"ipv4": {
"enabled": true,
"forwarding": false,
"address": {
"ip": "203.0.113.9/30"
}
3
"ipve": {
"enabled": true,
"forwarding": false
}
}
1
3
"prefix-list-config": {
"prefix-lists": {
"list": [
{
"name": "REDISTRIBUTE_IPv4",
"description": "<![CDATA[\"IPv4 Routes to Import\"]]>",
"rules": {
"rule": [
{
"sequence": 10,
"action": "permit",
"prefix": "192.0.2.0/24"

"sequence": 20,
"action": "permit",

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

258

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

Product Manual TNSR v19.05

(continued from previous page)

"prefix": "203.0.113.0/24"

Lo
"route-map-config": {
"route-maps": {
"map": [
{
"name": "REDISTRIBUTE_IPv4",
"rules": {
"rule": [
{
"sequence": 10,
"policy": "permit",
"match": {
"ip-address-prefix-list": "REDISTRIBUTE_IPv4"
1
"set": {
"origin": "igp

"route-table-config": {
"static-routes": {
"route-table": [

{

name": "ipv4-VRF:0",
"address-family": "ipv4",
"ipv4-routes": {

"route": [

{
"destination-prefix": "192.0.2.0/24",
"next-hop": {

"hop": [
{
"hop-id": 1,
"local": true

3
Ko
{
"destination-prefix": "203.0.113.0/24",

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 259

207

208

209

210

212

213

214

215

216

217

218

219

220

221

22

23

24

25

26

27

28

29

Product Manual TNSR v19.05

(continued from previous page)
"next-hop": {
llhopll : [
{
"hop-id": 1,
"local": true

}
]
3
}
]
}
3
]
}
}
}

3
GwW

Listing 4: Download: tnsr-bgp-router-reflector-gw.json
{

"data": {
"bgp-config": {
"global-options": {
"enable": true
1,
"routers": {
"router": [

{

asn": 65505,
"router-id": "203.0.113.6",
"address-families": {
"address-family": [
{
"family": "ipv4",
"subfamily": "labeled-unicast"
Ko
{
"family": "ipv4",
"subfamily": "multicast"
B
{
"family": "ipv4",
"subfamily": "unicast",
"neighbors": {
"neighbor": [
{
"peer": "203.0.113.5",

"activate": true
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 260

39

40

41

)

43

44

45

46

4

48

49

50

51

52

53

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

Product Manual

TNSR v19.05

})

{
"peer": "203.0.113.9",
"activate": true

"family": llipv4ll ,

"subfamily": "vpn

"family": "ipv6",
"subfamily": "labeled-unicast"

"family": "ipv6",
"subfamily": "multicast"

"fa.m.i].y" . "ipV6" ,
"subfamily": "unicast"

"family": "ipv6e",

"subfamily": "vpn

"family": "12vpn",
"subfamily": "evpn"

"family": "vpnv4",
"subfamily": "unicast"

"family": "vpnve",
"subfamily": "unicast"
}
]
i
"neighbors": {
"neighbor": [
{
"peer": "203.0.113.5",
"capability-negotiate": true,
"description": "<![CDATA[\"RR1 Session\"]]1>",
"remote-asn": 65505,
"enable": true,
"update-source": "GigabitEthernet0/13/0"

(continued from previous page)

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

261

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Product Manual TNSR v19.05

(continued from previous page)

{
"peer": "203.0.113.9",
"capability-negotiate": true,
"description": "<![CDATA[\"RR2 Session\"]]1>",
"remote-asn": 65505,
"enable": true,
"update-source": "GigabitEthernet0/14/0"

}

]
}

1,
"interfaces-config": {
"interface": [
{
"name": "GigabitEthernet®/13/0",
"description": "<![CDATA[\"To RR1 Router\"]]>",
"enabled": true,
"ipv4": {
"enabled": true,
"forwarding": false,
"address": {
"ip": "203.0.113.6/30"

}
}!
"ipve": {
"enabled": true,
"forwarding": false
}
Fo
{
"name": "GigabitEthernet®/14/0",
"description": "<![CDATA[\"To RR2 Router\"]]>",
"enabled": true,
"ipv4": {
"enabled": true,
"forwarding": false,
"address": {
"ip": "203.0.113.10/30"
}
3,
"ipve": {
"enabled": true,
"forwarding": false
}
Fo
{

"name": "GigabitEthernet®/15/0",
"description": "<![CDATA[\"To Customer Router\"]]>",
"enabled": true,

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 262

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Product Manual

TNSR v19.05

"ipv4": {
"enabled": true,
"forwarding": false,
"address": {

"ip": "203.0.113.25/30"

}

3,

"ipve": {
"enabled": true,
"forwarding": false

(continued from previous page)

orphan

24.5 LAN + WAN with NAT (Basic SOHO Router Including DHCP and

DNS Resolver)

Covered Topics

e Use Case

» Example Scenario

TNSR Configuration
— Basic Connectivity
- DHCP
— Outbound NAT
— DNS Resolver

* Local PC Configuration

24.5.1 Use Case

A typical use case for TNSR is a device that sits between a local area network (LAN) in an office or home and a wide
area network (WAN) such as the Internet.

Ataminimum, such a TNSR instance routes traffic between the LAN and the WAN. In many cases, it provides additional
services that are useful for a LAN, including:

* DHCP to provide hosts in the LAN with IP addresses.

* DNS to respond to name resolution queries from hosts in the LAN

© Copyright 2025 Rubicon Communications LLC 263

Product Manual TNSR v19.05

* NAT (Network Address Translation), to map one public IPv4 address to internal (private) IP addresses assigned
to hosts on the LAN.

24.5.2 Example Scenario

This example configures TNSR with basic the basic functions mentioned earlier: DHCP, DNS, and NAT

ltem Value

Local PC DHCP: 172.16.1.100/24
TNSR Local Interface GigabitEthernet0/14/2
TNSR Local Address 172.16.1.1/24

TNSR Internet Interface GigabitEthernet0/14/1
TNSR Internet Address 203.0.113.2/24

Remote DNS 8.8.8.8, 8.8.4.4

Internet

WAN: GigabitEthernet0/14/1]

IP-address: 203.0.113.2724 Remote Admin Host
IP: 208.123.73.10/24

LAN: GigabitEthernet0/M14/2
IP-address: 172.16.1.1/24

Fig. 5: Basic SOHO Router Example

© Copyright 2025 Rubicon Communications LLC 264

Product Manual TNSR v19.05

24.5.3 TNSR Configuration

Basic Connectivity

First, there is the basic interface configuration of TNSR to handle IP connectivity:

tnsr(config)# interface GigabitEthernet®/14/2
tnsr(config-interface)# ip address 172.16.1.1/24
tnsr(config-interface)# description Local
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# ip address 203.0.113.2/24
tnsr(config-interface)# description Internet
tnsr(config-interface)# enable
tnsr(config-interface)# exit

DHCP

Next, configure the DHCP server and DHCP pool on TNSR:

tnsr(config)# dhcp4 server

tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet®/14/2
tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcpd-opt)# exit

tnsr(config-kea-dhcp4)# subnet 172.16.1.0/24
tnsr(config-kea-subnet4)# pool 172.16.1.100-172.16.1.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-dhcp4)# exit

tnsr(config)# dhcp4 enable

The above example configures example . com as the domain name supplied to all clients. For the specific subnet in the
example, the TNSR IP address inside the subnet is supplied by DHCP as the default gateway for clients, and DHCP
will instruct clients to use the DNS Resolver daemon on TNSR at 172.16.1.1 for DNS.

© Copyright 2025 Rubicon Communications LLC 265

Product Manual TNSR v19.05

Outbound NAT

Now configure Outbound NAT:

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# interface GigabitEthernet®/14/1
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet®/14/2
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit

tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)#

DNS Resolver

Finally, configure a DNS Resolver in forwarding mode:

tnsr# configure

tnsr(config)# unbound server

tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 172.16.1.1
tnsr(config-unbound)# access-control 172.16.1.0/24 allow
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.
tnsr(config-unbound-fwd-zone)# nameserver address 8.
tnsr(config-unbound-fwd-zone)# exit
tnsr(config-unbound)# exit

tnsr(config)# unbound enable

8.8.8
8.4.4

This example enables the Unbound DNS service and configures it to listen on localhost as well as 172.16.1.1
(GigabitEthernet®/14/2, labeled LAN in the example). The example also allows clients inside that subnet, 172.
16.1.0/24, to perform DNS queries and receive responses. It will send all DNS queries to the upstream DNS servers
8.8.8.8and 8.8.4.4.

24.5.4 Local PC Configuration

No configuration is necessary on the Local PC, it will pull all its required settings from DHCP.

orphan

24.6 Using Access Control Lists (ACLSs)

Covered Topics

e Use Case

* Example Scenario

* TNSR Configuration

© Copyright 2025 Rubicon Communications LLC 266

Product Manual TNSR v19.05

24.6.1 Use Case

A standard ACL works with IPv4 or IPv6 traffic at layer 3. The name of an ACL is arbitrary so it may be named in a
way that makes its purpose obvious.

ACLs consist of one or more rules, defined by a sequence number that determines the order in which the rules are
applied. A common practice is to start numbering at a value higher than 0 or 1, and to leave gaps in the sequence so
that rules may be added later. For example, the first rule could be 10, followed by 20.

24.6.2 Example Scenario

This example configures TNSR with an ACL that allows SSH, ICMP and HTTP/HTTPs connections only from a
specific Remote Admin Host:

ltem Value

Local PC DHCP: 172.16.1.100/24
TNSR Local Interface GigabitEthernet0/14/2
TNSR Local Address 172.16.1.1/24

TNSR Internet Interface GigabitEthernet0/14/1
TNSR Internet Address 203.0.113.2/24

Remote Admin Host 208.123.73.10/24

24.6.3 TNSR Configuration

tnsr(config)# acl WAN_protecting_acl
tnsr(config-acl)# rule 10
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# destination address 203.0.113.2/32
tnsr(config-acl-rule)# destination port 22
tnsr(config-acl-rule)# source ip address 208.123.73.10/32
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 20
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# destination address 203.0.113.2/32
tnsr(config-acl-rule)# destination port 80
tnsr(config-acl-rule)# source ip address 208.123.73.10/32
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 30
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# destination address 203.0.113.2/32
tnsr(config-acl-rule)# destination port 443
tnsr(config-acl-rule)# source ip address 208.123.73.10/32
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 40

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 267

Product Manual TNSR v19.05

Internet

WAN: GigabitEthernet0/ 141
IP-address: 203.0.113.2/24

TMSR

LAN: GigabitEthernetd/14/2
|P-address: 172.16.1.1/24
Switch

VLAN 10 £ VLAN 20

Fig. 6: ACL Example Scenario

© Copyright 2025 Rubicon Communications LLC 268

Product Manual

TNSR v19.05

tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# destination port 22
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 50
tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# destination port 80
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 60
tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# destination port 443
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# exit

tnsr(config-acl)# rule 70
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# ip-version ipv4
tnsr(config-acl-rule)# exit

tnsr(config)# int GigabitEthernet0/14/1

(continued from previous page)

tnsr(config-interface)# access-1list input acl WAN_protecting_acl sequence 10

tnsr(config-interface)# exit
tnsr(config)#

Rules 10-30 allow SSH, HTTP and HTTPs access to the WAN IP address from the Remote Admin Host. Then Rules
40-60 block SSH, HTTPS and HTTPs on the WAN IP address from all other IP addresses. Finally, rule 70 allows all

other incoming traffic.

orphan

24.7 Inter-VLAN Routing

Covered Topics

» Use Case
* Example Scenario

* TNSR Configuration

Create Subinterfaces

Configure Interfaces
Configure DHCP
Configure Outbound NAT
Configure DNS Resolver

© Copyright 2025 Rubicon Communications LLC

269

Product Manual

TNSR v19.05

24.7.1 Use Case

Inter-VLAN routing is a process of forwarding network traffic from one VLAN to another VLAN using a router or

layer 3 device.

24.7.2 Example Scenario

This example configures TNSR with VLANS:

ltem

Value

TNSR Internet Interface
TNSR Internet Address
TNSR Local Interface
TNSR VLAN 10 Interface
TNSR VLAN 10 Address
TNSR VLAN 20 Interface
TNSR VLAN 20 Address

GigabitEthernet0/14/1
203.0.113.2/24
GigabitEthernet0/14/2
GigabitEthernet0/14/2.10
172.16.10.1/24
GigabitEthernet0/14/2.20
172.16.20.1/24

WAN: GigabitEthermnetD/14/1
|P-address: 203.0.113.2/24

Internet

LAN: GigahitEthernetd/14/2
|P-address: 172.16.1.1/24

Fig. 7: Inter-VLAN Routing Example

DNS: 8.2.8.8

© Copyright 2025 Rubicon Communications LLC

270

Product Manual TNSR v19.05

24.7.3 TNSR Configuration

A few pieces of information are necessary to create a VLAN subinterface (“subif”):
* The parent interface which will carry the tagged traffic, e.g. GigabitEthernet3/0/0

* The subinterface ID number, which is a positive integer that uniquely identifies this subif on the parent interface.
It is commonly set to the same value as the VLAN tag

* The VLAN tag used by the subif to tag outgoing traffic, and to use for identifying incoming traffic bound for this
subif. This is an integer in the range 1-4095, inclusive. This VLAN must also be tagged on the corresponding
switch configuration for the port used by the parent interface.

Create Subinterfaces

First, create subinterfaces for VLAN 10 and VLAN 20:

tnsr(config)# interface subif GigabitEthernet0/14/2 10
tnsr(config-subif)# dotlq 10 exact-match
tnsr(config-subif)# exit

tnsr(config)# interface subif GigabitEthernet0/14/2 20
tnsr(config-subif)# dotlq 20 exact-match
tnsr(config-subif)# exit

The subif interface appears with the parent interface name and the subif id, joined by a ..

Configure Interfaces

At this point,subinterface behaves identically to a regular interface in that it may have an IP address, routing, and so
on:

tnsr(config)# interface GigabitEthernet®/14/2.10
tnsr(config-interface)# ip address 172.16.10.1/24
tnsr(config-interface)# description VLAN10
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet0/14/2.20
tnsr(config-interface)# ip address 172.16.20.1/24
tnsr(config-interface)# description VLAN20
tnsr(config-interface)# enable
tnsr(config-interface)# exit

© Copyright 2025 Rubicon Communications LLC 271

Product Manual TNSR v19.05

Configure DHCP

Next, configure the DHCP server and DHCP pool on TNSR for each VLAN.
For VLAN 10:

tnsr(config)# dhcp4 server

tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet®/14/2.10
tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcpd-opt)# exit

tnsr(config-kea-dhcp4)# subnet 172.16.10.0/24
tnsr(config-kea-subnet4)# pool 172.16.10.100-172.16.10.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2.10
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.10.1
tnsr(config-kea-subnet4-opt)# exit

tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.10.1
tnsr(config-kea-subnet4-opt)# exit

tnsr(config-kea-dhcp4)# exit

And for VLAN 20:

tnsr(config)# dhcp4 server

tnsr(config-kea-dhcp4)# interface listen GigabitEthernet®/14/2.20
tnsr(config-kea-dhcp4)# subnet 172.16.20.0/24
tnsr(config-kea-subnet4)# pool 172.16.20.100-172.16.20.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2.20
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.20.1
tnsr(config-kea-subnet4-opt)# exit

tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.20.1
tnsr(config-kea-subnet4-opt)# exit

tnsr(config-kea-dhcp4)# exit

tnsr(config)# dhcp4 enable

Configure Outbound NAT

Now configure Outbound NAT:

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# interface GigabitEthernet®/14/1
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet®/14/2.10
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet®/14/2.20

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 272

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit

tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)#

Configure DNS Resolver

Finally, configure a DNS Resolver in forwarding mode:

tnsr# configure

tnsr(config)# unbound server

tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 172.16.10.1
tnsr(config-unbound)# interface 172.16.20.1
tnsr(config-unbound)# access-control 172.16.10.0/24 allow
tnsr(config-unbound)# access-control 172.16.20.0/24 allow
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4
tnsr(config-unbound-fwd-zone)# exit

tnsr(config-unbound)# exit

tnsr(config)# unbound enable

Now there are two VLANSs on the physical “LAN” port and interface GigabitEthernet0/14/2 now works as trunk
port between TNSR and downstream L.2/L.3 switch.

This switch must be configured to match the expected VLAN tags and it must also have access ports configured for
clients on each VLAN.

orphan

24.8 GRE ERSPAN Example Use Case

Encapsulated Remote Switched Port Analyzer (ERSPAN) is a type of GRE tunnel which allows a remote Intrusion
Detection System (IDS) or similar packet inspection device to receive copies of packets from a local interface. This
operates similar to a local mirror or span port on a switch, but in a remote capacity.

A typical use case for this is central packet inspection or a case where a remote site has plenty of bandwidth available,
but no suitable local hardware for inspecting packets.

On TNSR, this is accomplished by configuring an ERSPAN GRE tunnel and then configuring a span to link the ERSPAN
tunnel a local interface. From that point on, a copy of every packet on the interface being spanned is sent across GRE.

Note: The receiving end does not need to support ERSPAN, a standard GRE tunnel will suffice.

© Copyright 2025 Rubicon Communications LLC 273

Product Manual

TNSR v19.05

24.8.1 Example Scenario

In this example, copies of packets from a local TNSR interface will be copied to a remote IDS for inspection.

ltem

Value

Local Server:

TNSR Local Interface:
TNSR Local Address:
TNSR Internet Interface:
TNSR Internet Address:
IDS Address:

172.29.193.47/24
VirtualFunctionEthernet0/6/0
172.29.193.60/24
VirtualFunctionEthernet0/7/0
172.29.194.142/24
172.29.194.90/24

VinualFunctonEthernetd/7/0 v

172.29.194.142/24 .~

-~

TNSR

VirualFunctionEthernet0/6/0 |
172.29.193.60/24 |
I

172.29.193.47/24,

Server

.r/
-~

Wiww

24.8.2 TNSR Configuration

Span VirtualFunctionEthernet®/g/0
Togrel

ERSPAN GRE Tunnel

- 172.29.194.90/24

IDS

DS inspects packets copied
from 172.29.193.0/24 inbound
on GRE interface

ERSPAN Example
IDS Scenario

Fig. 8: ERSPAN Example

First, there is the basic interface configuration of TNSR to handle IP connectivity:

tnsr(config)# interface VirtualFunctionEthernet0/6/0
tnsr(config-interface)# ip address 172.29.193.160/24

tnsr(config-interface)# description Local

tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface VirtualFunctionEthernet®/7/0

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

274

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-interface)# ip address 172.29.194.142/24
tnsr(config-interface)# description Internet
tnsr(config-interface)# enable
tnsr(config-interface)# exit

Next, configure the GRE tunnel on TNSR:

tnsr(config)# gre grel

tnsr(config-gre)# destination 172.29.194.90
tnsr(config-gre)# source 172.29.194.142
tnsr(config-gre)# tunnel-type erspan session-id 1
tnsr(config-gre)# instance 1

tnsr(config-gre)# exit

tnsr(config)# interface grel
tnsr(config-interface)# enable
tnsr(config-interface)# exit

Finally, configure a SPAN that ties the local interface to the GRE interface:

tnsr(config)# span VirtualFunctionEthernet®/6/0
tnsr(config-span)# onto grel hw both
tnsr(config-span)# exit

24.8.3 Server Configuration

No configuration is necessary on the server. Any packet it sends which flows through TNSR will automatically be
copied across the ERSPAN tunnel to the IDS.

24.8.4 IDS Configuration

The IDS must support GRE interfaces and also must support inspecting packets on GRE interfaces. The IDS does not
need to explicitly support ERSPAN to receive copies of packets from TNSR.

At a minimum, take the following steps on the IDS:

* Configure a GRE tunnel between the IDS and TNSR, it does not need to have an address internal to the GRE
tunnel.

* Configure the IDS software to inspect packets on the GRE interface

orphan

© Copyright 2025 Rubicon Communications LLC 275

CHAPTER
TWENTYFIVE

ADVANCED CONFIGURATION

The items in this section can be used to control lower-level behavior of the dataplane and host operating system in
various ways. These can help to increase performance and efficiency for large workloads.

orphan

25.1 Dataplane Configuration

For the majority of cases the default dataplane configuration is sufficient, but certain cases may require adjustments.
These are often covered in more detail throughout the documentation, and relevant sections will be linked where ap-
propriate.

These commands are all available in config mode (Configuration Mode).

Warning: The dataplane service requires a restart to enable configuration changes described in this section. After
making changes, restart the dataplane from config mode using the following command:

tnsr# configure
tnsr(config)# service dataplane restart

25.1.1 CPU Workers and Affinity

The dataplane has a variety of commands to fine-tune how it uses available CPU resources on the host. These commands
control CPU cores TNSR will use, both the number of cores and specific cores.

Worker Configuration

dataplane cpu corelist-workers <n>
Defines a specific list of CPU cores to be used by the dataplane. Run the command multiple times
with different core numbers to define the list of cores to utilize. When removing items with no, the
command accepts a specific core to remove from the list.

dataplane cpu coremask-workers <mask>
Similar to corelist-workers, but the cores are defined as a hexadecimal mask instead of a list.
For example, 0x0000000000CO000C

dataplane cpu main-core <n>
Assigns the main dataplane process to a specific CPU core.

276

Product Manual TNSR v19.05

dataplane cpu scheduler-policy (batchlfifolidle|other|rr)
Defines a specific scheduler policy for worker thread processor usage allocation

batch
Scheduling batch processes. Uses dynamic priorities based on nice values in the host
OS, but always gives the thread a small scheduling penalty so that other processes take
precedence.

fifo
First in-first out scheduling. Will preempt other types of threads and threads with a
lower priority.

idle
Scheduling very low priority jobs.

other
Default Linux time-sharing scheduling. Uses dynamic priorities based on nice values
in the host OS, similar to batch but without the built-in penalty.

rr
Round-robin scheduling. Similar to £ifo but each thread is time-limited

dataplane cpu scheduler-priority <n>
For the fifo and rr scheduler policies, this number sets the priority of processes for the dataplane.
It can be any number between 1 (low) and 99 (high).

dataplane cpu skip-cores <n>
Defines the number of cores to skip when creating additional worker threads, in the range of 1 to
the highest available core number. The first <n> cores will not be used by worker threads.

Note: This does not affect the core used by the main thread, which is set by dataplane cpu
main-core <n>.

dataplane cpu workers <n>
Defines the number of worker threads to create for the dataplane.

Note: The number of worker threads is in addition to the main process. For example, with a worker
count of 4, the dataplane will use one main process with four worker threads, for a total of five
threads.

Worker Example

This example sets four additional worker threads, and instructs the dataplane to skip one core when assigning worker
threads to cores:

tnsr(config)# dataplane cpu workers 4
tnsr(config)# dataplane cpu skip-cores 1
tnsr(config)# service dataplane restart

© Copyright 2025 Rubicon Communications LLC 277

Product Manual

TNSR v19.05

Worker Status

The show dataplane cpu threads command displays the current dataplane process list, including the core usage and
process IDs. This output corresponds to the example above:

tnsr(config)# show dataplane cpu threads

ID

Name Type PID LCore Core Socket
vpp_main 2330 1 0 0
vpp_wk_0 workers 2346 2 2 0
vpp_wk_1 workers 2347 3 3 0
vpp_wk_2 workers 2348 4 4 0
vpp_wk_3 workers 2349 5 5 0

The output includes the following columns:

id
Dataplane thread ID.

name
Name of the dataplane process.

type

The type of thread, which will be blank for the main process.
pid

The host OS process ID for each thread.

LCore
The logical core used by the process.

Core
The CPU core used by the process.

Socket
The CPU socket associated with the core used by the process.

25.1.2 DPDK Configuration

Commands in this section configure hardware settings for DPDK devices.

dataplane dpdk dev <pci-id> (crypto|network) [num-rx-queues [<r>]] [num-tx-queues [<t>]]
Configures a specific device for use by TNSR. For network devices, see Setup NICs in Dataplane.

For cryptographic devices, see Setup QAT Compatible Hardware.

dataplane dpdk no-tx-checksum-offload
Disables transmit checksum offloading for network devices.

dataplane dpdk no-multi-seg

Disables multi-segment buffers for network devices. Can improve performance, but disables jumbo

MTU support. Recommended for Mellanox devices.

dataplane dpdk uio-driver [<driver-name>]

Configures the UIO driver for interfaces. See Setup NICs in Dataplane.

dataplane dpdk vdev <sw-dev-type>

Defines a software device to be used by the dataplane, such as:

aesni_gcm
AESNI GCM cryptodev

© Copyright 2025 Rubicon Communications LLC

278

Product Manual TNSR v19.05

aesni_mb
AESNI multibuffer cryptodev

25.1.3 Memory

Commands in this section configure memory allocation for the dataplane.

dataplane (iplip6) heap-size [<size>]
Defines the amount of memory to be allocated for the dataplane FIB. The default is 32MB. For more
information, see Working with Large BGP Tables.

Note: When tuning this value, also consider increasing the Statistics Segment heap-size.

dataplane ip6 hash-buckets [<size>]
Defines the number of IPv6 forwarding table hash buckets. The default is 65536.

25.1.4 NAT

Commands in this section configure dataplane NAT behavior.

dataplane nat dslite-ce
Enables DS-Lite CE mode.

dataplane nat max-translations-per-user <n>
Defines the number of NAT translation entries to allow for each IP address. The default value is 100.
The ideal value depends entirely on the environment and number of sessions per IP address involved
in NAT. This includes traffic sourced from TNSR itself address as well, not only internal source IP
addresses.

dataplane nat mode (deterministiclendpoint-dependent|simple)
Configures the operating NAT mode. See Dataplane NAT Modes.

dataplane nat mode-options simple (out2in-dpo|static-mapping-only)
Configures options for the NAT mode. See Dataplane NAT Modes.

25.1.5 Statistics Segment

These commands configure the statistics segment parameters for the dataplane. This feature enables local access to
dataplane statistics via shared memory.

See also:
For more information on how to make use of this feature, see the VPP documentation for the example stat_client.

dataplane statseg heap-size <heap-size>[KKmMgG]
Size of shared memory allocation for stats segment, in bytes. This value can be suffixed with K
(kilobytes), M (megabytes), or G (gigabytes) in upper or lowercase. Default value is 9611

Note: This value may need to be increased to accommodate large amounts of routes in routing
tables. The default value of 96M can safely accommodate approximately one million routes.

dataplane statseg per-node-counters enable
Enables per-graph-node performance statistics.

© Copyright 2025 Rubicon Communications LLC 279

https://docs.fd.io/vpp/19.01/df/df6/stat__client_8h.html

Product Manual TNSR v19.05

dataplane statseg socket-name <socket-name>
Absolute path to UNIX domain socket for stats segment. The default path is /run/vpp/stats.
sock.

orphan

25.2 Host Memory Management Configuration

TNSR has commands to tweak a few common host OS memory management parameters.
These are:

sysctl vm nr_hugepages <u64>
Virtual memory, maximum number of huge pages. This controls allocations of huge areas of con-
tiguous memory, which is used to keep TNSR in memory, rather than swapping. Each huge page is
2MB by default, and the default number of huge pages is 1024. Multiplying the values yields 2GB of
RAM set aside. This value can be tweaked lower for systems with less memory or higher for systems
with more available memory and larger workloads.

sysctl vim max_map_count <u64>
Virtual memory, maximum map count. This controls the number of memory map areas available to
a given process. With workloads requiring larger amounts of memory, this may need increased to
allow sufficient levels of memory allocation operations to succeed. The default value is 3096.

sysctl kernel shmmem <u64>
Maximum size, in bytes, of a single shared memory segment in the kernel. Default value is
2147483648 (2GB).

To view the current active values of these parameters, use show sysctl:

tnsr# show sysctl
vm/nr_hugepages = 1024
vm/max_map_count = 3096
kernel/shmmax = 2147483648

orphan

© Copyright 2025 Rubicon Communications LLC 280

CHAPTER
TWENTYSIX

TROUBLESHOOTING

This section contains commonly encountered issues with TNSR and methods to resolve them.

* Ping and traceroute do not function without host OS default route

Unrecognized routes in a routing table

» Services do not receive traffic on an interface with NAT enabled
* NAT session limits / “Create NAT session failed” error

* ACL rules do not match NAT traffic as expected

» Some Traffic to the host OS management interface is dropped

* Locked out by NACM Rules

e How to gain access to the root account

Console Messages Obscure Prompts

Diagnosing Service Issues

Debugging TNSR

26.1 Ping and traceroute do not function without host OS default
route

Utilities such as ping and traceroute will send traffic using the host OS routing table by default unless a specific
source address is passed to the command. See Diagnostic Routing Behavior for details.

26.2 Unrecognized routes in a routing table

TNSR automatically populates routing tables with necessary entries that may not appear to directly correspond with
manually configured addresses. See Common Routes for details.

281

Product Manual TNSR v19.05

26.3 Services do not receive traffic on an interface with NAT enabled

When NAT is enabled, by default TNSR will drop traffic that doesn’t match an existing NAT session or static NAT rule.
This includes traffic for services on TNSR such as IPsec and BGP. To allow this traffic, see NAT Forwarding.

26.4 NAT session limits / “Create NAT session failed” error

By default the dataplane limits the number of NAT sessions for an IP address to a relatively low number (100) based
on the configured value for dataplane nat max-translations-per-user. This can be changed as described in
Advanced Dataplane Configuration: NAT:

26.5 ACL rules do not match NAT traffic as expected

When NAT is active, ACL rules are always processed before NAT on interfaces where NAT is applied, in any direction.
This behavior is different from some other products, such as pfSense. See ACL and NAT Interaction for details.

26.6 Some Traffic to the host OS management interface is dropped

TNSR includes a default set of Netfilter rules which secure the management interface. Only certain ports are allowed
by default. See Default Allowed Traffic for details. To allow more traffic, create host ACLs as described in Host ACLs.

26.7 Locked out by NACM Rules

If TNSR access is lost due to the NACM configuration, access can be regained by following the directions in Regaining
Access if Locked Out by NACM .

26.8 How to gain access to the root account

By default, the root account has interactive login disabled, which is the best practice. This can be changed by resetting
the root password using sudo from another administrator account, or in the ISO installer. See Default Accounts and
Passwords for details.

26.9 Console Messages Obscure Prompts

When connected to the console of a TNSR device, such as the serial console, the kernel may output messages to the
terminal which obscure prompts or other areas of the screen. This is normal and an expected effect when using the
console directly.

To work around this intended behavior, use one of the following methods:
* Press Ctrl-L to clear or redraw the screen without the messages.

* Press Enter to receive a new prompt.

© Copyright 2025 Rubicon Communications LLC 282

Product Manual TNSR v19.05

* Run sudo dmesg -D from a shell prompt or with the TNSR shell command, which will disable kernel output
to all consoles.

* Connect to the TNSR device using SSH instead of the console.

26.10 Diagnosing Service Issues

If a service will not stay running and the logs indicate that it is crashing, additional debugging information can be
obtained from core dumps.

By default, core dumps are disabled for services. These can be individually enabled as needed by the following com-
mand:

tnsr(config)# service (backend|bgp|dataplane|dhcp|http|ike|ntp|restconf|unbound)
coredump (enable|disable)

The resulting core files will be written under /var/lib/systemd/coredump/.

26.11 Debugging TNSR

The following commands enable debugging information in various aspects of TNSR. These should only be used under
direction of Netgate.

debug cli [level <n>]
Enable debugging in clixon and cligen at the given level.

debug tnsr (clear]|set|value) <flags>
Enable debugging in TNSR. The set or clear command may be repeated multiple times to add
or remove individual flag values. The value command may be used to directly set the value. The
<flags> value is the logical or of all desired debugging flags.

The following flag values are available:

© Copyright 2025 Rubicon Communications LLC 283

Product Manual

TNSR v19.05

Flag Value

TDBG_NONE 0x00000000
TDBG_FRR 0x00000001
TDBG_HOST 0x00000002
TDBG_KEA 0x00000004
TDBG_VPP 0x00000008
TDBG_NTP 0x00000010
TDBG_STRONGSWAN 0x00000020
TDBG_UNBOUND 0x00000040
TDBG_HTTP 0x00000080
TDBG_DELAYED_NODE 0x00001000
TDBG_DEP_GRAPH 0x00002000
TDBG_TRANSACTION 0x00004000
TDBG_ACL 0x00010000
TDBG_BGP 0x00020000
TDBG_BRIDGE 0x00040000
TDBG_INTF 0x00080000
TDBG_NEIGHBOR 0x00100000
TDBG_SUBIF 0x00200000
TDBG_SYSCTL 0x00400000
TDBG_GRE 0x00800000
TDBG_LOOPBACK 0x01000000
TDBG_ROUTE 0x02000000
TDBG_SPAN 0x04000000
TDBG_MAP 0x08000000

debug vimgmt (clear|set|value) <flags>
Enable VPP Mgmt library debug. The set or clear command may be repeated multiple times to
add or remove individual flag values. The value command may be used to directly set the value.
The <flags> value is the logical or of all desired debugging flags.

The following flag values are available:

no debug (clijtnsr[vmgmt)
Removes all debugging.

Flag Value

VDBG_NONE 0x0000
VDBG_API_SETUP 0x0001
VDBG_API_MSG 0x0002
VDBG_ACL 0x0004
VDBG_BRIDGE 0x0008
VDBG_INTF 0x0010
VDBG_NAT 0x0020
VDBG_TAP 0x0040
VDBG_MEMIF 0x0080
VDBG_LLDP 0x0100
VDBG_GRE 0x0200
VDBG_MAP 0x0400
VDBG_ROUTE 0x0800

© Copyright 2025 Rubicon Communications LLC

284

CHAPTER
TWENTYSEVEN

COMMANDS

* Mode List

* Master Mode Commands

* Config Mode Commands

* Show Commands in Both Master and Config Modes
* Access Control List Modes

* MACIP ACL Mode

* GRE Mode

* HTTP mode

* Interface Mode

* Loopback Mode

* Bridge Mode

* NAT Commands in Configure Mode

* NAT Reassmbly Mode

* DS-Lite Commands in Configure Mode
* Tap Mode

* BFD Key Mode

* BFD Mode

* Host Interface Mode

* [Psec Tunnel Mode

* IKE mode

* [KE Peer Authentication Mode

* [KE Peer Authentication Round Mode
* [KE Child SA Mode

* [KE Child SA Proposal Mode

* [IKE Peer Identity Mode

* IKE Proposal Mode

285

Product Manual TNSR v19.05

* Map Mode

* Map Parameters Mode

» memif Mode

* Dynamic Routing Access List Mode

* Dynamic Routing Prefix List Mode

* Dynamic Routing Route Map Rule Mode

* Dynamic Routing BGP Mode

* Dynamic Routing BGP Server Mode

* Dynamic Routing BGP Neighbor Mode

* Dynamic Routing BGP Address Family Mode
* Dynamic Routing BGP Address Family Neighbor Mode
* Dynamic Routing BGP Community List Mode
* Dynamic Routing BGP AS Path Mode

* Dynamic Routing Manager Mode

* [Pv4 Route Table Mode

* [Pv6 Route Table Mode

* [Pv4 or IPv6 Next Hop Mode

* SPAN Mode

* VXLAN Mode

» User Authentication Configuration Mode

* NTP Configuration Mode

* NTP Restrict Mode

* NTP Upstream Server Mode

* NACM Group Mode

* NACM Rule-list Mode

* NACM Rule Mode

* DHCP IPv4 Server Config Mode

* DHCP4 Subnet4 Mode

* DHCP4 Subnet4 Pool Mode

* DHCP4 Subnet4 Reservation Mode

* Kea DHCP4, Subnet4, Pool, or Reservation Option Mode
» Unbound Server Mode

* Unbound Forward-Zone Mode

* Subif Mode

e Bond Mode

© Copyright 2025 Rubicon Communications LLC 286

Product Manual

TNSR v19.05

e Host ACL Mode

27.1 Mode List

e Host ACL Rule Mode

Internal Name

Prompt

Mode Description

access_list

acl

acl_rule

aspath

auth

bfd

bfd_key

bgp

bgp_ip4multi
bgp_ip4multi_nbr
bgp_ip4uni
bgp_ip4uni_nbr
bgp_ipbmulti
bgp_ipbmulti_nbr
bgp_ipbuni
bgp_ip6buni_nbr
bgp_neighbor
bond

bridge
community_list
config

frr_bgp

gre

host_acl

host_acl rule
host_if

http
ike_authentication
ike_authentication_round
ike child
ike_child_proposal
ike_identity
ike_proposal
interface
ipsec_crypto_ike
ipsec_crypto_manual
ipsec_tunnel
kea_dhcp4
kea_dhcp4_log
kea_dhcp4_log_out
kea_dhcp4_opt
kea_subnet4
kea_subnet4_opt

config-access-list
config-acl
config-acl-rule
config-aspath
config-user

config-bfd
config-bfd-key
config-bgp
config-bgp-ip4multi
config-bgp-ip4multi-nbr
config-bgp-ip4uni
config-bgp-ip4uni-nbr
config-bgp-ip6multi
config-bgp-ip6multi-nbr
config-bgp-ipbuni
config-bgp-ipbuni-nbr
config-bgp-neighbor
config-bond
config-bridge
config-community
config

config-frr-bgp
config-gre
config-host-acl
config-host-acl-rule
config-host-if
config-http
config-ike-auth
config-ike-auth-round
config-ike-child
config-ike-child-proposal
config-ike-identity
config-ike-proposal
config-interface
config-ipsec-crypto-ike
config-crypto-manual
config-ipsec-tun
config-kea-dhcp4
config-kea-dhcp4-log
config-kea-dhcp4-log-out
config-kea-dhcp4-opt
config-kea-dhcp4-subnet4
config-kea-subnet4-opt

Dynamic Routing Accesss List
Access Control List

ACL Rule

AS Path ordered rule

User Authentication

Bidirectional Forwarding Detection
BFD key

BGP server

BGP IPv4 Multicast Address Family
BGP IPv4 Multicast Address Family Neighbor
BGP IPv4 Unicast Address Family
BGP IPv4 Unicast Address Family Neighbor
BGP IPv6 Multicast Address Family
BGP IPv6 Multicast Address Family Neighbor
BGP IPv6 Unicast Address Family
BGP IPv6 Unicast Address Family Neighbor
BGP Neighbor

Interface bonding

Bridge

BGP community list

Configuration

Dynamic Routing BGP

Generic Route Encapsulation

Host Access List

Host Access List Rule

Host interface

HTTP server

IKE peer authentication

IKE peer authentication round

IKE child SA

IKE child SA proposal

IKE peer identity

IKE proposal

Interface

IKE

IPsec static keying

IPsec tunnel

DHCP4 Server

DHCP4 Log

DHCP4 Log output

DHCPA4 option

DHCP4 subnet4

DHCP4 subnet4 option

continues on next page

© Copyright 2025 Rubicon Communications LLC

287

Product Manual

TNSR v19.05

Table 1 - continued from previous page

Internal Name

Prompt

Mode Description

kea_subnet4_pool
kea_subnet4_pool_opt
kea_subnet4 reservation

kea_subnet4_reservation_opt

loopback

macip

macip_rule

map

map_param

master

memif

nacm_group
nacm_rule
nacm_rule list
nat_reassembly

ntp

ntp_restrict
ntp_server
prefix_list
route_dynamic_manager
route_map
route_table v4
route_table_v6
rttbl4_next_hop
rttbl6_next_hop
span

subif

tap

unbound
unbound_fwd_zone
unbound_local_host
unbound_local_zone
vxlan

config-kea-subnet4-pool
config-kea-subnet4-pool-opt
config-kea-subnet4-reservation
config-kea-subnet4-reservation-opt
config-loopback

config-macip

config-macip-rule

config-map

config-map-param

config-memif
config-nacm-group
config-nacm-rule
config-nacm-rule-list
config-nat-reassembly
config-ntp
config-ntp-restrict
config-ntp-server
config-pref-list
config-route-dynamic-manager
config-rt-map
config-route-table-v4
config-route-table-v6
config-rttbl4-next-hop
config-rttbl6-next-hop
config-span

config-subif

config-tap

config-unbound
config-unbound-fwd-zone
config-unbound-local-host
config-unbound-local-zone
config-vxlan

DHCP4 subnet4 pool
DHCP4 subnet4 pool option
DHCP4 subnet4 host reservation
DHCP4 subnet4 host res option
Loopback interface

MAC/IP access control list
MACIP Rule
MAP-E/MAP-T
MAP-E/MAP-T global parameter
Initial, priviledged

Memif interface

NACM group

NACM rule

NACM rule list

NAT reassembly

NTP

NTP restriction

NTP server

Dynamic routing prefix list
Dynamic routing manager
Route Map

IPv4 Static Route Table
IPv6 Static Route Table
IPv4 Next Hop

IPv6 Next Hop

SPAN

Sub-interface VLAN

Tap

Unbound DNS Server
Unbound forward-zone
Unbound local host override
Unbound local zone override
VXLAN

27.2 Master Mode Commands

tnsr# configure [terminal]

tnsr# debug cli [level <n>]

tnsr# debug tnsr (clear|set|value) <flags>
tnsr# debug vmgmt (clear|set|value) <flags>
tnsr# no debug (cli|tnsr|vmgmt)

tnsr# exit
tnsr# 1s [-1]

tnsr# ping (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>]
[source <src-addr>] [count <count>] [packet-size <bytes>]
[tt]l <ttl-hops>] [timeout <wait-sec>]

tnsr# pwd

tnsr# shell [<command>]

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

288

Product Manual

TNSR v19.05

(continued from previous page)

tnsr# traceroute (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>]
[source <src-addr>] [packet-size <bytes>] [no-dns] [timeout <seconds>]
[tt]l <ttl-hos>] [waittime <wait-sec>]

tnsr# whoami

27.2.1 Package Management Commands

tnsr# package
tnsr# package
tnsr# package
tnsr# package
tnsr# package

(info|list) [available|installed|updates] [<pkg-name>]
install <pkg-glob>

remove <pkg-glob>

search <term>

upgrade <pkg-glob>

27.2.2 Public Key Infrastructure Commands

tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#

pki
pki
pki
pki
pki
pki
pki
pki
pki
pki
pki
pki

ca list
ca <name> (append <source-name>|delete|enter|get|import <file>)
certificate list

certificate <name> (delete|enter|get|import <file>)

private-key list

private-key <name> (delete|enter|get|import <file>)

private-key <name> generate [key-length (2048]3072]4096)]
signing-request
signing-request
signing-request
signing-request
signing-request

list

<name> (delete|generate|get|sign (ca-name <ca>|self))
set (city|common-name|country|org|org-unit|state) <text>
set digest (md5|shal]|sha224|sha256|sha384|sha512)
settings (clear|show)

27.3 Config Mode Commands

tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#

acl <acl-name>

auth user <user-name>

bfd conf-key-id <conf-key-id>

[no] bfd session <bfd-session>

[no] cli option auto-discard

configuration candidate clear

configuration candidate commit

configuration candidate discard

configuration candidate load <filename> [(replace|merge)]
configuration candidate validate

configuration copy candidate startup

configuration copy running (candidate|startup)
configuration copy startup candidate

configuration save (candidate|running) <filename>

[no] dataplane cpu corelist-workers [<corelist-workers>]
[no] dataplane cpu coremask-workers <coremask-workers>

[no]
[no]
[no]

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

289

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config)# [no] dataplane cpu main-core <main-core>

tnsr(config)# [no] dataplane cpu scheduler-policy (batch|fifo|idle|other|rr)

tnsr(config)# [no] dataplane cpu scheduler-priority <scheduler-priority>

tnsr(config)# [no] dataplane cpu skip-cores <skip-cores>

tnsr(config)# [no] dataplane cpu workers <workers>

tnsr(config)# dataplane dpdk dev <pci-id> (crypto|network)
[num-rx-queues [<num-rxqs>]] [num-tx-queues [<num-txqgs>]]
[vlan-strip-offload (off|on)]

tnsr(config)# dataplane dpdk dev <pci-id> network name <name>

tnsr(config)# no dataplane dpdk dev <pci-id> [name] [num-rx-queues] [num-tx-queues]..

—[vlan-strip-offload]

tnsr(config)# [no] dataplane dpdk no-multi-seg

tnsr(config)# [no] dataplane dpdk no-tx-checksum-offload

tnsr(config)# [no] dataplane dpdk uio-driver [<uio-driver>]

tnsr(config)# [no] dataplane dpdk vdev <sw-dev-type>

tnsr(config)# [no] dataplane ip heap-size [<size>]

tnsr(config)# [no] dataplane ip6 heap-size [<size>]

tnsr(config)# [no] dataplane ip6 hash-buckets [<size>]

tnsr(config)# [no] dataplane nat dslite-ce

tnsr(config)# [no] dataplane nat max-translations-per-user <n>

tnsr(config)# [no] dataplane nat mode (deterministic]|endpoint-dependent|simple)

tnsr(config)# [no] dataplane nat mode-options simple (out2in-dpo|static-mapping-only)

tnsr(config)# [no] dataplane statseg heap-size <heap-size>[kKmMgG]

tnsr(config)# [no] dataplane statseg per-node-counters enable

tnsr(config)# [no] dataplane statseg socket-name <socket-name>

tnsr(config)# debug cli [level <n>]

tnsr(config)# debug tnsr (clear|set|value) <flags>

tnsr(config)# debug vmgmt (clear|set|value) <flags>

tnsr(config)# no debug (cli]tnsr|vmgmt)

tnsr(config)# dhcp4 (enable|disable)

tnsr(config)# [no] dhcp4 server

tnsr(config)# dslite aftr endpoint <ip6-address>

tnsr(config)# dslite b4 endpoint <ip6-address>

tnsr(config)# dslite pool address <ipv4-addr-first> [- <ipv4-addr-last>]

tnsr(config)# no dslite [pool address]

tnsr(config)# exit

tnsr(config)# [no] gre <gre-name>

tnsr(config)# [no] host acl <acl-name>

tnsr(config)# [no] host interface <host-if-name>

tnsr(config)# http (enable|disable)

tnsr(config)# [no] http server

tnsr(config)# [no] interface <if-name>

tnsr(config)# interface clear counters [<interface>]

tnsr(config)# [no] interface bond <instance>

tnsr(config)# [no] interface bridge domain <domain-id>

tnsr(config)# [no] interface loopback <name>

tnsr(config)# [no] interface memif interface <id>

tnsr(config)# [no] interface memif socket id <id> filename <file>

tnsr(config)# [no] interface subif <interface> <subid>

tnsr(config)# [no] interface tap <host-name>

tnsr(config)# [no] ipsec tunnel <tunnel-num>

tnsr(config)# [no] 1lldp system-name <system-name>

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 290

Product Manual

TNSR v19.05

tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
—prefix>

tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#

tnsr(config)#
tnsr(config)#

tnsr(config)#
—entry]
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
-.<sequence>
tnsr(config)#

-,<sequence>]]

tnsr(config)#
tnsr(config)#

tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#
tnsr(config)#

(continued from previous page)

[no] 1ldp tx-hold <transmit-hold>

[no] 1ldp tx-interval <transmit-interval>
[no] macip <macip-name>

nacm (enable|disable)

no nacm enable

[no] nacm exec-default (deny|permit)

[no] nacm group <group-name>

[no] nacm read-default (deny|permit)

[no] nacm rule-list <rule-list-name>

[no] nacm write-default (deny|permit)

[no] nat deterministic mapping inside <inside-prefix> outside <outside-

[no] nat global-options nat44 forwarding (true|false)

[no] nat ipfix logging [domain <domain-id>] [src-port <src-port>]

[no] nat nat64 map <domain-name>

[no] nat nat64 map parameters

[no] nat pool (addresses <ip-first> [- <ip-last>]|interface <if-name>)
[twice-nat] [route-table <rt-tbl-name>]

[no] nat reassembly (ipv4|ipv6)

[no] nat static mapping (icmp|udp]|tcp) local <ip-local> [<port-local>]
external (<ip-external>|<if-name>) [<port-external>]
[twice-nat] [out-to-in-only] [route-table <rt-tbl-name>]

[no] neighbor <interface> <ip-address> <mac-address> [no-adj-route-table-

ntp (enable|disable)

no ntp enable

[no] ntp server

[no] route dynamic access-list <access-list-name>

route dynamic bgp

route dynamic manager

[no] route dynamic prefix-list <prefix-list-name>

[no] route dynamic route-map <route-map-name> (permit|deny) sequence

no route dynamic route-map [<route-map-name> [(permit|deny) sequence

[no] route (ipv4|ipv6) table <route-table-name>

service (backend|bgp|dataplane|dhcp|http|ike|ntp|restconf|unbound)
coredump (enable|disable)

service bgp (start|stop|restart]|status)

service dataplane (start|stop|restart|status)

service dhcp (start|stop|reload]|status) [dhcp4|dhcp6|dhcp_ddns]

service http (start|stop|restart]|status)

service ntp (start|stop|restart]|status)

service unbound (start|stop|status|restart|reload)

[no] span <if-name-src>

[no] sysctl vm nr_hugepages <u64>
[no] sysctl vm max_map_count <u64>
[no] sysctl kernel shmmem <u64>
[no] system contact <text>

[no] system description <text>
[no] system location <text>

[no] system name <text>

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

291

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config)# [no] unbound server
tnsr(config)# unbound (enable|disable)
tnsr(config)# no unbound enable
tnsr(config)# [no] vxlan <vxlan-name>

27.4 Show Commands in Both Master and Config Modes

tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#

tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#
tnsr#

tnsr#
tnsr#
tnsr#
tnsr#

show
show
show
show
show
show
show
show
show
show
show
show
show
show

show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show
show

acl [<acl-name>]

bfd

bfd keys [conf-key-id <conf-key-id>]

bfd sessions [conf-key-id <conf-key-id> | peer-ip-addr <peer-addr>]
cli

clock

configuration (candidate|running|startup) [xml|json]

counters [<interface>]

dataplane cpu threads

dslite

gre [<tunnel-name>]

host interface (acl|bonding|counters|ipv4|ipv6|link|mac|nat)

http [<config-file>]

interface [<if-name>] [(acl|bonding|counters|ipv4|ipv6|link|mac|nat)]

interface bridge domain [<bdi>]

interface loopback [<loopback-name>]

interface memif [<id>]

interface bond [<id>]

interface lacp [<if-name>]

interface tap

ipsec tunnel [<tunnel_number> [child|ike|verbose]]

kea [keactrl|dhcp4] [config-file]

macip [<macip-name>]

map [<map-domain-name>]

nacm [group [<group-name>] | rule-list [<rule-list-name>]]
nat [config|deterministic-mappings|interface-sides|reassembly|static-mappings]
nat dynamic (addresses|interfaces)

nat sessions [verbose]

neighbor [interface <if-name>]

ntp [(associations|peers) [associd <id>]]

ntp config-file

packet-counters

route dynamic access-list [<access-list-name>]

route dynamic bgp as-path [<as-path-name>]

route dynamic bgp community-list [<community-list-name>]
route dynamic bgp config [<as-number>]

route dynamic bgp neighbors [[<peer>] [advertised-routes|dampened-routes|

flap-statistics|prefix-counts|received|received-routes|routes]]

show
show
show
show

route dynamic bgp network <prefix>
route dynamic bgp nexthop [detail]
route dynamic bgp peer-group <peer-group-name>

route dynamic bgp summary
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 292

Product Manual TNSR v19.05

(continued from previous page)
tnsr# show route dynamic manager
tnsr# show route dynamic prefix-list [<prefix-list-name>]
tnsr# show route dynamic route-map [<route-map-name>]
tnsr# show route [table <route-table-name>]
tnsr# show span
tnsr# show sysctl
tnsr# show system
tnsr# show unbound [config-file]
tnsr# show version
tnsr# show vxlan [<vxlan-name>]

27.5 Access Control List Modes

27.5.1 Enter Access Control List Mode

tnsr(config)# acl <acl-name>
tnsr(config-acl)#

27.5.2 Access Control List Mode Commands

[tnsr(config-acl)# rule <seq-number>

27.5.3 Remove Access Control List

[tnsr(config)# no acl <acl-name>

27.5.4 Enter ACL Rule Mode

tnsr(config-acl)# rule <seq-number>
tnsr(config-acl-rule)#

27.5.5 ACL Rule Mode Commands

tnsr(config-acl-rule)# action (deny|permit|reflect)
tnsr(config-acl-rule)# ip-version (ipv4|ipv6)

tnsr(config-acl-rule)# no action [deny|permit|reflect]
tnsr(config-acl-rule)# destination address <ip-prefix>
tnsr(config-acl-rule)# no destination address [<ip-prefix>]
tnsr(config-acl-rule)# [no] destination port (any|<first> [- <last>])
tnsr(config-acl-rule)# [no] icmp type (any|<type-first> [- <type-last>])
tnsr(config-acl-rule)# [no] icmp code (any|<code-first> [- <code-last>])
tnsr(config-acl-rule)# [no] protocol (icmp|udp]|tcp)
tnsr(config-acl-rule)# source address <ip-prefix>

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 293

Product Manual

TNSR v19.05

tnsr(config-acl-rule)# no source address [<ip-prefix>]

tnsr(config-acl-rule)# [no] source port (any|<first> [- <last>])
tnsr(config-acl-rule)# [no] tcp flags mask <mask> value <value>
tnsr(config-acl-rule)# [no] tcp flags value <value> mask <mask>

(continued from previous page)

27.5.6 Remove ACL Rule

[tnsr(config—acl)# no rule <seq>

27.6 MACIP ACL Mode

27.6.1 Enter MACIP ACL Mode

tnsr(config)# macip <macip-name>
tnsr(config-macip)#

27.6.2 MACIP ACL Mode Commands

[tnsr(config—macip)# rule <seqg>

27.6.3 Remove MACIP ACL

[tnsr(config—macip)# no macip <macip-name>

27.6.4 Enter MACIP ACL Rule Mode

tnsr(config-macip)# rule <seq-number>
tnsr(config-macip-rule)#

27.6.5 MACIP Rule Mode Commands

tnsr(config-macip-rule)# action (deny|permit)
tnsr(config-macip-rule)# no action [deny|permit]
tnsr(config-macip-rule)# ip-version (ipv4|ipv6)
tnsr(config-macip-rule)# address <ip-prefix>
tnsr(config-macip-rule)# no address [<ip-prefix>]

tnsr(config-macip-rule)# no mac

tnsr(config-macip-rule)# mac address <mac-address> [mask <mac-mask>]
tnsr(config-macip-rule)# mac mask <mac-mask> [address <mac-address>]

tnsr(config-macip-rule)# no mac address [<mac-address>] [mask [<mac-mask>]]
tnsr(config-macip-rule)# no mac mask [<mac-mask>] [address [<mac-address>]]

© Copyright 2025 Rubicon Communications LLC

294

Product Manual TNSR v19.05

27.6.6 Remove MACIP ACL Rule

[tnsr(config—macip)# no rule <seq-number>

27.7 GRE Mode

27.7.1 Enter GRE Mode

tnsr(config)# gre <gre-name>
tnsr(config-gre)#

27.7.2 GRE Mode Commands

tnsr(config-gre)# encapsulation route-table <rt-table-name>
tnsr(config-gre)# instance <id>

tnsr(config-gre)# destination <ip-address>

tnsr(config-gre)# source <ip-address>

tnsr(config-gre)# tunnel-type erspan session-id <session-id>
tnsr(config-gre)# tunnel-type (13]|teb)

27.7.3 Remove GRE Instance

[tnsr(config)# no gre <gre-name>

27.8 HTTP mode

27.8.1 Enter HTTP mode

tnsr(config)# http server
tnsr(config-http)#

27.8.2 HTTP Mode Commands

tnsr(config-http)# authentication client-certificate-ca <cert-name>
tnsr(config-http)# authentication type (client-certificate|password|none)
tnsr(config-http)# enable restconf

tnsr(config-http)# disable restconf

tnsr(config-http)# server certificate <cert-name>

© Copyright 2025 Rubicon Communications LLC 295

Product Manual

TNSR v19.05

27.8.3 Remove http Configuration

[tnsr(config)# no http server

27.9 Interface Mode

27.9.1 Enter Interface mode

tnsr(config)# interface
tnsr(config-interface)#

<if-name>

27.9.2 Interface Mode Commands

tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
111
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
tnsr(config-interface)#
—<tagl>
tnsr(config-interface)#
—<tagl> <tag2>

access-list (input|output) acl <acl-name> sequence <number>
access-list macip <macip-name>

no access-list

no access-list acl <acl-name>

no access-list macip [<macip-name>]

no access-list [(input|output) [acl <acl-name> [sequence <number>

bond <instance> [long-timeout] [passive]

[no] bond <instance>

bridge domain <bridge-domain-id> [bvi <bvi>] [shg <shg>]
description <string-description>

[no] dhcp client ipv4 [hostname <host-name>]

disable

[no] enable

[no] ip address <ip-prefix>

[no] ip nat (inside|outside)

[no] ip route-table <route-table-name-ipv4>

[no] ipv6 address <ipv6-prefix>

[no] ipv6 route-table <route-table-name-ipv6>

11ldp port-name <port-name>

11dp management ipv4 <ip-address>

11dp management ipv6 <ipv6-address>

11dp management oid <oid>

map (disable|enable|translate)

no map (enable|translate)

mac-address <mac-address>

mtu <mtu>

vlan tag-rewrite (disable|pop-1]|pop-2)

vlan tag-rewrite push-1 (dotlad|dotlq) <tagl>

vlan tag-rewrite push-2 (dotlad|dotlq) <tagl> <tag2>
vlan tag-rewrite (translate-1-1|translate-2-1) (dotlad|dotlq)

vlan tag-rewrite (translate-1-2|translate-2-2) (dotlad|dotlq)

© Copyright 2025 Rubicon Communications LLC 296

Product Manual TNSR v19.05

27.9.3 Remove Interface

[tnsr(config)# no interface <if-name>

27.10 Loopback Mode

27.10.1 Enter Loopback Mode

tnsr(config)# interface loopback <loopback-name>
tnsr(config-loopback)#

27.10.2 Loopback Mode Commands

tnsr(config-loopback)# instance <ul6>
tnsr(config-loopback)# mac-address <mac-addr>
tnsr(config-loopback)# description <rest>

27.10.3 Remove Loopback interface

tnsr(config)# no interface <loop<n>>
tnsr(config)# no interface loopback <loopback-name>

27.11 Bridge Mode

27.11.1 Enter Bridge Mode

tnsr(config)# interface bridge <bdi>
tnsr(config-bridge)#

27.11.2 Bridge Mode commands

tnsr(config-bridge)# [no] arp entry ip <ip-addr> mac <mac-addr>
tnsr(config-bridge)# [no] arp term

tnsr(config-bridge)# [no] flood

tnsr(config-bridge)# [no] forward

tnsr(config-bridge)# [no] learn

tnsr(config-bridge)# [no] mac-age <mins>

tnsr(config-bridge)# [no] rewrite

tnsr(config-bridge)# [no] uu-flood

© Copyright 2025 Rubicon Communications LLC 297

Product Manual TNSR v19.05

27.11.3 Remove Bridge

[tnsr(config)# no interface bridge <bdi>

27.12 NAT Commands in Configure Mode

tnsr(config)# [no] nat static mapping (icmp|udp]tcp)

local <ip> [<port>]

external (<ip>|<if-name>) [<port>]

[twice-nat] [out-to-in-only]

[route-table <rt-tbl-name>]
tnsr(config)# [no] nat ipfix logging [domain <domain-id>] [src-port <port>]
tnsr(config)# [no] nat pool address <ip-first> [- <ip-last>] [twice-nat]
tnsr(config)# [no] nat pool interface <if-name> [twice-nat]

27.13 NAT Reassmbly Mode

27.13.1 Enter NAT Reassmbly Mode

tnsr(config)# nat reassembly (ipv4|ipv6)
tnsr(config-nat-reassembly)#

27.13.2 NAT Reassmbly Mode Commands

tnsr(config-nat-reassembly)# concurrent-reassemblies <max-reassemblies>
tnsr(config-nat-reassembly)# disable

tnsr(config-nat-reassembly)# enable

tnsr(config-nat-reassembly)# fragments <max-fragments>
tnsr(config-nat-reassembly)# timeout <seconds>

27.14 DS-Lite Commands in Configure Mode

tnsr(config)# dslite aftr endpoint <ip6-address>
tnsr(config)# dslite b4 endpoint <ip6-address>
tnsr(config)# dslite pool address <ipv4-addr-first> [- <ipv4-addr-last>]

© Copyright 2025 Rubicon Communications LLC 298

Product Manual TNSR v19.05

27.15 Tap Mode

27.15.1 Enter Tap Mode

tnsr(config)# interface tap <tap-name>
tnsr(config-tap)#

27.15.2 Tap Mode commands

tnsr(config-tap)# [no] host bridge <bridge-name>
tnsr(config-tap)# [no] host ipv4 gateway <ipv4-addr>
tnsr(config-tap)# [no] host ipv4 prefix <ipv4-prefix>
tnsr(config-tap)# [no] host ipv6 gateway <ipv6-addr>
tnsr(config-tap)# [no] host ipv6 prefix <ipv6-prefix>
tnsr(config-tap)# [no] host mac-address <host-mac-address>
tnsr(config-tap)# [no] host name-space <netns>
tnsr(config-tap)# [no] instance <instance>
tnsr(config-tap)# [no] mac-address <mac-address>
tnsr(config-tap)# [no] rx-ring-size <size>
tnsr(config-tap)# [no] tx-ring-size <size>

27.15.3 Remove Tap

[tnsr(config)# no interface tap <tap-name>

27.16 BFD Key Mode

27.16.1 Enter BFD Key Mode

tnsr(config)# bfd conf-key-id <conf-key-id>
tnsr(config-bfdkey)#

27.16.2 BFD Key Mode Commands

tnsr(config-bfdkey)# authentication type (keyed-shal|meticulous-keyed-shal)
tnsr(config-bfdkey)# secret < (<hex-pair>)[1-20] >

© Copyright 2025 Rubicon Communications LLC 299

Product Manual

TNSR v19.05

27.16.3 Remove BFD Key Configuration

[tnsr(config)# no bfd conf-key-id <conf-key-id>

27.17 BFD Mode

27.17.1 Enter BFD Mode

tnsr(config)# bfd session <bfd-session>
tnsr(config-bfd)#

27.17.2 BFD Mode Commands

tnsr(config-bfd)# [no] bfd-key-id <bfd-key-id>
tnsr(config-bfd)# [no] conf-key-id <conf-key-id>
tnsr(config-bfd)# delayed (true|false)
tnsr(config-bfd)# desired-min-tx <microseconds>
tnsr(config-bfd)# detect-multiplier <n-packets>
tnsr(config-bfd)# disable

tnsr(config-bfd)# [no] enable

tnsr(config-bfd)# interface <if-name>
tnsr(config-bfd)# local address <ip-address>
tnsr(config-bfd)# peer address <ip-address>
tnsr(config-bfd)# remote address <ip-address>
tnsr(config-bfd)# required-min-rx <microseconds>

27.17.3 Remove BFD Configuration

[tnsr(config)# no bfd session <bfd-session>

27.17.4 Change BFD Admin State

tnsr# bfd session <bfd-session>
tnsr(config-bfd)# disable
tnsr(config-bfd)# [no] enable
tnsr(config-bfd)#

© Copyright 2025 Rubicon Communications LLC

300

Product Manual

TNSR v19.05

27.17.5 Change BFD Authentication

tnsr(config)# bfd session <bfd-session>
tnsr(config-bfd)# bfd-key-id <bfd-key-id>
tnsr(config-bfd)# conf-key-id <conf-key-id>
tnsr(config-bfd)# delayed (true|false)

27.18 Host Interface Mode

27.18.1 Enter Host Interface Mode

tnsr(config)# host interface <if-name>
tnsr(config-host-if)#

27.18.2 Host Interface Mode Commands

tnsr(config-host-if)# [no] description <rest>
tnsr(config-host-if)# disable

tnsr(config-host-if)# [no] enable
tnsr(config-host-if)# [no] ip address <ipv4-prefix>
tnsr(config-host-if)# [no] ipv6 address <ipv6-prefix>
tnsr(config-host-if)# mtu <mtu-value>

27.18.3 Remove Host Interface

[tnsr(config)# no host interface <if-name>

27.19 IPsec Tunnel Mode

27.19.1 Enter IPsec Tunnel Mode

tnsr(config)# ipsec tunnel <tunnel-num>
tnsr(config-ipsec-tun)#

27.19.2 IPsec Tunnel Mode Commands

tnsr(config-ipsec-tun)# crypto config-type (ike|manual)
tnsr(config-ipsec-tun)# crypto (ike|manual)

tnsr(config-ipsec-tun)# [no] local-address <ip-address>
tnsr(config-ipsec-tun)# [no] remote-address (<ip-address>|<hostname>)

© Copyright 2025 Rubicon Communications LLC

301

Product Manual TNSR v19.05

27.19.3 Remove IPsec Tunnel

[tnsr(config)# no ipsec tunnel <tunnel-num>]

27.20 IKE mode

27.20.1 Enter IKE mode

tnsr(config-ipsec-tun)# crypto ike
tnsr(config-ipsec-crypto-ike)#

27.20.2 IKE Mode Commands

tnsr(config-ipsec-crypto-ike)# [no] authentication (local|remote)
tnsr(config-ipsec-crypto-ike)# [no] child <name>
tnsr(config-ipsec-crypto-ike)# [no] identity (local]|remote)
tnsr(config-ipsec-crypto-ike)# lifetime <seconds>
tnsr(config-ipsec-crypto-ike)# no lifetime
tnsr(config-ipsec-crypto-ike)# [no] proposal <number>
tnsr(config-ipsec-crypto-ike)# version (0|1]2)
tnsr(config-ipsec-crypto-ike)# no version

27.20.3 Remove IKE configuration

[tnsr(config—ipsec—tun)# no crypto ike

27.21 IKE Peer Authentication Mode

27.21.1 Enter IKE Peer Authentication Mode

tnsr(config-ipsec-crypto-ike)# authentication (local|remote)
tnsr(config-ike-auth)#

27.21.2 IKE Peer Authentication Mode Commands

[tnsr(config—ike—auth)# [no] round (1]2)

© Copyright 2025 Rubicon Communications LLC 302

Product Manual

TNSR v19.05

27.21.3 Remove IKE Peer Authentication Configuration

[tnsr(config—ipsec—crypto—ike)# no authentication (local|remote)

27.22 IKE Peer Authentication Round Mode

27.22.1 Enter IKE Peer Authentication Round Mode

tnsr(config-ike-auth)# round (1]2)
tnsr(config-ike-auth-round)#

27.22.2 IKE Peer Authentication Round Mode Commands

tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# no type
tnsr(config-ike-auth-round)# psk <pre-shared-key>
tnsr(config-ike-auth-round)# no psk

27.22.3 Remove IKE Peer Authentication Round Configuration

[tnsr(config—ike—auth)# no round (1/2)

27.23 IKE Child SA Mode

27.23.1 Enter IKE Child SA Mode

tnsr(config-ipsec-crypto-ike)# child <name>
tnsr(config-ike-child)#

27.23.2 IKE Child SA Mode Commands

tnsr(config-ike-child)# lifetime <seconds>
tnsr(config-ike-child)# no lifetime
tnsr(config-ike-child)# [no] proposal <number>

© Copyright 2025 Rubicon Communications LLC

303

Product Manual TNSR v19.05

27.23.3 Remove IKE Child SA

[tnsr(config—ipsec—crypto—ike)# no child <name> J

27.24 IKE Child SA Proposal Mode

27.24.1 Enter IKE Child SA Proposal Mode

tnsr(config-ike-child)# proposal <number>
tnsr(config-ike-child-proposal)#

27.24.2 IKE Child SA Proposal Mode Commands

tnsr(config-ike-child-proposal)# encryption <crypto-algorithm>
tnsr(config-ike-child-proposal)# no encryption
tnsr(config-ike-child-proposal)# integrity <integrity-algorithm>
tnsr(config-ike-child-proposal)# no integrity
tnsr(config-ike-child-proposal)# group <pfs-group>
tnsr(config-ike-child-proposal)# no group
tnsr(config-ike-child-proposal)# sequence-number (esn|noesn)
tnsr(config-ike-child-proposal)# no sequence-number

27.24.3 Remove IKE Child SA Proposal

[tnsr(config—ike—child)# no proposal <number>

27.25 IKE Peer Identity Mode

27.25.1 Enter IKE Peer Identity Mode

tnsr(config-ipsec-crypto-ike)# identity (local|remote)
tnsr(config-ike-identity)#

27.25.2 IKE Peer Identity Mode Commands

tnsr(config-ike-identity)# type (none|address|email|fqdn|dn|key-id)
tnsr(config-ike-identity)# no type

tnsr(config-ike-identity)# value <identity>
tnsr(config-ike-identity)# no value

© Copyright 2025 Rubicon Communications LLC 304

Product Manual

TNSR v19.05

27.25.3 Remove IKE Peer Identity Configuration

[tnsr(config—ipsec—crypto—ike)# no identity (local|remote)

27.26 IKE Proposal Mode

27.26.1 Enter IKE Proposal Mode

tnsr(config-ipsec-crypto-ike)# proposal <number>
tnsr(config-ike-proposal)#

27.26.2 IKE Proposal Mode Commands

tnsr(config-ike-proposal)# encryption <crypto-algorithm>
tnsr(config-ike-proposal)# no encryption
tnsr(config-ike-proposal)# integrity <integrity-algorithm>
tnsr(config-ike-proposal)# no integrity
tnsr(config-ike-proposal)# prf <prf-algorithm>
tnsr(config-ike-proposal)# no prf
tnsr(config-ike-proposal)# group <diffie-hellman-group>
tnsr(config-ike-proposal)# no group

27.26.3 Remove IKE Proposal Configuration

[tnsr(config—ipsec—crypto—ike)# no proposal <number>

27.27 Map Mode

27.27.1 Enter Map Mode

[tnsr(config)# nat nat64 map <domain-name>

27.27.2 Map Mode Commands

tnsr(config-map)#
tnsr(config-map)#
tnsr(config-map)#
tnsr(config-map) #
tnsr(config-map)#
tnsr(config-map)#
tnsr(config-map)#
tnsr(config-map)#
tnsr(config-map) #

[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]

description <desc>

embedded-address bit-length <ea-width>

ipv4 prefix <ip4-prefix>

ipv6 prefix <ip6-prefix>

ipv6 source <ip6-src>

mtu <mtu-val>

port-set length <psid-length>

port-set offset <psid-offset>

rule port-set <psid> ipv6-destination <ip6-address>

© Copyright 2025 Rubicon Communications LLC

305

Product Manual TNSR v19.05

27.27.3 Remove Map Entry

[tnsr(config)# [no] nat nat64 map <domain-name>

27.28 Map Parameters Mode

27.28.1 Enter Map Parameters Mode

[tnsr(config)# nat nat64 map parameters

27.28.2 Map Parameters Mode Commands

tnsr(config-map-param)# [no] fragment (inner|outer)

tnsr(config-map-param)# [no] fragment ignore-df

tnsr(config-map-param)# [no] icmp source-address <ipv4-address>
tnsr(config-map-param)# [no] icmp6 unreachable-msgs (disable|enable)
tnsr(config-map-param)# [no] pre-resolve (ipv4|ipv6) next-hop <ip46-address>
tnsr(config-map-param)# [no] reassembly (ipv4|ipv6) (buffers|ht-ratio|lifetime|pool-
—size) <value>

tnsr(config-map-param)# [no] security-check (disable|enable)
tnsr(config-map-param)# [no] security-check fragments (disable|enable)
tnsr(config-map-param)# [no] traffic-class copy (disable|enable)
tnsr(config-map-param)# [no] traffic-class tc <tc-value>

27.29 memif Mode

27.29.1 Enter memif Mode

tnsr(config)# interface memif interface <id>
tnsr(config-memif)#

27.29.2 memif mode Commands

tnsr(config-memif)# buffer-size <ul6>

tnsr(config-memif)# mac-address <mac-addr>
tnsr(config-memif)# mode (ethernet|ip|punt/inject)
tnsr(config-memif)# ring-size <power-of-2>
tnsr(config-memif)# role master

tnsr(config-memif)# role slave [rx-queues <u8>|tx-queues <u8>]
tnsr(config-memif)# secret <string-24>

tnsr(config-memif)# socket-id <socket-id>

© Copyright 2025 Rubicon Communications LLC 306

Product Manual

TNSR v19.05

27.29.3 Remove memif Interface

[tnsr(config)# no interface memif interface <id>

27.30 Dynamic Routing Access List Mode

27.30.1 Enter Dynamic Routing Access List Mode

tnsr(config)# route dynamic access-list <access-list-name>
tnsr(config-access-list)#

27.30.2 Dynamic Routing Access List Mode Commands

tnsr(config-access-list)# [no] remark <rest>
tnsr(config-access-list)# rule <seg#> (permit|deny) <ip-prefix>
tnsr(config-access-list)# no rule <seq#> [(permit|deny) [<ip-prefix>]]

27.30.3 Remove Dynamic Routing Access List

[tnsr(config)# no route dynamic access-list <access-list-name>

27.31 Dynamic Routing Prefix List Mode

27.31.1 Enter Dynamic Routing Prefix List Mode

tnsr(config)# route dynamic prefix-list <pl-name>
tnsr(config-pref-list)#

27.31.2 Dynamic Routing Prefix List Mode Commands

tnsr(config-pref-list)# [no] sequence <seq> [(permit|deny) [le <upper-bound>] [ge <lower-

—bound>]]
tnsr(config-pref-list)# descripton <desc...>

© Copyright 2025 Rubicon Communications LLC

307

Product Manual

TNSR v19.05

27.31.3 Remove Dynamic Routing Prefix List

[tnsr(config)# no route dynamic prefix-list <pl-name>

27.32 Dynamic Routing Route Map Rule Mode

27.32.1 Enter Dynamic Routing Route Map Rule Mode

tnsr(config)# route dynamic route-map <route-map-name> (permit|deny) sequence <sequence>

tnsr(config-rt-map)#

27.32.2 Dynamic Routing Route Map Mode Commands

tnsr(config-rt-map)# [no] description <string>

tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#

tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#

[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]

[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]

match as-path <as-path-name>

match community <comm-list-name> [exact-match]
match extcommunity <extcomm-list-name>

match interface <if-name>

match ip address access-list <access-list-name>
match ip address prefix-list <prefix-list-name>
match ip next-hop access-list <access-list-name>
match ip next-hop <ipv4-address>

match ip next-hop prefix-list <prefix-list-name>
match ipvée address access-list <access-list-name>
match ipvé address prefix-list <prefix-list-name>
match large-community <large-comm-1list-name>
match local-preference <preference-uint32>

match metric <metric-uint32>

match origin (egpligp|incomplete)

match peer <peer-ip-address>

match probability <percent>

match source-protocol <src-protocol>

match tag <value-(1-4294967295)>

set
set
set
set
set
set
set
set
set
set
set
set
set

aggregator as <asn> ip address <ipv4-address>
as-path exclude <string-of-as-numbers>

as-path prepend <string-of-as-numbers>

as-path prepend last-as <asn>

atomic-aggregate

community none

community <community-value> [additive]

comm-list <community-list-name> delete
extcommunity (rt|soo) <extcommunity-list-name>
forwarding-address <ipv6-address>

ip next-hop <ipv4-address>|peer-address|unchanged
ipv4 vpn next-hop (<ipv4-address>|<ipv6-address>)
ipv6 next-hop global <ipv6-address>

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 308

Product Manual

TNSR v19.05

tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#
tnsr(config-rt-map)#

tnsr(config-rt-map)#

tnsr(config-rt-map)#
tnsr(config-rt-map)#

[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]

[no]

[no]
[no]

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

(continued from previous page)

ipv6 next-hop local <ipv6-address>

ipv6 next-hop peer-address

ipv6 next-hop prefer-global

ipv6 vpn next-hop (<ipv4-address>|<ipv6-address>)
label-index <label>

large-community none

large-community <large-community-value> [additive]
large-comm-list <large-comm-list-name> delete
local-preference <preference>

metric <metric-uint32>

origin (egp|igp|unknown)

originator <ipv4-addr>

src <ip-address>

tag <tag-(1-4294967295)>

weight <weight>

call <rt-map-name>

on-match next
on-match goto <sequence>

27.32.3 Remove Dynamic Routing Route Map

[tnsr(config—rt—map)# no route dynamic route-map <route-map-name>

27.32.4 Remove Dynamic Routing Route Map Rule

tnsr(config-rt-map)# no route dynamic route-map <route-map-name> [permit|deny] sequence

—<sequence>

27.32.5 Dynamic Routing Route Map Notes

e <src-protocol> is one of:

bgp - BGP protocol

connected - Routes from directly connected peer
kernel - Routes from kernel
static - Statically configured routes

system - Routes from system configuration

© Copyright 2025 Rubicon Communications LLC

309

Product Manual

TNSR v19.05

27.33 Dynamic Routing BGP Mode

27.33.1 Enter Dynamic Routing BGP Mode

tnsr(config)# route dynamic bgp

tnsr(config-frr-bgp)#

27.33.2 Dynamic Routing BGP Mode Commands

tnsr(config-frr-bgp)# [no] as-path <as-path-name>
tnsr(config-frr-bgp)# clear * [soft]
tnsr(config-frr-bgp)# [no] community-list <comm-list-name> (standard|expanded)
[extended|large]

tnsr(config-frr-bgp)# disable

tnsr(config-frr-bgp)# [no]
tnsr(config-frr-bgp)# [no]
tnsr(config-frr-bgp)# [no]
tnsr(config-frr-bgp)# [no]
tnsr(config-frr-bgp)# [no]
tnsr(config-frr-bgp)# [no]
tnsr(config-frr-bgp)# [no]

prefix>)]
tnsr(config-frr-bgp)# [no]
tnsr(config-frr-bgp)# [no]

enable
option
option
option
option
option
option

option
server

debug
debug
debug
debug
debug
debug

(allow-martians|nht|update-groups)
as4 [segment]

bestpath <ipv6-prefix>

keepalive [<peer>]

neighbor-events [<peer>]

updates

[in <peer>|out <peer>|prefix (<ipv4-prefix>|<ipv6-

debug
<asn>

zebra [prefix (<ipv4-prefix>|<ipv6-prefix>)]

tnsr(config-frr-bgp)# [no] route-map delay-timer <interval-sec>
tnsr(config-frr-bgp)# neighbor <if-name> <ip-address> <mac-address>
[no-adj-route-table-entry]
tnsr(config-frr-bgp)# no neighbor <if-name> [<ip-address>

[<mac-

address> [no-adj-route-table-entry]]]

27.34 Dynamic Routing BGP Server Mode

27.34.1 Enter Dynamic Routing BGP Server Mode

tnsr(config-frr-bgp)# server <asn>

tnsr(config-bgp)#

© Copyright 2025 Rubicon Communications LLC

310

Product Manual TNSR v19.05

27.34.2 Dynamic Routing BGP Server Mode Commands

tnsr(config-bgp)# [no] address-family (ipv4|ipv6) (unicast|multicast|vpn|labeled-unicast)
tnsr(config-bgp)# [no] address-family (vpnv4|vpnv6) unicast

tnsr(config-bgp)# [no] address-family <l2vpn evpn>

tnsr(config-bgp)# [no] always-compare-med

tnsr(config-bgp)# [no] bestpath as-path (confed|ignore|multipath-relax [as-set|no-as-
—set])

tnsr(config-bgp)# [no] bestpath compare-routerid

tnsr(config-bgp)# [no] bestpath med [confed|missing-as-worst]

tnsr(config-bgp)# [no] client-to-client reflection

tnsr(config-bgp)# [no] coalesce-time <uint32>

tnsr(config-bgp)# [no] cluster-id (<ipv4>|<(1..4294967295)>)

tnsr(config-bgp)# [no] confederation identifier <ASN>

tnsr(config-bgp)# [no] confederation peer <ASN>

tnsr(config-bgp)# [no] deterministic-med

tnsr(config-bgp)# [no] disable-ebgp-connected-route-check

tnsr(config-bgp)# [no] enforce-first-as

tnsr(config-bgp)# [no] listen limit <1-5000>

tnsr(config-bgp)# [no] listen range (<ip4-prefix>|<ip6-prefx>) peer-group <peer-group-
—.name>

tnsr(config-bgp)# [no] max-med administrative [<med-value>]

tnsr(config-bgp)# [no] max-med on-startup period <secs-(5-86400)> [<med-value>]
tnsr(config-bgp)# [no] neighbor <peer>

tnsr(config-bgp)# [no] network import-check

tnsr(config-bgp)# [no] route-reflector allow-outbound-policy

tnsr(config-bgp)# [no] router-id <A.B.C.D>

tnsr(config-bgp)# [no] timers keep-alive <interval> hold-time <hold-time>
tnsr(config-bgp)# [no] update-delay <delay>

tnsr(config-bgp)# [no] write-quanta <num-of-packets>

27.34.3 Remove Dynamic Routing BGP Server

[tnsr(config—frr—bgp)# no server <asn>

27.35 Dynamic Routing BGP Neighbor Mode

27.35.1 Enter Dynamic Routing BGP Neighbor Mode

tnsr(config-bgp)# neighbor <peer>
tnsr(config-bgp-neighbor)#

© Copyright 2025 Rubicon Communications LLC 311

Product Manual

TNSR v19.05

27.35.2 Dynamic Routing BGP Neighbor Mode Commands

—60000>

tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
—65535>
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#
tnsr(config-bgp-neighbor)#

[no]
[no]
[no]

tnsr(config-bgp-neighbor)# [no] advertisement-interval <interval-sec-0-600>
tnsr(config-bgp-neighbor)# [no] bfd [mutiplier <detect-multiplier-2-255> receive <rx-50-

transmit <tx-50-60000>]
capability (dynamic|extended-nexthop)
disable-connected-check
description <string>

disable

[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]

[no]
[no]
[no]

dont-capability-negotiate

ebgp-multihop [hop-maximum <max-hop-count-1-255>]
enable

enforce-multihop

local-as <asn> [no-prepend [replace-as]]
override-capability

passive

password <line>

peer-group [<peer-group-name>]

port <port>

remote-as <asn>

solo

strict-capability-match

timers keepalive <interval-0-65535> holdtime <hold-0-

timers connect <bgp-connect-1-65535>
ttl-security hops <n-hops>
update-source (<ifname>|<ip-address>)

27.35.3 Remove Dynamic Routing BGP Neighbor

[tnsr(config—bgp)# no neighbor <peer>

27.36 Dynamic Routing BGP Address Family Mode

27.36.1 Enter Dynamic Routing BGP Address Family Mode

tnsr(config-bgp-ip4uni)#

tnsr(config-bgp)# address-family

ipv4 unicast

tnsr(config-bgp-ipdmulti)#

tnsr(config-bgp)# address-family

ipv4 multicast

tnsr(config-bgp-ip6uni)#

tnsr(config-bgp)# address-family

ipv6 unicast

tnsr(config-bgp-ipbmulti)#

tnsr(config-bgp)# address-family

ipv6 multicast

© Copyright 2025 Rubicon Communications LLC

312

Product Manual

TNSR v19.05

27.36.2 Dynamic Routing BGP IPv4 Unicast Address Family Mode Commands

tnsr(config-bgp-ipduni)#
tnsr(config-bgp-ipduni)#
tnsr(config-bgp-ip4uni)#

tnsr(config-bgp-ip4uni)#

tnsr(config-bgp-ipduni)#
tnsr(config-bgp-ipduni)#
—<index>]
tnsr(config-bgp-ip4uni)#
—map>]
tnsr(config-bgp-ipduni)#

tnsr(config-bgp-ip4uni)#

[no]
[no]
[no]

[no]

[no]
[no]

[no]
[no]

[no]

aggregate-address <ipv4-prefix> [as-set] [summary-only]

distance external <extern> internal <intern> local <local>

distance administrative <dist> prefix <ipv4-prefix>
access-list <access-list-name>

maximum-paths <non-ibgp-paths> [igbp <ibgp-paths>
[equal-cluster-length]]

neighbor <existing-neighbor>

network <ipv4-prefix> [route-map <route-map>] [label-index

redistribute <route-source> [metric <val>|route-map <rt-
redistribute table id <kernel-table-id> [metric <val>|

route-map <route-map-name>]
table-map <route-map-name>

27.36.3 Dynamic Routing BGP IPv4 Multicast Address Family Mode Commands

tnsr(config-bgp-ipdmulti)#
tnsr(config-bgp-ipdmulti)#

—<local>

tnsr(config-bgp-ip4multi)#

tnsr(config-bgp-ipdmulti)#
tnsr(config-bgp-ipdmulti)#

—index <index>]

tnsr(config-bgp-ipdmulti)#

[no]

[no]
[no]

[no]

[no] aggregate-address <ipv4-prefix> [as-set] [summary-only]
[no]

distance external <extern> internal <intern> local

distance administrative <dist> prefix <ipv4-prefix>
access-list <access-list-name>

neighbor <existing-neighbor>

network <ipv4-prefix> [route-map <route-map>] [label-

table-map <route-map-name>

27.36.4 Dynamic Routing BGP IPv6 Unicast Address Family Mode Commands

tnsr(config-bgp-ip6uni)#
tnsr(config-bgp-ip6uni)#
tnsr(config-bgp-ip6uni)#

tnsr(config-bgp-ip6uni)#

tnsr(config-bgp-ip6uni)#
tnsr(config-bgp-ip6uni)#
—<index>]
tnsr(config-bgp-ip6uni)#
—map>]
tnsr(config-bgp-ip6uni)#

tnsr(config-bgp-ip6uni)#

[no]
[no]
[no]

[no]

[no]
[no]

[no]
[no]

[no]

aggregate-address <ipv4-prefix> [as-set] [summary-only]

distance external <extern> internal <intern> local <local>

distance administrative <dist> prefix <ipv4-prefix>
access-list <access-list-name>

maximum-paths <non-ibgp-paths> [igbp <ibgp-paths>
[equal-cluster-length]]

neighbor <existing-neighbor>

network <ipv4-prefix> [route-map <route-map>] [label-index

redistribute <route-source> [metric <val>|route-map <rt-
redistribute table id <kernel-table-id> [metric <val>|

route-map <route-map-name>]
table-map <route-map-name>

© Copyright 2025 Rubicon Communications LLC

313

Product Manual

TNSR v19.05

27.36.5 Dynamic Routing BGP IPv6 Multicast Address Family Mode Commands

tnsr(config-bgp-ip6émulti)# [no]
—<local>
tnsr(config-bgp-ip6bmulti)# [no]

tnsr(config-bgp-ipbmulti)# [no]
tnsr(config-bgp-ip6bmulti)# [no]
—index <index>]

distance external <extern> internal <intern> local

distance administrative <dist> prefix <ipv4-prefix>
access-list <access-list-name>

neighbor <existing-neighbor>

network <ipv4-prefix> [route-map <route-map>] [label-

27.36.6 Remove Dynamic Routing BGP Address Family

[tnsr(config—bgp)# no address-family (ipv4|ipv6) (unicast|multicast)

27.36.7 Dynamic Routing BGP Notes

e <peer> == [P address
e <asn> == uint32? uint16?
e <weight> == uint32?

e <n-hops>==[1.. max TTL]

e <route-source> == kernel|static|connected|rip

27.37 Dynamic Routing BGP Address Family Neighbor Mode

Note: Though the samples below indicate IPv4 unicast, the same syntax is used for all address families.

27.37.1 Enter Dynamic Routing BGP Address Family Neighbor Mode

tnsr(config-bgp-ip4uni)# neighbor <existing-neighbor>

tnsr(config-bgp-ip4uni-nbr)#

27.37.2 Dynamic Routing BGP Address Family Neighbor Mode Commands

tnsr(config-bgp-ip4uni-nbr)# [no] activate

tnsr(config-bgp-ip4uni-nbr)# [no] addpath-tx-all-paths
tnsr(config-bgp-ip4uni-nbr)# [no] addpath-tx-bestpath-per-as
tnsr(config-bgp-ip4uni-nbr)# [no] allowas-in [<occurence-1-10>|<origin>]
tnsr(config-bgp-ip4uni-nbr)# [no] as-override

tnsr(config-bgp-ip4uni-nbr)# [no] attribute-unchanged [as-path|next-hop|med]
tnsr(config-bgp-ip4uni-nbr)# [no] capability orf prefix-list (send|receive|both)
tnsr(config-bgp-ip4uni-nbr)# [no] default-originate [route-map <route-map>]

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 314

Product Manual TNSR v19.05

(continued from previous page)

tnsr(config-bgp-ip4uni-nbr)# [no] distribute-list <access-list-name> (in|out)
tnsr(config-bgp-ip4uni-nbr)# [no] filter-list <access-list-name> (in|out)
tnsr(config-bgp-ip4uni-nbr)# [no] maximum-prefix limit <val-1-4294967295>
tnsr(config-bgp-ip4uni-nbr)# [no] maximum-prefix restart <val-1-65535>
tnsr(config-bgp-ip4uni-nbr)# [no] maximum-prefix threshold <val-1-100>
tnsr(config-bgp-ip4uni-nbr)# [no] maximum-prefix warning-only
tnsr(config-bgp-ip4uni-nbr)# [no] next-hop-self [force]
tnsr(config-bgp-ip4uni-nbr)# [no] prefix-list <prefix-list-name> (in|out)
tnsr(config-bgp-ip4uni-nbr)# [no] remove-private-AS [all] [replace-AS]
tnsr(config-bgp-ip4uni-nbr)# [no] route-map <name> (in|out)
tnsr(config-bgp-ip4uni-nbr)# [no] route-reflector-client
tnsr(config-bgp-ip4uni-nbr)# [no] route-server-client
tnsr(config-bgp-ip4uni-nbr)# [no] send-community (standard|large|extended)
tnsr(config-bgp-ip4uni-nbr)# [no] soft-reconfiguration inbound
tnsr(config-bgp-ip4uni-nbr)# [no] unsuppress-map <route-map>
tnsr(config-bgp-ip4uni-nbr)# [no] weight <weight>

27.37.3 Remove Dynamic Routing BGP Address Family Neighbor

[tnsr(config—bgp—ip4uni)# no neighbor <existing-neighbor>

27.38 Dynamic Routing BGP Community List Mode

27.38.1 Enter Dynamic Routing BGP Community List Mode

tnsr(config-frr-bgp)# community-list <cl-name> (standard|expanded) [extended]|large]
tnsr(config-community)#

27.38.2 Dynamic Routing BGP Community List Mode Commands

tnsr(config-community)# description <desc...>

tnsr(config-community)# sequence <seq> (permit|deny) <community-value>
tnsr(config-community)# no description [<desc...>]

tnsr(config-community)# no sequence <seqg> [(permit|deny) <community-value>]

27.38.3 Remove Dynamic Routing BGP Community List

[tnsr(config—frr—bgp)# no community-list <cl-name> (standard|expanded) [extended|large]

© Copyright 2025 Rubicon Communications LLC 315

Product Manual TNSR v19.05

27.39 Dynamic Routing BGP AS Path Mode

27.39.1 Enter Dynamic Routing BGP AS Path Mode

tnsr(config-frr-bgp)# as-path <as-path-name>
tnsr(config-aspath)#

27.39.2 Dynamic Routing BGP AS Path Mode Commands

[tnsr(config—aspath)# [no] rule <seq> (permit|deny) <pattern>

27.39.3 Remove Dynamic Routing BGP AS Path

[tnsr(config—frr—bgp)# no as-path <as-path-name>

27.40 Dynamic Routing Manager Mode

27.40.1 Enter Dynamic Routing Manager Mode

tnsr(config)# route dynamic manager
tnsr(config-route-dynamic-manager)#

27.40.2 Dynamic Routing Manager Mode Commands

tnsr(config-route-dynamic-manager)# [no] debug (events|fpm|nht)
tnsr(config-route-dynamic-manager)# [no] debug kernel [msgdump [send|receive]]
tnsr(config-route-dynamic-manager)# [no] debug packet [send|receive] [detailed]
tnsr(config-route-dynamic-manager)# [no] debug rib [detailed]
tnsr(config-route-dynamic-manager)# [no] log file <filename> [<level>]
tnsr(config-route-dynamic-manager)# [no] log syslog [<level>]

27.41 IPv4 Route Table Mode

27.41.1 Enter IPv4 Route Table Mode

tnsr(config)# route ipv4 table <route-table-name>
tnsr(config-route-table-v4)#

© Copyright 2025 Rubicon Communications LLC

316

Product Manual TNSR v19.05

27.41.2 IPv4 Route Table Mode Commands

tnsr(config-route-table-v4)# description <rest-of-line>
tnsr(config-route-table-v4)# [no] route <destination-prefix>

27.41.3 Remove IPv4 Route Table

[tnsr(config—route—table—v4)# no route ipv4 table <route-table-name>

27.42 IPv6 Route Table Mode

27.42.1 Enter IPv6 Route Table Mode

tnsr(config)# route ipv6 table <route-table-name>
tnsr(config-route-table-v6)#

27.42.2 IPv6 Route Table Mode Commands

tnsr(config-route-table-v6)# description <rest-of-line>
tnsr(config-route-table-v6)# [no] route <destination-prefix>

27.42.3 Remove IPv6 Route Table

[tnsr(config—route—table—vG)# no route ipv6 table <route-table-name>

27.43 IPv4 or IPv6 Next Hop Mode

27.43.1 Enter IPv4 or IPv6 Next Hop Mode

tnsr(config-route-table-v46)# route <destination-prefix>
tnsr(config-rttbl46-next-hop)#

27.43.2 IPv4 or IPv6 Next Hop Mode Commands

tnsr(config-rttbl46-next-hop)# [no] description <rest-of-line>
tnsr(config-rttbl46-next-hop)# [no] next-hop <hop-id> via <ip46-addr>
[<if-name>|<next-hop-table <route-table-name>>]
[weight <multi-path-weight>]
[preference <admin-preference>]
[resolve-via-host] [resolve-via-attached]

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 317

Product Manual

TNSR v19.05

tnsr(config-rttbl46-next-hop)# [no] next-hop
tnsr(config-rttbl46-next-hop)# [no] next-hop
tnsr(config-rttbl46-next-hop)# [no] next-hop
tnsr(config-rttbl46-next-hop)# [no] next-hop
tnsr(config-rttbl46-next-hop)# [no] next-hop
tnsr(config-rttbl46-next-hop)# [no] next-hop
—table-name>

<hop-id>
<hop-id>
<hop-id>
<hop-id>
<hop-id>
<hop-id>

(continued from previous page)

via drop

via local

via null-send-unreach

via null-send-prohibit

classify <classify-table-name>
lookup [in] route-table <route-

27.43.3 Remove IPv4 or IPv6 Next Hop

[tnsr(config—rttbl46—next—hop)# no next-hop <hop-id>

27.44 SPAN Mode

27.44.1 Enter SPAN Mode

tnsr(config)# span <if-name-src>
tnsr(config-span)#

27.44.2 SPAN Mode Commands

[tnsr(config—span)# onto <if-name-dst> (hw|l2) (rx|tx|both|disabled)

27.44.3 Remove Single SPAN Destination

[tnsr(config—span)# no onto <if-name-dst> [(hw|12)]

27.44.4 Remove SPAN

[tnsr(config)# no span <if-name-src>

27.45 VXLAN Mode

27.45.1 Enter VXLAN Mode

tnsr(config)# vxlan <tunnel-name>
tnsr(config-vxlan)#

© Copyright 2025 Rubicon Communications LLC

318

Product Manual

TNSR v19.05

27.45.2 VXLAN Mode Commands

tnsr(config-vxlan)#
tnsr(config-vxlan)#
tnsr(config-vxlan)#
tnsr(config-vxlan)#
tnsr(config-vxlan)#
tnsr(config-vxlan)#

[no]
[no]
[no]
[no]
[no]
[no]

destination <ip-addr>

encapsulation (ipv4|ipv6) route-table <rt-table-name>
instance <id>

multicast interface <if-name>

source <ip-addr>

vni <u24>

27.45.3 Remove VXLAN Tunnel

[tnsr(config)# no vxlan [<tunnel-name>]

27.46 User Authentication Configuration Mode

27.46.1 Enter User Authentication Configuration Mode

tnsr(config-user)#

tnsr(config)# auth user <user-name>

27.46.2 User Authentication Mode Commands

tnsr(config-user)# [no] password <user-password>
tnsr(config-user)# [no] user-keys <key-name>

27.46.3 Remove User

[tnsr(config)# no auth user <user-name>

27.47 NTP Configuration Mode

27.47.1 Enter NTP Configuration Mode

tnsr(config)# ntp server

tnsr(config-ntp)#

© Copyright 2025 Rubicon Communications LLC

319

Product Manual

TNSR v19.05

27.47.2 NTP Mode Commands

tnsr(config-ntp)#
tnsr(config-ntp)#
tnsr(config-ntp)#
tnsr(config-ntp)#

tnsr(config-ntp)#

tnsr(config-ntp)#
tnsr(config-ntp)#
tnsr(config-ntp)#
tnsr(config-ntp)#
tnsr(config-ntp)#

disable monitor

enable monitor

driftfile <file-path>

interface sequence <seq> (drop|ignore|listen)
(all|interface <if-name>|prefix <ip-prefix>)

logconfig sequence <seq> (add|delete|set)
(all|clock|peer|sync|sys) (all|events|info|statistics]|status)

restrict (default|host <fqgdn>|prefix <ip-prefix>|source)

server (address <ip-address>|host <fqdn>)

statsdir <directory-path>

tinker panic <n-secs>

tos orphan <stratum>

27.47.3 Remove NTP Server

[tnsr(config)# no ntp server

27.48 NTP Restrict Mode

27.48.1 Enter NTP Restrict Mode

[tnsr(config—ntp)#

restrict (default|host <fqdn>|prefix <ip-prefix>|source)

27.48.2 NTP Restrict Mode Commands

tnsr(config-ntp-restrict)# kod
tnsr(config-ntp-restrict)# limited
tnsr(config-ntp-restrict)# nomodify
tnsr(config-ntp-restrict)# nopeer
tnsr(config-ntp-restrict)# noquery
tnsr(config-ntp-restrict)# noserve
tnsr(config-ntp-restrict)# notrap

27.48.3 Remove NTP Restriction

[tnsr(config—ntp)#

no restrict (default|host <fqdn>|prefix <ip-prefix>|source)

© Copyright 2025 Rubicon Communications LLC

320

Product Manual

TNSR v19.05

27.49 NTP Upstream Server Mode

27.49.1 Enter NTP Upstream Server Mode

[tnsr(config—ntp)# server (address <ip-address>|host <fqdn>)

27.49.2 NTP Upstream Server Mode Commands

tnsr(config-ntp-server)# iburst
tnsr(config-ntp-server)# maxpoll <power-of-2-sec>
tnsr(config-ntp-server)# noselect
tnsr(config-ntp-server)# operational-mode (pool|server)
tnsr(config-ntp-server)# prefer

27.49.3 Remove NTP Upstream Server

[tnsr(config—ntp)# no server (address <ip-address>|host <fgdn>)

27.50 NACM Group Mode

27.50.1 Enter NACM Group Mode

tnsr(config)# nacm group <group-name>
tnsr(config-nacm-group)#

27.50.2 NACM Group Mode Commands

[tnsr(config—nacm—group)# [no] member <user-name>

27.50.3 Remove NACM Group

[tnsr(config)# Nno nacm group <group-name>

© Copyright 2025 Rubicon Communications LLC

321

Product Manual

TNSR v19.05

27.51 NACM Rule-list Mode

27.51.1 Enter NACM Rule-list Mode

tnsr(config)# nacm rule-list <rule-list-name>
tnsr(config-nacm-rule-list)#

27.51.2 NACM Rule-list Mode Commands

tnsr(config-nacm-rule-list)# [no] group (*|<group-name>)
tnsr(config-nacm-rule-list)# [no] rule <rule-name>

27.51.3 Remove NACM Rule-list

[tnsr(config)# no nacm rule-list <rule-list-name>

27.52 NACM Rule Mode

27.52.1 Enter NACM Rule Mode

tnsr(config-nacm-rule-list)# rule <rule-name>
tnsr(config-nacm-rule)#

27.52.2 NACM Rule Mode Commands

tnsr(config-nacm-rule)# [no] action (deny|permit)
tnsr(config-nacm-rule)# [no] module (*|<module-name>)
tnsr(config-nacm-rule)# [no] comment <rest>
tnsr(config-nacm-rule)# [no] rpc (*|<rpc-name>)

tnsr(config-nacm-rule)# [no] path <node-id>

tnsr(config-nacm-rule)# [no] notification (*|<notification-name>)

tnsr(config-nacm-rule)# [no] access-operations (*|create|read|update|delete|exec)

27.52.3 Remove NACM Rule

[tnsr(config—nacm—rule—list)# no rule <rule-name>

© Copyright 2025 Rubicon Communications LLC

322

Product Manual

TNSR v19.05

27.53 DHCP IPv4 Server Config Mode

27.53.1 Enter DHCP IPv4 Server Mode

tnsr(config)# [no] dhcp4 server
tnsr(config)# dhcp4 {disable|enable}

tnsr(config)# no dhcp4 enable

tnsr(config-kea-dhcp4)#

27.53.2 DHCP IPv4 Server Mode Commands

tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#
tnsr(config-kea-dhcp4)#

[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]
[no]

decline-probation-period <seconds>
description <desc>
echo-client-id <boolean>
interface listen <if-name>
interface listen *

interface socket (raw|udp)
lease filename <filename>
lease 1lfc-interval <seconds>
lease persist <boolean>
logging <logger-name>
match-client-id <boolean>
next-server <ipv4-address>
option <dhcp4-option>
rebind-timer <seconds>
renew-timer <seconds>
valid-lifetime <seconds>

27.53.3 Remove DHCP IPv4 Server Configuration

[tnsr(config)# no dhcp4 server

27.54 DHCP4 Subnet4 Mode

27.54.1 Enter DHCP4 Subnet4 Mode

tnsr(config-kea-dhcp4)# subnet <ipv4-prefix>
tnsr(config-kea-subnet4)#

© Copyright 2025 Rubicon Communications LLC

323

Product Manual

TNSR v19.05

27.54.2 DHCP4 Subnet4 Mode Commands

tnsr(config-kea-subnet4)# [no] id <uint32>
tnsr(config-kea-subnet4)# [no] option <dhcp4-option>

tnsr(config-kea-subnet4)# [no] pool <ipv4-prefix>|<ipv4-range>

tnsr(config-kea-subnet4)# [no] interface <if-name>

27.54.3 Remove DHCP4 IPv4 Subnet4 Configuration

[tnsr(config—kea—dhcp4)# no subnet <ipv4-prefix>|<ipv4-range>

27.55 DHCP4 Subnet4 Pool Mode

27.55.1 Enter DHCP4 Subnet4 Pool Mode

tnsr(config-kea-subnet4)# pool <ipv4-prefix>|<ipv4-range>
tnsr(config-kea-subnet4-pool)#

27.55.2 DHCP4 Subnet4 Pool Mode Commands

[tnsr(config—kea—subnet4—pool)# [no] option <dhcp4-option>

27.55.3 Remove DHCP4 IPv4 Subnet4 Pool

[tnsr(config—kea—subnet4)# no pool <ipv4-prefix>|<ipv4-range>

27.56 DHCP4 Subnet4 Reservation Mode

27.56.1 Enter DHCP4 Subnet4 Reservation Mode

tnsr(config-kea-subnet4)# reservation <ipv4-address>
tnsr(config-kea-subnet4-reservation)#

© Copyright 2025 Rubicon Communications LLC

324

Product Manual TNSR v19.05

27.56.2 DHCP4 Subnet4 Reservation Mode Commands

tnsr(config-kea-subnet4-reservation)# [no] hostname <hostname>
tnsr(config-kea-subnet4-reservation)# [no] mac-address <mac-address>
tnsr(config-kea-subnet4-reservation)# [no] option <dhcp4-option>

27.56.3 Remove DHCP4 IPv4 Subnet4 Reservation

[tnsr(config—kea—subnet4)# no reservation <ipv4-address>

27.57 Kea DHCP4, Subnet4, Pool, or Reservation Option Mode

27.57.1 Enter DHCP4 Option Mode

tnsr(config-kea-*)# option <dhcp4-option>
tnsr(config-kea-*-opt)#

27.57.2 DHCP4 Option Mode Commands

tnsr(config-kea-*-opt)# [no] always-send <boolean>
tnsr(config-kea-*-opt)# [no] csv-format <boolean>
tnsr(config-kea-*-opt)# [no] data <option-data>
tnsr(config-kea-*-opt)# [no] space <space-name>

27.57.3 Remove DHCP4 Option Configuration

[tnsr(config-kea—*)# no option <dhcp4-option>

27.58 Unbound Server Mode

27.58.1 Enter Unbound Server Mode

tnsr(config)# unbound server
tnsr(config-unbound)#

© Copyright 2025 Rubicon Communications LLC 325

Product Manual TNSR v19.05

27.58.2 Unbound Server Mode Commands

tnsr(config-unbound)# disable (caps-for-id | harden (dnssec-stripped|glue) |
hide (version|identity) | ip4 | ip6 | message prefetch |
serve-expired | tcp | udp)

tnsr(config-unbound)# edns reassembly size <s>

tnsr(config-unbound)# enable (caps-for-id | harden (dnssec-stripped|glue) |
hide (version|identity) | ip4 | ip6 | message prefetch |
serve-expired | tcp | udp)

tnsr(config-unbound)# forward-zone <zone-name>

tnsr(config-unbound)# host cache (num-hosts <num> | slabs <s> | ttl <t>)

tnsr(config-unbound)# interface <ip4-address>

tnsr(config-unbound)# jostle timeout <t>

tnsr(config-unbound)# key cache slabs <s>

tnsr(config-unbound)# message cache (size <s> | slabs <s>)

tnsr(config-unbound)# port outgoing range <n>

tnsr(config-unbound)# rrset cache (size <s> | slabs <s>)

tnsr(config-unbound)# rrset-message cache ttl (minimum <min> | maximum <max>)

tnsr(config-unbound)# socket receive-buffer size <s>

tnsr(config-unbound)# tcp buffers (incoming <n> | outgoing <n>)

tnsr(config-unbound)# thread (num-queries <n> | num-threads <n> |
unwanted-reply-threshold <threshold>)

tnsr(config-unbound)# verbosity <level-0..5>

27.58.3 Remove Unbound Server

[tnsr(config)# no unbound server]

27.59 Unbound Forward-Zone Mode

27.59.1 Enter Unbound Forward-Zone Mode

tnsr(config-unbound)# forward-zone <zone-name>
tnsr (config-unbound-fwd-zone) #

27.59.2 Unbound Forward-Zone Mode Commands

tnsr(config-unbound-fwd-zone)# disable (forward-first | forward-tls-upstream)
tnsr(config-unbound-fwd-zone)# enable (forward-first | forward-tls-upstream)
tnsr(config-unbound-fwd-zone)# nameserver address <ip-address> [port <port>] [auth-name
—,<name>]

tnsr(config-unbound-fwd-zone)# nameserver host <host-name>

© Copyright 2025 Rubicon Communications LLC 326

Product Manual

TNSR v19.05

27.59.3 Remove Unbound Forward-Zone Zone

[tnsr(config—unbound)# no forward-zone <zone-name>

27.60 Subif Mode

27.60.1 Enter Subif Mode

tnsr(config)# interface subif <if-name> <subid>
tnsr(config-subif)#

27.60.2 Subif Mode Commands

tnsr(config-subif)# default

tnsr(config-subif)# dotlq (<outer-vlan-id>|any)
tnsr(config-subif)# exact-match

tnsr(config-subif)# inner-dotlq (inner-vlan-id>|any)
tnsr(config-subif)# outer-dotlad (<outer-vlan-id>|any)
tnsr(config-subif)# outer-dotlq (<outer-vlan-id>|any)

27.60.3 Remove Subif

[tnsr(config)# no interface subif <if-name> <subid>

27.61 Bond Mode

27.61.1 Enter Bond Mode

tnsr(config)# interface bond <instance>
tnsr(config-bond)#

27.61.2 Bond Mode Commands

tnsr(config-bond)# [no] load-balance (12|123]134)
tnsr(config-bond)# [no] mode (round-robin|active-backup|xor|broadcast|lacp)
tnsr(config-bond)# [no] mac-address <mac-address>

© Copyright 2025 Rubicon Communications LLC

327

Product Manual

TNSR v19.05

27.61.3 Remove Bond

[tnsr(config)# no interface bond <instance>

27.62 Host ACL Mode

27.62.1 Enter Host ACL Mode

tnsr(config)# host acl <acl-name>
tnsr(config-host-acl)#

27.62.2 Host ACL Mode Commands

tnsr(config-host-acl)# [no] description <text>
tnsr(config-host-acl)# [no] rule <rule-seqg>
tnsr(config-host-acl)# [no] sequence <acl-seq>

27.62.3 Remove Host ACL

[tnsr(config)# no host acl <acl-name>

27.63 Host ACL Rule Mode

27.63.1 Enter Host ACL Rule Mode

tnsr(config-host-acl)# rule <rule-seqg>
tnsr(config-host-acl-rule)#

27.63.2 Host ACL Rule Mode Commands

—unreachable|
—problem|

—quench |

tnsr(config-host-acl-rule)# [no] action (deny|permit)
tnsr(config-host-acl-rule)# [no] description <text>

tnsr(config-host-acl-rule)# [no] match input-interface <host-interface>
tnsr(config-host-acl-rule)# [no] match ip address (source|destination) <ip-addr>
tnsr(config-host-acl-rule)# [no] match ip icmp type

(address-mask-reply|address-mask-request|destination-

echo-reply|echo-request|info-reply|info-request|parameter-

redirect|router-advertisement |router-solicitation|source-

time-exceeded|timestamp-reply|timestamp-request) [code

(continues on next page)

© Copyright 2025 Rubicon Communications LLC

328

Product Manual TNSR v19.05

(continued from previous page)

—.<code>]

tnsr(config-host-acl-rule)# [no] match ip icmpv6 type
(destination-unreachable|echo-reply|echo-request|
mld-listener-query|mld-listener-reduction|mld-listener-

—report|
nd-neighbor-advert|nd-neighbor-solicit|nd-redirect|
nd-router-advert |nd-router-solicit|packet-too-big]|
parameter-problem|router-renumbering|time-exceeded) [code
—<code>]

tnsr(config-host-acl-rule)# [no] match ip port (source|destination) <port-num>
tnsr(config-host-acl-rule)# [no] match ip port (source|destination) range start <low-
- port-num>

[end <high-port-num>]
tnsr(config-host-acl-rule)# [no] match ip protocol (icmp]|tcp|udp)
tnsr(config-host-acl-rule)# [no] match ip tcp flag (ack|cwr|ece|fin|psh|rst|syn|urg)
tnsr(config-host-acl-rule)# [no] match ip version (4]6)
tnsr(config-host-acl-rule)# [no] match mac address (source|destination) <mac>

27.63.3 Remove Host ACL Rule

[tnsr(config—host—acl)# no rule <rule-seq>

orphan

© Copyright 2025 Rubicon Communications LLC 329

CHAPTER
TWENTYEIGHT

API ENDPOINTS

In addition to the CLI, there are a variety of ways to configure TNSR, including a RESTful APL

28.1 YANG Data Models

The sets of functions and procedures used to manipulate the TNSR configuration are generated from the RFC 7950
data models defined in the TNSR YANG models.

28.2 RESTCONF API

TNSR can be controlled via a RESTCONF API. Reference material, code examples, and more on the RESTCONF API
may be found in the TNSR API Documentation.

330

https://tools.ietf.org/html/rfc7950
https://github.com/netgate/tnsr-yang-models
https://tools.ietf.org/html/rfc8040

CHAPTER
TWENTYNINE

NETGATE TNSR RELEASES

orphan

29.1 TNSR 19.05 Release Notes

e About This Release

General

- ACL

- BGP

- CLI

— Dataplane
- DHCP

— Host ACLs
— HTTP Server / RESTCONF
— Installer
— Interfaces
— IPsec

- NACM

- NAT

e Known Limitations

Updates
ACLs

- BFD
- BGP
- CLI
- DHCP

— DNS
— Host ACLs

331

Product Manual TNSR v19.05

— HTTP Server / RESTCONF
— Interfaces

— [Psec

- MAP

- NACM

- NAT

— Neighbors

- NTP

— RESTCONF

— Routing

— User Management

- VXLAN

* Reporting Issues

29.1.1 About This Release
General

* Added support for QAT C62x crypto devices [1718]
* Added service management RPCs to data model [1715]

ACL

* Fixed creating an ACL using only a description [1558]
* Fixed creating an empty ACL [1735]

* Fixed creating an ACL rule with a destination port [1796]

BGP

» IPv6 BGP neighbors get entered as peer-groups only in bgpd. conf [1190]

* Removed deprecated neighbor <peer> interface <if>BGP command [2113]

* Restructured BGP address family configuration to accommodate IPv4 and IPv6 [2049]
* Removed option to create a new neighbor inside address family mode [2194]

* Removed route-map set metric options for +/- rtt and +/- metric as they were not supported as users expected
in FRR [2191]

© Copyright 2025 Rubicon Communications LLC 332

Product Manual TNSR v19.05

CLI

* [no] shutdown style syntax has been removed. Use enable and disable, or no enable [1652]

* Fixed paging issues in output that could lead to incorrect or missing output after certain actions taken with
multi-page output (e.g. pressing q or Enter at a More prompt) [1774, 1773]

e The CLI now stores command history between sessions (Command History) [514, 1949]

» Standardized commands to enabled coredumps for services, and added support for coredumps from ike, unbound,
http, and ntp (Diagnosing Service Issues) [1831]

¢ Fixed ping so it can work with IPv6 source addresses [2004]
* Improved CLI performance when working with large lists [2127]

* Increased timeout for package commands to allow longer processes to finish completely, such as upgrades
[1768]

Dataplane
* Fixed writing default values to the dataplane configuration when no dataplane options are set in the configuration
[1982]

* Fixed dataplane crashes when using NAT with forwarding enabled with certain packet combinations when the
protocol is not ICMP, TCP, or UDP [1998]

* Mellanox support: Added option to disable multi-segment buffers in the dataplane [2022]

* Fixed an error when configuring a dataplane crypto device without first configuring the UIO driver [1812]
* Added worker thread and core affinity options [1675]

* Added an option to set custom interface names for dataplane interfaces [2062]

* Added commands to configure dataplane statistics segment options [2199]

DHCP

The DHCP server can now function when an interface is configured as a DHCP client [1801]

* DHCP server no longer uses link-local interface IP addresses (169.254.0.x) as a source address for DHCP packets
or as a DHCP Server Identifier [1222]

* Removed incorrect references to the netgate-interface module from the DHCP server CLI specification API
paths [1810]

¢ Removed redundant ipv4 forms of DHCP-related commands [1557]

Host ACLs

* Added support for Host ACLs to control traffic to host OS interfaces using nftables [1651]

© Copyright 2025 Rubicon Communications LLC 333

Product Manual

TNSR v19.05

HTTP Server / RESTCONF

nginx now behaves as expected with authentication type none and TLS [1086]

Warning: This mode is intended only for testing, not production use.

Fixed RESTCONF get of /restconf/data/ so it properly returns state data [1534]

Installer

Improved consistency in post-install login procedures across all TNSR platforms [2013]
Fixed installation issues on hardware that has an eMMC device, such as the SG-5100 [2048]
Fixed the default NACM configuration when installing from ISO [2133]

Added Infiniband/rdma packages to the default installation [2201]

Interfaces

An interface can now be deleted if has had an ACL or MACIP applied [1177, 1178]

MACIP ACLs no longer remain in the interface configuration after being removed [1179]

Bond interfaces in LACP mode no longer send LACPDUs when configured for passive mode [1614]
VLAN tag rewrite settings have been relocated to interfaces, as they do not require a subinterface [1344]
VXLAN validation now properly reflects that a VXLAN entry requires a VNI [1821]

GRE and VXLAN now create interfaces on the host [1999]

Fixed display of link speeds for 40G and 100G interfaces [1867]

Removed unused “Admin status” field from state information for host interfaces [1864]

Fixed interface counters for Mellanox interfaces [2039]

Fixed interface counters for IPsec interfaces [2075]

VLAN tag-rewrite attributes are now included in show interface output [1654]

Changed show interfaces to output interfaces in a consistent order [2046]

Fixed a problem with neighbor location (ARP/NA) when VLAN tags are present [1326]

Fixed default handling of VMXNETS3 interfaces [1703]

IPsec

Added support for the 3DES encryption algorithm in IPsec proposals [1444]

© Copyright 2025 Rubicon Communications LLC

334

Product Manual TNSR v19.05

NACM

* NACM now supports all access operations and module restrictions (NACM Rule Lists) [1809]

e The method to manually disable NACM has changed. Regaining Access if Locked Out by NACM has been
updated to reflect the new method [1750, 1752]

NAT

¢ DS-Lite B4 endpoint is now shown in the output of show dslite [1625]

* NAT sessions may now be queried with show nat sessions [verbose] (View NAT Sessions) [975, 1456]
¢ Fixed issues with NAT and multiple worker threads [1844]

* NAT mode deletion is now properly respected in VPP startup configuration after TNSR services restart [1017]

¢ Fixed incorrect NAT static mappings being added when a new rule differed from an existing rule only by the
port-local value [1100]

29.1.2 Known Limitations

Updates
» The UIO drivers may not be present in the correct directory after a kernel upgrade. Since the UIO drivers are
kernel-specific, they must be rebuilt after any change in the kernel [2216]

To work around this issue, force a reinstall of the DPDK package which will rebuild the UIO drivers and place
them in the appropriate location for the updated kernel:

[$ sudo yum -y reinstall dpdk

ACLs

* ACLs used with access-1ist output do not work on traffic sent to directly connected hosts [2057]

BFD

 Attempting to change a BFD local/peer address fails [1549]
* BFD cannot be administratively disabled via CLI [1883]

* The BFD delayed option does not work [1885]

¢ An unused BFD conf-key cannot be modified [1891]

* BFD does not integrate with BGP [2106]

© Copyright 2025 Rubicon Communications LLC 335

Product Manual TNSR v19.05

BGP
* TNSR does not send BGP updates without restarting service with redistribute from connected option
[746]
* Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

* BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

e The maximum-prefix restart command does not work [859]
* TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the BGP
service to start again.

¢ Changing update-source from an IP address to 1oop1 allows a session to establish but remote prefixes do not
appear in the FIB until reboot [1104]

¢ BGP import-check feature does not work [781]

* Logs may include spurious BGP message binary API client 'route_daemon' died which do not affect
BGP routing [1714]

CLI

» show route table causes the backend to die with large numbers of routes in the table [506]
For example, this crash happens with a full BGP feed.
» Using service dataplane restart can cause clixon_backend to lose its configuration [1383]

e Large lists (e.g. 10,000+ ACLs) can cause significant delays in related CLI operations [2139]

DHCP

* Adding a DHCP reservation without a MAC address causes Kea to fail and the entry cannot be removed [1530]

Workaround: A MAC address is required for DHCP reservations, so always enter a MAC address when creating
an entry.

* Configuring Kea to log all names with * does not work [1307]

Workaround: Configure each name separately instead of using a wildcard.

DNS
* Local zone FQDN handling for forward (A) and reverse (PTR) data is inconsistent, only allowing one or the other
to work as expected for a given FQDN [1384]
» Using the allow_setrd attribute for access-control entries causes unbound to fail [1747]

* Unbound requires a default route in the host OS to resolve [1884]

© Copyright 2025 Rubicon Communications LLC 336

Product Manual TNSR v19.05

Host ACLs

* Host ACL entries are duplicated after a dataplane restart [2207]

HTTP Server / RESTCONF

e HTTP server runs even though it’s not configured to run after TNSR services restart [1153]
Workaround: Manually stop the nginx service using systemctl.

¢ RESTCONF query replies may contain CDATA tags in JSON [1463]

* Adding an ACL rule entry via RESTCONF may appear to add a duplicate ACL [1238]

Interfaces

* Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]
* Non-LACP bond interfaces may experience packet drops when a bond member interface is down [1603]

* MAC address changes on dataplane interfaces are not reflected on the host tap interface until the dataplane is
restarted [1502] Workaround: Restart the dataplane after changing an interface MAC address.

* Bond interface MAC addresses do not match their host tap interface unless a MAC address is explicitly set at
creation [1502]

Workaround: Set the MAC address when creating the bond interface.
» Packets do not pass through a subinterface after the subinterface configuration has been modified [1612]
¢ QinQ VLAN termination is not working [1550]
* Chelsio interfaces crash the dataplane [1896]

* VLAN subinterfaces may not work under KVM using virtio drivers [2189]

IPsec

* An IPsec tunnel which was removed and then added back in may take longer than expected to establish [1313]

MAP

* MAP-T BR cannot translate IPv4 ICMP echo reply to IPv6 [1749]

* MAP security check configuration differs between the dataplane and CLI [1777]

* MAP behavior cannot be changed from translate to encapsulate without restarting the dataplane [1779]
* TCP MSS value is not applied to encapsulated packets when MAP-E mode is used [1816]

» Fragmentation of IPv4 packets is performed regardless of configured MAP fragmentation behavior when MAT-T
mode is used [1826]

* MAP BR does not send ICMPv6 unreachable messages when a packet fails to match a MAP domain [1869]
¢ Pre-resolve does not work when MAP-T mode is used [1871]

* MAP BR encapsulates/translates only last fragment when receiving fragmented packets from IPv4 network
[1887]

© Copyright 2025 Rubicon Communications LLC 337

Product Manual TNSR v19.05

NACM

NAT

Permitted default read and write operations cannot be executed if default exec policy is set to deny [1158]

twice-nat does not work [1023]
NAT forwarding is not working for in2out direction [1039]
NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

DS-Lite is not functional; B4 router sends encapsulated IPv4-in-IPv6 packets, but AFTR replies with an error
[1626]

NAT forwarding fails with more than one worker thread [2031]

Note: This also affects connectivity to services on TNSR, such as RESTCONF, when the client is not on a directly
connected network.

Deterministic NAT crashes the dataplane [1856]

Connections to and from the TNSR host are included in NAT sessions when connecting through an interface
with ip nat outside [1892] [1979]

Neighbors

NTP

IPv6 static neighbors entries do not work [2005]

NTP restrictions for prefixes do not work [1705]

RESTCONF

A malformed request may cause the API to return unexpected errors for a few seconds while it restarts [2079]

Routing

Deleting a non-empty route table fails with an error and the table remains in the configuration, but it cannot be
changed afterward [1241]

Workaround: Remove all routes from the table before deleting. Alternately, copy the running configuration to
startup and restart TNSR, which will make the route table appear again so the routes and then the table can be
removed.

© Copyright 2025 Rubicon Communications LLC 338

Product Manual TNSR v19.05

User Management

* When deleting a user key from the running configuration it is not removed from the user’s authorized_keys
file [1162]

Workaround: Manually edit the authorized_keys file for the user and remove the key.
VXLAN

* Changes to a VXLAN interface do not apply until the dataplane is restarted [1778]

» Alternate VXLAN encapsulation routing tables cannot be configured [1872]

29.1.3 Reporting Issues

For issues, please contact the Netgate Support staff.
» Send email to support@netgate.com
* Phone: 512.646.4100 (Support is Option 2)

orphan

29.2 TNSR 19.02.1 Release Notes

* About This Release
— General
- NAT
* Known Limitations
- ACL
— BFD
- BGP
- CLI
- DHCP
— DNS
— HTTP Server / RESTCONF
— Interfaces
— [Psec
- NACM
- NAT
— Routing

— User Management

* Reporting Issues

© Copyright 2025 Rubicon Communications LLC 339

mailto:support@netgate.com

Product Manual TNSR v19.05

29.2.1 About This Release

This is a maintenance release for TNSR software version 19.02 with bug fixes and Azure support.
See also:

For more information on changes in TNSR version 19.02, see TNSR 19.02 Release Notes.

General

* TNSR is now supported on Azure [974]

NAT

* Fixed a problem with removing MAP entries after restarting TNSR [1653]

29.2.2 Known Limitations
ACL

» Attempting to create an ACL containing only a description fails [1558]

Workaround: Define one or more rules on the ACL.

BFD

» Attempting to change a BFD local/peer address fails [1549]

BGP
* TNSR does not send BGP updates without restarting service with redistribute from connected option
[746]
* Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

* BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

¢ The maximum-prefix restart command does not work [859]
* TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the BGP
service to start again.

» Changing update-source from an IP address to loop1 allows a session to establish but remote prefixes do not
appear in the FIB until reboot [1104]

» IPv6 BGP neighbors get entered as peer-groups only in bgpd. conf [1190]
¢ BGP import-check feature does not work [781]

© Copyright 2025 Rubicon Communications LLC 340

Product Manual TNSR v19.05

CLI

* show route table causes the backend to die with large numbers of routes in the table [506]
For example, this crash happens with a full BGP feed.

» Using service dataplane restart can cause clixon_backend to lose its configuration [1383]

DHCP

¢ The DHCP server does not function if an interface is configured as a DHCP client [1801]
Corrected in the next release under development (19.05).

* DHCP server uses default VPP interface IP address (169.254.0.x) as a source address for DHCP packets and as
a DHCP Server Identifier [1222]

¢ Adding a DHCP reservation without a MAC address causes Kea to fail and the entry cannot be removed [1530]

Workaround: A MAC address is required for DHCP reservations, so always enter a MAC address when creating
an entry.

* Configuring Kea to log all names with * does not work [1307]

Workaround: Configure each name separately instead of using a wildcard.

DNS

* Local zone FQDN handling for forward (A) and reverse (PTR) data is inconsistent, only allowing one or the other
to work as expected for a given FQDN [1384]

HTTP Server / RESTCONF

* nginx does not behave as expected with authentication type none and TLS [1086]
This mode is primarily for testing and not production use.
Workaround: Use password or certificate-based authentication for RESTCONF.

e HTTP server runs even though it’s not configured to run after TNSR services restart [1153]
Workaround: Manually stop the nginx service using systemctl.

e RESTCONEF get of /restconf/data/ does not properly return state data [1534]

* RESTCONF query replies may contain CDATA tags in JSON [1463]

* Adding an ACL rule entry via RESTCONF may appear to add a duplicate ACL [1238]

© Copyright 2025 Rubicon Communications LLC 341

Product Manual TNSR v19.05

Interfaces

» Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]

 Unable to delete an interface if has had an ACL or MACIP applied [1177, 1178]
Workaround: Remove the entire ACL or MACIP entry. Then, the interface may be removed.

* MACIP ACL remains in the interface configuration after being removed [1179]

* Bond interfaces in LACP mode will send LACPDUs even when configured for passive mode [1614]

* Non-LACP bond interfaces may experience packet drops when a bond member interface is down [1603]

* MAC address change on tap interfaces may not be reflected in the dataplane until the dataplane is restarted [1502]
Workaround: Restart the dataplane after changing an interface MAC address.

¢ MAC address change on bond interfaces may not be reflected in the dataplane until the dataplane is restarted
[1502]

Workaround: Set the MAC address when creating the bond interface.
* VLAN tag rewrite settings are only available in subinterfaces [1344]
 Packets do not pass through a subinterface after the subinterface configuration has been modified [1612]
* QinQ VLAN termination is not working [1550]

* ARP replies received from another host on a VLAN subinterface are not processed correctly [1326]

IPsec

* An IPsec tunnel which was removed and then added back in may take longer than expected to establish [1313]

NACM

 Permitted default read and write operations cannot be executed if default exec policy is set to deny [1158]

NAT

e twice-nat does not work [1023]

¢ NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

* NAT forwarding is not working for in2out direction [1039]

» NAT static mappings are not added as expected when only the port-local value differs [1100]
» NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

» DS-Lite is not functional; B4 router sends encapsulated [Pv4-in-IPv6 packets, but AFTR replies with an error
[1626]

» DS-Lite B4 endpoint is not shown by show dslite command [1625]
¢ Unable to view a list of NAT sessions [975, 1456]

© Copyright 2025 Rubicon Communications LLC 342

Product Manual TNSR v19.05

Routing

* Deleting a non-empty route table fails with an error and the table remains in the configuration, but it cannot be
changed afterward [1241]

Workaround: Remove all routes from the table before deleting. Alternately, copy the running configuration to
startup and restart TNSR, which will make the route table appear again so the routes and then the table can be
removed.

User Management

* When deleting a user key from the running configuration it is not removed from the user’s authorized_keys
file [1162]

Workaround: Manually edit the authorized_keys file for the user and remove the key.

29.2.3 Reporting Issues

For issues, please contact the Netgate Support staff.
* Send email to support@netgate.com
* Phone: 512.646.4100 (Support is Option 2)

orphan

29.3 TNSR 19.02 Release Notes

* About This Release
— General
- BGP
- CLI
— Dataplane
— DHCP Server
— DNS
— Host
— Interfaces
- NAT
— RESTCONF
— Routing

* Known Limitations
- ACL
- BFD

- BGP

© Copyright 2025 Rubicon Communications LLC 343

mailto:support@netgate.com

Product Manual TNSR v19.05

- CLI

- DHCP

— DNS

— HTTP Server / RESTCONF
— Interfaces

— IPsec

- NACM

— NAT

— Routing

— User Management

* Reporting Issues

29.3.1 About This Release

Warning: A number of commands were reorganized with this release, more information will be noted below in
individual sections. If a command that worked in a previous release is no longer present, it has most likely been
changed to a more logical and consistent location.

Warning: RESTCONF queries now require a namespace in the format of module:name where only the name
was required in previous versions. To locate the correct module :name combination, see API Endpoints.

General

» The data models have been updated with more consistent naming and locations

¢ Introduced a YANG 1id type for name fields [1318]

» Miscellaneous code cleanup and refactoring for stability and performance improvements [1516] [1571]
e Updated to CentOS 7.6 [1335]

» Updated build to use gcc 7 [1147]

* Fixed a potential crash when listing packages [1312]

* Improved handling of package versions to better handle situations where a dependency update requires rein-
stalling related packages [950]

© Copyright 2025 Rubicon Communications LLC 344

Product Manual TNSR v19.05

BGP

* BGP commands reorganized under route dynamic for configuration and show route dynamic for status.
See Commands and Border Gateway Protocol. [1369]

* FRR updated to 6.0.x

CLI

¢ The configuration database commands have been reorganized under configuration for making changes, such
as copy, and under show configuration for viewing the contents of a configuration. See Commands and
Configuration Database. [1347)]

* Fixed system location text handling when the value contains whitespace [1584]

Dataplane

» Updated DPDK igb_uio module to v19.02 [842]

DHCP Server

» Updated Kea to 1.4.0-P1 [1239]

DNS

¢ Fixed removal of access-control entries in the CLI [1417]

Host

¢ Fixed inconsistent behavior of host interface commands [1611]

¢ Added a default set of nftables rules to limit inbound traffic to the host [476]

Interfaces

* Several interface-related configuration commands have been moved under the interface command for better
consistency. These include: bridge, loopback, memif, subif, and tap. See Commands and Types of Inter-
Jfaces [1336]

¢ Added support for Bonding Interfaces for link aggregation and redundancy, including support for LACP [1025]
* Fixed display of a single TAP interface [1554]

* Fixed state data returned from a GET request for /netgate-interface:interfaces-state/interface
[1553]

¢ Corrected validation of memif socket ID to exclude ® which is reserved, and enforce a maximum of 4294967294
[1527]

* Corrected validation of bridge domain ID to exclude ® which is reserved, and enforce a maximum of 16777215
[1526]

* Fixed handling of non-default routing tables assigned to interfaces at startup [1518]

¢ Removed unused container /interfaces-config/interface/tunnel from data model [1427]

© Copyright 2025 Rubicon Communications LLC 345

Product Manual TNSR v19.05

¢ Fixed subif commands outer-dotlg any and outer-dotlad any [1552][1352]
¢ Fixed subinterfaces failing after changing configuration [1346]

* Removed the untagged command from subi f as it was non-functional and unnecessary (use the parent interface
for untagged traffic) [1345]

NAT

* Added support for MAP-T and MAP-E BR [1399]

RESTCONF

Warning: RESTCONF queries now require a namespace in the format of module:name where only the name
was required in previous versions. To locate the correct module :name combination, see AP/ Endpoints.

 Fixed RESTCONF calls for RPCs returning error 400 despite succeeding [1511]

Routing

* Fixed removing a route table reporting failure when the operation succeeded [1515]

29.3.2 Known Limitations
ACL

* Attempting to create an ACL containing only a description fails [1558]

Workaround: Define one or more rules on the ACL.

BFD

» Attempting to change a BFD local/peer address fails [1549]

BGP
* TNSR does not send BGP updates without restarting service with redistribute from connected option
[746]
* Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

* BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

e The maximum-prefix restart command does not work [859]
* TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the BGP
service to start again.

© Copyright 2025 Rubicon Communications LLC 346

Product Manual TNSR v19.05

* Changing update-source from an IP address to 1oop1 allows a session to establish but remote prefixes do not
appear in the FIB until reboot [1104]

» IPv6 BGP neighbors get entered as peer-groups only in bgpd. conf [1190]

¢ BGP import-check feature does not work [781]

CLI

» show route table causes the backend to die with large numbers of routes in the table [506]
For example, this crash happens with a full BGP feed.

» Using service dataplane restart can cause clixon_backend to lose its configuration [1383]

DHCP
e DHCP server uses default VPP interface IP address (169.254.0.x) as a source address for DHCP packets and as
a DHCP Server Identifier [1222]
* Adding a DHCP reservation without a MAC address causes Kea to fail and the entry cannot be removed [1530]

Workaround: A MAC address is required for DHCP reservations, so always enter a MAC address when creating
an entry.

* Configuring Kea to log all names with * does not work [1307]

Workaround: Configure each name separately instead of using a wildcard.

DNS

* Local zone FQDN handling for forward (A) and reverse (PTR) data is inconsistent, only allowing one or the other
to work as expected for a given FQDN [1384]

HTTP Server /| RESTCONF

* nginx does not behave as expected with authentication type none and TLS [1086]
This mode is primarily for testing and not production use.
Workaround: Use password or certificate-based authentication for RESTCONF.

e HTTP server runs even though it’s not configured to run after TNSR services restart [1153]
Workaround: Manually stop the nginx service using systemctl.

* RESTCONTF get of /restconf/data/ does not properly return state data [1534]

* RESTCONF query replies may contain CDATA tags in JSON [1463]

* Adding an ACL rule entry via RESTCONF may appear to add a duplicate ACL [1238]

© Copyright 2025 Rubicon Communications LLC 347

Product Manual TNSR v19.05

Interfaces

» Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]

 Unable to delete an interface if has had an ACL or MACIP applied [1177, 1178]
Workaround: Remove the entire ACL or MACIP entry. Then, the interface may be removed.

* MACIP ACL remains in the interface configuration after being removed [1179]

* Bond interfaces in LACP mode will send LACPDUs even when configured for passive mode [1614]

* Non-LACP bond interfaces may experience packet drops when a bond member interface is down [1603]

* MAC address change on tap interfaces may not be reflected in the dataplane until the dataplane is restarted [1502]
Workaround: Restart the dataplane after changing an interface MAC address.

¢ MAC address change on bond interfaces may not be reflected in the dataplane until the dataplane is restarted
[1502]

Workaround: Set the MAC address when creating the bond interface.
* VLAN tag rewrite settings are only available in subinterfaces [1344]
 Packets do not pass through a subinterface after the subinterface configuration has been modified [1612]
* QinQ VLAN termination is not working [1550]

* ARP replies received from another host on a VLAN subinterface are not processed correctly [1326]

IPsec

* An IPsec tunnel which was removed and then added back in may take longer than expected to establish [1313]

NACM

 Permitted default read and write operations cannot be executed if default exec policy is set to deny [1158]

NAT

e twice-nat does not work [1023]

¢ NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

* NAT forwarding is not working for in2out direction [1039]

» NAT static mappings are not added as expected when only the port-local value differs [1100]
» NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

» DS-Lite is not functional; B4 router sends encapsulated [Pv4-in-IPv6 packets, but AFTR replies with an error
[1626]

» DS-Lite B4 endpoint is not shown by show dslite command [1625]
¢ Unable to view a list of NAT sessions [975, 1456]

© Copyright 2025 Rubicon Communications LLC 348

Product Manual TNSR v19.05

Routing

* Deleting a non-empty route table fails with an error and the table remains in the configuration, but it cannot be
changed afterward [1241]

Workaround: Remove all routes from the table before deleting. Alternately, copy the running configuration to
startup and restart TNSR, which will make the route table appear again so the routes and then the table can be
removed.

User Management

* When deleting a user key from the running configuration it is not removed from the user’s authorized_keys
file [1162]

Workaround: Manually edit the authorized_keys file for the user and remove the key.

29.3.3 Reporting Issues

For issues, please contact the Netgate Support staff.
* Send email to support@netgate.com
* Phone: 512.646.4100 (Support is Option 2)

orphan

29.4 TNSR 18.11 Release Notes

e About This Release

— Access Lists (ACLs)

Authentication & Access Control
- BGP

— Bridge

- CLI

— Hardware & Installation
— Interfaces

— Host

— [Psec

- NAT

- NTP

— RESTCONF

— VLAN/Subinterfaces

e Known Limitations

— Authentication & Access Control

© Copyright 2025 Rubicon Communications LLC 349

mailto:support@netgate.com

Product Manual TNSR v19.05

- BGP

- CLI

- DHCP

— HTTP Server / RESTCONF

Interfaces

- NAT

Routing

— User Management

* Reporting Issues

29.4.1 About This Release

Access Lists (ACLs)

* Added a description field to ACL rule entries [1195]
* Fixed issues with numerical sorting of ACL entries in show output [1255]
* Fixed issues with order of installed ACL rules in the dataplane with large sequence numbers [1270]

Authentication & Access Control

* Removed users from the TNSR configuration so they are stored/managed directly in the host operating system,
which eliminates any chance to be out of sync [1067]

* Fixed issues with deleting NACM rule lists [1137]

BGP
¢ Fixed an issue where the BGP service could not restart more that three times in a row [902]
¢ Added bgp clear command to clear active BGP sessions [923]

Bridge

* Fixed a problem where the TNSR CLI incorrectly allowed multiple bridge interfaces to have bvi set [984]

CLI
* Fixed a problem where applied dataplane commands were not immediately present in the running configuration
database until another change was made [1099]

* Fixed a problem where the candidate configuration database could not be emptied with the clear command
[1066]

© Copyright 2025 Rubicon Communications LLC 350

Product Manual TNSR v19.05

Hardware & Installation

* Added an ISO image to install TNSR on supported hardware [1364]

¢ Added support for VMware installations [1026]

* Added support for Mellanox network adapters [1268]
Interfaces

* Fixed interface link speed displaying incorrectly in CLI and RESTCONF [672]

* Fixed issues with duplicate entries being generated in the dataplane interface configuration [1243]
Host

¢ Added the ability to configure host OS management interfaces in the CLI [260, 261, 262]
* Fixed issues with ping command parameter parsing [1133]

* Fixed issues specifying a source address with ping [1134]

IPsec

* Fixed issues with IPsec tunnels failing to establish after a dataplane restart [1138]

NAT

Changed the default NAT mode to endpoint-dependent [1079]
* Fixed creating a twice-nat pool [972]

¢ Fixed creating out-to-in-only static mappings [976]

* Fixed NAT reassembly for ICMP packets [990]

* Fixed fragment limitations for NAT reassembly [1065]

* Added support for deterministic NAT [360]

NTP

* Fixed issues with the ntp restrict command [1163]

RESTCONF

* Fixed validation when submitting invalid MAC addresses via RESTCONF [1197]
* Fixed validation when submitting invalid IP addresses via RESTCONF [1199]

© Copyright 2025 Rubicon Communications LLC 351

Product Manual TNSR v19.05

VLAN/Subinterfaces
* Fixed issues where daemons such as Kea and ntpd did not correctly form configuration file references to subin-
terface names [1150]
« Fixed issues with clients on subinterface networks from receiving return traffic that passes through TNSR [1152]

The upstream VPP issue causing this has been fixed, but an additional source of problems in this area is that
the dot1q setting for a subinterface must use exact-match to communicate properly with hosts on the VLAN.
Ensure subinterfaces are configured to use this property.

29.4.2 Known Limitations

Authentication & Access Control
BGP
* TNSR does not send BGP updates without restarting service with redistribute from connected option
[746]
* Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

* BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

¢ The maximum-prefix restart command does not work [859]
* TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the BGP
service to start again.

» Changing update-source from an IP address to loop1 allows a session to establish but remote prefixes do not
appear in the FIB until reboot [1104]

» [Pv6 BGP neighbors get entered as peer-groups only in bgpd. conf [1190]

* peer-group attribute remote-as does not get into FRR bgpd. conf [1272]

CLI

* show route table causes the backend to die with large numbers of routes in the table [506]

For example, this crash happens with a full BGP feed.

DHCP
* A single IP address can be set in a pool range, but the DHCP daemon requires a start/end IP address or a prefix
[1208]
Workaround: Configure a pool with a start and end address or prefix.

e DHCP server uses default VPP interface IP address (169.254.0.x) as a source address for DHCP packets and as
a DHCP Server Identifier [1222]

» Unable to delete DHCPv4 options specified within the pool configuration [1267]

© Copyright 2025 Rubicon Communications LLC 352

Product Manual TNSR v19.05

HTTP Server / RESTCONF

* nginx does not behave as expected with authentication type none and TLS [1086]
This mode is primarily for testing and not production use.
Workaround: Use password or certificate-based authentication for RESTCONF.

e HTTP server runs even though it’s not configured to run after TNSR services restart [1153]

Workaround: Manually stop the nginx service using systemctl.

Interfaces

* Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]
* Unable to delete an interface if has had an ACL or MACIP applied [1177, 1178]
Workaround: Remove the entire ACL or MACIP entry. Then, the interface may be removed.

* MACIP ACL remains in the interface configuration after being removed [1179]

NAT

e twice-nat does not work [1023]

* NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

* NAT forwarding is not working for in2out direction [1039]

¢ NAT static mappings are not added as expected when only the port-local value differs [1100]
* NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

* PAT dynamic sessions limited to 100 entries per address [1303]

This is the default limit per user in VPP and will be configurable in the next release.

Routing

* Deleting a non-empty route table fails with an error and the table remains in the configuration, but it cannot be
changed afterward [1241]

Workaround: Remove all routes from the table before deleting. Alternately, copy the running configuration to
startup and restart TNSR, which will make the route table appear again so the routes and then the table can be
removed.

User Management

¢ When deleting a user key from the running configuration it is not removed from the user’s authorized_keys
file [1162]

Workaround: Manually edit the authorized_keys file for the user and remove the key.

© Copyright 2025 Rubicon Communications LLC 353

Product Manual TNSR v19.05

29.4.3 Reporting Issues

For issues, please contact the Netgate Support staff.
* Send email to support@netgate.com
* Phone: 512.646.4100 (Support is Option 2)

orphan

29.5 TNSR 18.08 Release Notes

» About This Release
— Authentication & Access Control
- BGP
- CLI
- DHCP
DNS Resolver

Hardware & Installation

— IPsec
- NAT
- NTP
— PKI (Certificates)
— RESTCONF
* Known Limitations

Authentication & Access Control

- BGP

Bridge
- CLI
RESTCONF

Interfaces
- NAT
VLAN/Subinterfaces

* Reporting Issues

© Copyright 2025 Rubicon Communications LLC 354

mailto:support@netgate.com

Product Manual TNSR v19.05

29.5.1 About This Release

Authentication & Access Control

* Added support for NETCONF Access Control Model (NACM) management.

NACM provides group-based controls to selectively allow command access for users. Users are authenticated by
other means (e.g. RESTCONEF certificates or users, CLI user) and then mapped to groups based on username.

* Added default configurations for NACM for different platforms [891]

These default rules allow members of group admin to have unlimited access and sets the default values to deny.
It includes the users tnsr and root in the group admin.

Warning: TNSR Does not prevent a user from changing the rules in a way that would cut off all access.

* Changed password management to allow changing passwords for users in the host OS as well as for TNSR users
[1091]

BGP

* Added explicit sequence numbering to BGP AS Path statements to support multiple patterns in a single AS Path
[898]

* Added show bgp network A.B.C.Dcommand to display detailed information about BGP routes [922]
CLI

¢ Added enable and disable commands to be used in favor of no shutdown/shutdown [938]

* Fixed CLI issues with data encoding that could lead to XML Parsing errors [887]
DHCP

* Improved support and control for DHCP server (Kea) management [490, 738, 1037, 1045]
* Added explicit enable/disable for DHCP Server daemon [1053]
* Added logging support to the DHCP Server [907]

DNS Resolver

* Added support for management of a DNS Resolver (Unbound) [492, 1072, 1093, 1094]

© Copyright 2025 Rubicon Communications LLC 355

https://kea.isc.org/
https://nlnetlabs.nl/projects/unbound/about/

Product Manual TNSR v19.05

Hardware & Installation

* Added support for installation on Xeon D, C3000 SoCs [961]
¢ Added configuration packages for Netgate hardware that can run TNSR [1056]

* Fixed a Layer 2 connectivity issue with certain Intel 10G fiber configurations due to a timeout waiting for link
[509]

IPsec

* Added QAT cryptographic acceleration enabled for IPsec [912, 940]
This acceleration works with QAT CPIC cards as well as C62X, C3XXX, and D15XX QAT devices.

* Fixed an issue where an IPsec Child SA would disappear after an IKEv1 Security Association re-authenticates
[628]

NAT

* Fixed creating a NAT pool for custom route tables in the CLI [1055]

* Fixed handling of the NAT reassembly timeout value [1000]

* Added support for output feature NAT [867, 897]

* Fixed an error when changing static NAT command boolean properties [703]

* Addressed NAT issues which prevent the TNSR host OS network services from working on nat outside in-
terfaces [616]

This can only work in endpoint-dependent NAT mode, which can be enabled as follows:

dataplane nat endpoint-dependent
service dataplane restart

This may become the default NAT mode in future TNSR releases [1079]

NTP

* Added support for NTP server (ntp.org) management [847, 939, 948, 952]

PKI (Certificates)

* Added support to the PKI CLI for managing certificate authority (CA) entries as well as certificate signing [930]

© Copyright 2025 Rubicon Communications LLC 356

https://www.ntp.org/

Product Manual TNSR v19.05

RESTCONF

* Added commands for RESTCONF management and authentication (HTTP server, nginx) [933]
* Added support to RESTCONF for certificate-based authentication [937]

When using certificates to authenticate, the common name (CN) part of the subject is used as the username.

* Added PAM support for HTTP authentication to the HTTP server [934]

29.5.2 Known Limitations

Authentication & Access Control

BGP

* Unable to delete a user from the CLI after TNSR services restart [1067]

TNSR does not send BGP updates without restarting service with redistribute from connected option
[746]

Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

The maximum-prefix restart command does not work [859]
TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]
Unable to restart BGP service more that three times in a row [902]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the BGP
service to start again.

Changing update-source from an IP address to 1oop1 allows a session to establish but remote prefixes do not
appear in the FIB until reboot [1104]

Bridge

CLI

TNSR CLI allows multiple bridge interfaces to have bvi set [984]
Only the first interface set with bvi will work properly.

Workaround: Only set bvi on a single interface.

Applied dataplane commands are not immediately present in the running configuration database until another
change is made [1099]

The candidate configuration database cannot be emptied with the clear command [1066]
show route table causes the backend to die with large numbers of routes in the table [506]

For example, this crash happens with a full BGP feed.

© Copyright 2025 Rubicon Communications LLC 357

https://tools.ietf.org/html/rfc8040
https://nginx.org/

Product Manual TNSR v19.05

RESTCONF

* nginx does not behave as expected with authentication type none [1086]
This mode is primarily for testing and not production use.

Workaround: Use password or certificate-based authentication for RESTCONF.

Interfaces

* Interface link speed displayed incorrectly in CLI and RESTCONF [672]

* Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]
NAT

* Unable to create a twice-nat pool [972] or twice-nat not working [1023]

twice-nat can only work in endpoint-dependent NAT mode, which can be enabled as follows:

dataplane nat endpoint-dependent
service dataplane restart

)

 Unable to create out-to-in-only static mapping [976]

out-to-in-only can only work in endpoint-dependent NAT mode, which can be enabled as follows:

dataplane nat endpoint-dependent
service dataplane restart

0

* NAT Reassembly is not working for ICMP packets [990]

* Fragment limitation for NAT reassembly is not working [1065]

* NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

* NAT forwarding is not working for in2out direction [1039]

» NAT static mappings are not added as expected when only the port-local value differs [1100]

* NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

VLAN/Subinterfaces

» Daemons such as Kea and ntpd do not correctly form configuration file references to subinterface names [1150]

e A VPP issue is preventing clients on subinterface networks from receiving return traffic that passes through
TNSR [1152]

— These clients can communicate to TNSR, but not to hosts on other interfaces or subinterfaces.

— Other interface types work properly

© Copyright 2025 Rubicon Communications LLC 358

Product Manual TNSR v19.05

29.5.3 Reporting Issues

For issues, please contact the Netgate Support staff.
* Send email to support@netgate.com

* Phone: 512.646.4100 (Support is Option 2)

29.6 TNSR 18.05 Release Notes

29.6.1 About This Release

This is the first public release of Netgate’s TNSR product.

Please see the TNSR Product Manual for details on the features of TNSR. https://docs.netgate.com/tnsr/en/latest

29.6.2 Known Limitations

[295] Loopback with IPv6 address will not respond to IPv6 pings.

Workaround: none.

[477] Linux route rules for the router-plugin/tap-inject are not cleaned up

If the dataplane crashes, route rules added to the host system network stack are not cleaned up when it restarts.
Workaround: none.

[483] Deleting in-use prefix-list fails

If you attempt to delete an in-use prefix list, the command will fail, but the configuration is left in an inconsistent state.
Workaround: remove the use of the prefix list prior to deleting it.

[490][739] DHCP Server Issues

There are multiple issues with the DHCP Server, it’s use is not recommended at this time.

Workaround: none.

[506] The command “show route table” causes backend crash

A large route table (> 50k routes) can cause the “show route table” command to crash the backend process.

Workaround: Use “vppctl show ip fib” from a shell or vtysh to view route tables when a large number of routes have
been added.

[612] RPC error when input includes “<” character

Using the “<” character as input to the CLI can cause an RPC error. The error is properly detected, reported, and
handled in the known cases. This affects all cases where there is free-form input.

Workaround: Do not use the “<” character.

[616] Enabling NAT on an outside interface disables services on that interface

If you configure NAT on an outside interface, then that interface cannot provide services (like DHCP, ssh, etc.).
Workaround: none

[618] SLAAC is not supported in dataplane, but host stack interfaces have it enabled.

Workaround: none.

© Copyright 2025 Rubicon Communications LLC 359

mailto:support@netgate.com
https://docs.netgate.com/tnsr/en/latest

Product Manual TNSR v19.05

[628] Child SAs can disappear after an IKEv1 SA reauth.

Workaround: none.

[672] Interface speed and duplex show as unknown

The link speed and duplex indicators (visibile with the “show interface” command) can display as “unknown”.
Workaround: Use the “vppctl show interface” command from an OS shell.

[706] Unable to change DHCP client hostname option

The DHCP Client hostname can not be changed.

Workaround: none.

[741] Data plane restart breaks RESTCONF

If you restart the data plane, the RESTCONTF service loses it’s connection and does not reestablish it.
Workaround: Restart the data plane via the CLI, which does not have the same issue.

[745] RESTCONF RPC output is invalid JSON

Some RPCs return mutliple line output and the new line characters are not handled properly resulting in the inability
of a JSON parser to process the output.

Workaround: none.

[746] BGP updates not being sent when “redistribute from connected” option specified

Routes from connected routers are not propagated when the redistribute from connected option is set
Workaround: none. You can temporarily resolve the problem by resetting the BGP service.

[781] BGP import-check feature does not work

If the import-check option is set and then BGP is configured to advertise an unreachable network then the network is
still advertised.

Workaround: none.

[824] unable to create a default route when more than one loopback interface exists

Workaround: none.

[831] Unable to create a second static NAT translation on a loopback interface

Workaround: none.

[832] Route with aggregate-address via next-hop 0.0.0.0 doesn’t appear in routing table
Workaround: none.

[850] Loopback interface can be ping from an outside host even when marked down

Workaround: none.

[858] BGP session constantly flapping when receiving more prefixes than defined in maximum-prefix limit command
Workaround: none.

[859] BGP “maximum-prefix restart” option doesn’t work

Workaround: none.

[860] No warning message in CLI when BGP “maximum-prefix” option is configured

If the maximum number of prefixes is exceeded, there is no indication to a user that this has occured.

Workaround: none.

© Copyright 2025 Rubicon Communications LLC 360

Product Manual TNSR v19.05

[861] Unable to set BGP warning-only option for maximum-prefix option.

‘Workaround: none.

29.6.3 Reporting Issues

For issues, please contact the Netgate Support staff.
¢ Send email to support@netgate.com

* Phone: 512.646.4100 (Support is Option 2)

29.7 TNSR 0.1.0 Release Notes

29.7.1 About This Release

The TNSR 0.1.0 Release is the first release of the Netgate TNSR product. As there is no previous release of the TNSR
products, there can be no changes relative to a previous version. Everything is new!

This release constitutes an early, evaluation version of the product.

29.7.2 Known Limitations

BGP Routes

While BGP may be configured, started, and run, reports of it not recording and displaying the learned BGP routes using
the TNSR command “show routes” have been reported.

A possible work-around appears to be to stop, and then restart the BGP daemon using:

tnsr# service bgp stop
tnsr# service bgp start

BGP route-map and prefix-list Entries

TNSR route-maps and prefix-lists may be configured, and subsequently passed along to the underlying FRR configura-
tion. TNSR will also allow removal of route-maps or prefix-lists from its configuration. However, they are not removed
from the underlying FRR configuration.

A possible work-around is to manually remove them from the underlying FRR configuration using vtysh directly.

DHCP Server

The DHCP server does not support any form of Options yet.

The “server dhcp stop dhcp4” will not effectively teminate the Kea IPv4 DHCP server. A work-around is to run some
form of “sudo killall kea-dhcp4” from a shell prompt.

© Copyright 2025 Rubicon Communications LLC 361

mailto:support@netgate.com

Product Manual TNSR v19.05

29.7.3 Reporting Issues

For issues, please contact the Netgate Support staff.
* Send email to support@netgate.com
* Phone: 512.646.4100 (Support is Option 2)

orphan

© Copyright 2025 Rubicon Communications LLC 362

mailto:support@netgate.com

CHAPTER
THIRTY

LICENSING

The Netgate TNSR product uses a combination of Open Source and proprietary software subject to several different

licenses.

The following list shows each Open Source component along with its license.

Table 1: Table of Open Source Licenses Used

Software License
CentOS 7 CentOS EULA
Linux kernel and modules GPLv2

cligen Apache 2.0
clixon Apache 2.0
curl MIT

davici LGPLv2.1

frr GPLv2

kea MPL 2.0

libnl LGPLv2.1
net-snmp Net SNMP
nginx BSD 2-clause
ntp NTP License
openssl OpenSSL/SSLeay
strongswan GPLv2
unbound BSD 3-clause
VPP Apache 2.0

GPL-licensed code modified for use in TNSR is available in source form:

orphan

Table 2: Table of Modified Open Source Repositories

Package Repository Location
frr http://github.com/netgate/frr
strongswan http://github.com/netgate/strongswan

Hyper-V Linux kernel modules

https://github.com/netgate/uio_hv_generic

363

http://github.com/netgate/frr
http://github.com/netgate/strongswan
https://github.com/netgate/uio_hv_generic

Product Manual TNSR v19.05

30.1 Apache 2.0 License

A copy of the Apache 2.0 License is found at https://www.apache.org/licenses .
The full text of the Apache 2.0 license is included below.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 364

https://www.apache.org/licenses

Product Manual TNSR v19.05

(continued from previous page)

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 365

Product Manual TNSR v19.05

(continued from previous page)

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 366

Product Manual TNSR v19.05

(continued from previous page)

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

orphan

© Copyright 2025 Rubicon Communications LLC 367

Product Manual TNSR v19.05

30.2 CentOS EULA License

The TNSR project is built on a foundation of CentOS which is governed by the CentOS EULA License. It is found at
http://mirror.centos.org/centos/7/0s/x86_64/EULA .

Its full text is included below.

CentOS Linux 7 EULA

CentOS Linux 7 comes with no guarantees or warranties of any sorts,
either written or implied.

The Distribution is released as GPLv2. Individual packages in the
distribution come with their own licences.

orphan

30.3 GPLv2.0 License

A copy of the GPLv2 License is found at https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt .
The full text of the GPLv2 license is included below.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 368

http://mirror.centos.org/centos/7/os/x86_64/EULA
https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

Product Manual TNSR v19.05

(continued from previous page)

These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its .. contents::

constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 369

Product Manual TNSR v19.05

(continued from previous page)

source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 370

Product Manual TNSR v19.05

(continued from previous page)

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 371

Product Manual TNSR v19.05

(continued from previous page)

modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. 1In such case, this License incorporates
the limitation as if written in the body of this License.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 372

Product Manual TNSR v19.05

(continued from previous page)

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 373

Product Manual TNSR v19.05

(continued from previous page)

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w'.
This is free software, and you are welcome to redistribute it

under certain conditions; type "show c' for details.

The hypothetical commands “show w' and "show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than “show w' and "show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
"Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License.

© Copyright 2025 Rubicon Communications LLC 374

Product Manual TNSR v19.05

orphan

30.4 LGPLv2.1 License

A copy of the LGPLv2.1 License is found at https://www.gnu.org/licenses/Igpl-2.1.txt .
The full text of the LGPLv2.1 license is included below.

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

Wihen we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
(continues on next page)

© Copyright 2025 Rubicon Communications LLC 375

https://www.gnu.org/licenses/lgpl-2.1.txt

Product Manual TNSR v19.05

(continued from previous page)

with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. TWe use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. 1In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 376

Product Manual TNSR v19.05

(continued from previous page)

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its .. contents::

constitute a work based
on the Library (independent of the use of the Library in a tool for

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 377

Product Manual TNSR v19.05

(continued from previous page)

writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 378

Product Manual TNSR v19.05

(continued from previous page)

it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 379

Product Manual TNSR v19.05

(continued from previous page)

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the .. contents::

of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 380

Product Manual TNSR v19.05

(continued from previous page)

rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 381

Product Manual TNSR v19.05

(continued from previous page)

rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 382

Product Manual TNSR v19.05

(continued from previous page)

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. 1In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 383

Product Manual TNSR v19.05

(continued from previous page)

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 TUSA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library "Frob' (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

orphan

© Copyright 2025 Rubicon Communications LLC 384

Product Manual TNSR v19.05

30.5 MIT License

A copy of the MIT License template is found at https://opensource.org/licenses/MIT .
The full text of the license as used by CURL is included below.

Copyright (c) 1996 - 2018, Daniel Stenberg, <daniel@haxx.se>, and many
contributors, see the THANKS file.

A1l rights reserved.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LTABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale, use
or other dealings in this Software without prior written authorization
of the copyright holder.

orphan

30.6 Net SNMP License

The net-snmp repository is used governed by several licenses collectively listed as the Net SNMP License. It is found
at http://www.net-snmp.org/about/license.html .

Its full text is included below.

Various copyrights apply to this package, listed in various separate
parts below. Please make sure that you read all the parts.

---- Part 1: CMU/UCD copyright notice: (BSD like) -----

Copyright 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000
Copyright 1996, 1998-2000 The Regents of the University of California

All Rights Reserved

Permission to use, copy, modify and distribute this software and its

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 385

https://opensource.org/licenses/MIT
http://www.net-snmp.org/about/license.html

Product Manual TNSR v19.05

(continued from previous page)

documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of CMU and The Regents of
the University of California not be used in advertising or publicity
pertaining to distribution of the software without specific written
permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. 1IN NO EVENT SHALL CMU OR
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LTIABLE FOR ANY SPECTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

---- Part 2: Networks Associates Technology, Inc copyright notice (BSD) -----

Copyright (c) 2001-2003, Networks Associates Technology, Inc
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of the Networks Associates Technology, Inc nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS " "AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 3: Cambridge Broadband Ltd. copyright notice (BSD) -----

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 386

Product Manual TNSR v19.05

(continued from previous page)

Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

The name of Cambridge Broadband Ltd. may not be used to endorse or
promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "~ "AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 4: Sun Microsystems, Inc. copyright notice (BSD) -----

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
California 95054, U.S.A. All rights reserved.

Use is subject to license terms below.
This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 387

Product Manual TNSR v19.05

(continued from previous page)

Neither the name of the Sun Microsystems, Inc. nor the

names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS " "AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 5: Sparta, Inc copyright notice (BSD) -----

Copyright (c) 2003-2009, Sparta, Inc
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of Sparta, Inc nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ° "AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 6: Cisco/BUPTNIC copyright notice (BSD) -----
Copyright (c) 2004, Cisco, Inc and Information Network

Center of Beijing University of Posts and Telecommunications.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 388

Product Manual TNSR v19.05

(continued from previous page)

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of Cisco, Inc, Beijing University of Posts and
Telecommunications, nor the names of their contributors may

be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ° "AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 7: Fabasoft R& Software GmbH & Co KG copyright notice (BSD) -----

Copyright (c) Fabasoft R&D Software GmbH & Co KG, 2003
oss@fabasoft.com
Author: Bernhard Penz

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

The name of Fabasoft R& Software GmbH & Co KG or any of its subsidiaries,
brand or product names may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "~ "AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 389

Product Manual TNSR v19.05

(continued from previous page)

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 8: Apple Inc. copyright notice (BSD) -----
Copyright (c) 2007 Apple Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of Apple Inc. ("Apple") nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

---- Part 9: Sciencelogic, LLC copyright notice (BSD) -----

Copyright (c) 2009, Sciencelogic, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

(continues on next page)

© Copyright 2025 Rubicon Communications LLC 390

Product Manual TNSR v19.05

(continued from previous page)
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Neither the name of Sciencelogic, LLC nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"TAS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

© Copyright 2025 Rubicon Communications LLC 391

	Introduction
	TNSR Secure Networking
	TNSR Trial
	TNSR Architecture
	Technology Stack
	Basic Assumptions

	Installation
	Default Behavior
	Default Accounts and Passwords
	Default TNSR Permissions
	Default Allowed Traffic
	TNSR
	Host OS

	Zero-to-Ping
	First Login
	Changing the Password

	Interface Configuration
	Host OS Management Interface
	Dataplane Interfaces

	TNSR Interfaces
	WAN DHCP Client
	LAN Interface

	NAT
	DHCP Server
	DNS Server
	Ping
	From the Host
	From LAN Client

	Save the TNSR Configuration
	Next Steps

	Command Line Basics
	Working in the TNSR CLI
	Command Prompt
	Command History
	Autocomplete
	Keyboard Shortcuts

	Finding Help
	Starting TNSR
	TNSR Service Relationships
	Manual TNSR Service Operations
	Convenience Alias

	Entering the TNSR CLI
	Using the tnsr account
	Using another account
	Using root
	Current User
	Shell Alias

	Configuration Database
	Saving the Configuration
	Viewing the Configuration
	Reverting to the Startup Configuration
	Configuration Database Commands

	Configuration Mode
	Navigating Configuration Modes
	Removing Configuration Items
	Troubleshooting

	Configuration Backups
	Viewing Status Information
	Service Control
	Diagnostic Utilities
	Diagnostic Routing Behavior
	Ping
	Traceroute

	Basic System Information

	Basic Configuration
	Setup Interfaces
	Identify NICs to use with TNSR

	Disable Host OS NICs for TNSR
	Setup NICs in Dataplane
	Host Interface Name to Dataplane ID Mapping
	Configuring Interfaces for TNSR
	Customizing Interface Names

	Troubleshooting

	Setup QAT Compatible Hardware
	Setup Process
	Enable SR-IOV in the BIOS
	Enable IOMMU in grub
	Change the uio driver to igb_uio
	Configure the QAT PCI device in TNSR
	Activate and check the settings

	Troubleshooting

	Remove TNSR NIC for Host Use
	Locate the Interface
	Remove the Interface from TNSR
	Edit the Host Interface Configuration
	Reactivate the Host Interface
	Reboot
	Manually Reactivate

	Configure the Host Interface

	Updates and Packages
	Generate a Key Pair
	Generate a Certificate Signing Request
	Submit the Certificate Signing Request
	Required Customer Information
	TNSR Device or ISO Install
	TNSR in AWS

	Create a Support Request for the CSR

	Retrieve the signed certificate
	Install the certificate
	Package Management
	Package Information Commands
	Package Installation
	Updating TNSR
	Pre-Upgrade Tasks
	Updating via the TNSR CLI
	Updating via the shell
	Update Script

	Update Troubleshooting

	Interfaces
	Locate Interfaces
	Configure Interfaces
	Interface Command
	Interface Configuration Options
	DHCP Client Example

	Monitoring Interfaces
	show interface
	show counters
	clear interface counters
	Available Counters
	show packet-counters

	Types of Interfaces
	VLAN Subinterfaces
	VLAN Subinterface Configuration
	Creating a VLAN Subinterface
	VLAN Subinterface Examples
	VLAN Example
	QinQ Example

	Shared Memory Packet Interfaces (memif)
	Memif Configuration
	Creating a memif Socket
	Creating a memif interface

	Memif Example
	Memif status

	Tap Interfaces
	Tap Configuration
	TAP Examples
	Example tap Interface
	Example Tap Interface Addresses

	Loopback Interfaces
	Loopback Configuration
	Loopback Example

	GRE Interfaces
	GRE Configuration
	GRE Examples
	GRE Status

	Switch Port Analyzer (SPAN) Interfaces
	SPAN Configuration
	SPAN Example

	Bonding Interfaces
	Bond Configuration
	Creating a bond
	Bond Interface Settings

	Bond Example
	Bond Status

	Bridge Interfaces
	Bridge Configuration
	Creating a Bridge
	Bridge Interface Settings

	Bridge Example
	Bridge Status

	VXLAN Interfaces
	VXLAN Configuration
	VXLAN-Related Settings
	VXLAN Example
	VXLAN Status

	Routing Basics
	Route Tables
	Neighbors
	Static Neighbors
	View Neighbors

	Viewing Routes
	Route Flags
	Common Routes

	Managing Routes
	Route modifiers
	Example

	Default Route

	Access Lists
	Standard ACLs
	Standard ACL Example

	MACIP ACLs
	MACIP ACL Example

	Viewing ACL and MACIP Information
	ACL and NAT Interaction
	Inbound ACL Rules
	Outbound ACL Rules

	Host ACLs
	Host ACL Example
	Host ACL Status

	Border Gateway Protocol
	Required Information
	Enabling BGP
	Example BGP Configuration
	Router Statement
	Neighbor Configuration
	Address Family Configuration
	BGP Example with Loopback
	Configure Loopback
	Route to Peer
	Setup BGP with Loopback Address

	Advanced Configuration
	BGP Information
	Configuration Information
	Status Information
	BGP Active Session Control
	Additional Information

	Working with Large BGP Tables

	IPsec
	Required Information
	IPsec Example
	Required Information
	Example Configuration

	IPsec Configuration
	IPsec Endpoints
	IPsec Endpoint Example

	IPsec Keys
	IKE Configuration
	IKE Example
	Additional IKE Configuration
	IKE Proposal
	Encryption Algorithms
	Integrity Algorithms
	Pseudo-Random Functions
	Diffie-Hellman Groups
	IKE Proposal Example

	IKE Identity
	Identity Example

	IKE Authentication
	IKE Authentication Example

	Security Associations
	Child SA Example

	Configuring the IPsec Interface
	IPsec Interface Example

	IPsec Routes
	IPsec Static Route Example

	IPsec Status Information
	IPsec Status Examples

	IPsec Cryptographic Acceleration

	Network Address Translation
	Dataplane NAT Modes
	Simple NAT
	Endpoint-dependent NAT
	Deterministic NAT

	NAT Options
	NAT Forwarding

	NAT Pool Addresses
	Outbound NAT
	Static NAT
	Port Forwards
	1:1 NAT
	Twice NAT

	NAT Reassembly
	Configuration
	View Configuration

	Dual-Stack Lite
	Acting as a B4 Endpoint
	Acting as an AFTR Endpoint
	DS-Lite Status

	Deterministic NAT
	NAT Status
	View NAT Configuration
	View Static Mappings
	View Deterministic Mappings
	View Dynamic Configuration
	View Interfaces
	View NAT Fragment Reassembly
	View NAT Sessions

	NAT Examples
	AWS NAT Examples
	AWS Example without NAT
	AWS Example with NAT

	MAP (Mapping of Address and Port)
	MAP Configuration
	MAP Domains
	MAP Rules
	MAP Interface Configuration
	View MAP Configuration

	MAP Parameters
	View MAP Parameters

	MAP Example
	Environment
	TNSR Border Relay Configuration

	MAP Types
	MAP-T (Translation)
	MAP-E (Encapsulation)
	Additional MAP Reading and Tools

	Dynamic Host Configuration Protocol
	DHCP Configuration
	DHCP Options
	Standard IPv4 DHCP Options
	DHCP Option Types

	Subnet Configuration
	Address Pool Configuration
	Host Reservations

	DHCP Service Control and Status
	Enable the DHCP Service
	Disable the DHCP Service
	Check the DHCP Service Status
	View the DHCP Configuration

	DHCP Service Example

	DNS Resolver
	DNS Resolver Configuration
	Access Control Lists
	Forward Zones
	Forward Zone Examples
	Forward Zone Configuration

	Local Zones
	Local Zone Example
	Local Zone Configuration

	Security Tuning
	Cache & Performance Tuning

	DNS Resolver Service Control and Status
	Enable the DNS Resolver
	Disable the DNS Resolver
	Check the DNS Resolver Status
	View the DNS Resolver Configuration

	DNS Resolver Examples
	Resolver Mode Example
	Forwarding Mode Example

	Network Time Protocol
	NTP Configuration
	NTP Restrictions
	NTP Logging

	NTP Service Control and Status
	Enable the NTP Service
	Disable the NTP Service
	Check the NTP Service Status
	View NTP Peers
	View NTP Associations
	View NTP Daemon Configuration File

	NTP Service Example
	NTP Best Practices

	Link Layer Discovery Protocol
	Configuring the LLDP Service
	LLDP Router Configuration
	LLDP Interface Configuration

	Public Key Infrastructure
	Key Management
	Generate a Key Pair
	Importing a Key Pair
	Copy and Paste
	Import from File

	Other Key Operations

	Certificate Signing Request Management
	Set Certificate Signing Request Attributes
	Generate a Certificate Signing Request
	Other CSR Operations

	Certificate Management
	Copy and Paste
	Import from File
	Other Certificate Operations

	Certificate Authority Management
	Import a CA
	Creating a Self-Signed CA
	Intermediate CAs
	Using a CA to sign a CSR
	Other CA Operations

	Bidirectional Forwarding Detection
	BFD Sessions
	Session Parameters
	Changing the BFD Administrative State
	Viewing BFD Session Status

	BFD Session Authentication
	Define BFD Keys
	Setup BFD Authentication
	View BFD Keys

	User Management
	User Configuration
	Authentication Methods
	Password Authentication
	User Key Authentication

	NETCONF Access Control Model (NACM)
	NACM Example
	View NACM Configuration
	Enable or Disable NACM
	NACM Default Policy Actions
	NACM Username Mapping
	NACM Groups
	NACM Rule Lists
	NACM Rules
	NACM Rule Examples

	NACM Rule Processing Order
	Regaining Access if Locked Out by NACM
	Method 1: Temporarily Disable NACM
	Method 2: Remove NACM Configuration

	NACM Defaults

	HTTP Server
	HTTP Server Configuration
	Managing the HTTP Server Process

	HTTPS Encryption
	Authentication
	Client Certificate
	Password
	None

	RESTCONF Server

	TNSR Configuration Example Recipes
	RESTCONF Service Setup with Certificate-Based Authentication and NACM
	Use Case
	Example Scenario
	TNSR Setup
	Generate Certificates
	Setup NACM
	Enable RESTCONF

	Client Configuration
	Example Usage
	Retrive a specific ACL
	Retrieve a specific rule of a specific ACL
	Add a new rule to an existing ACL
	Remove a specific rule from an ACL

	Adding More Users

	TNSR IPsec Hub for pfSense
	Input Data
	Scenario Topology
	TNSR and Peer Network Configuration
	TNSR and Peer IPsec Configuration

	Setup Details
	Initial setup
	TNSR Setup
	LAN settings
	WAN settings
	DHCP server
	NAT

	Peer 1 Basic Setup
	LAN settings
	WAN settings
	DHCP server

	Peer 2 Basic Setup
	LAN settings
	WAN settings
	DHCP server

	Peer 3 Basic Setup
	LAN settings
	WAN settings
	DHCP server

	Access between local and remote networks via IPsec
	TNSR
	IPsec Configuration
	IPsec to Peer 1
	IPsec to Peer 2
	IPsec to Peer 3

	Routing
	Peer 1 BGP Routing
	Peer 2 Static Routing
	Peer 3 Static Routing

	Peer 1 Setup
	IPsec Settings
	Phase 1
	Phase 2
	Interface
	Routing
	Firewall
	NAT

	Peer 2 Setup
	IPsec Settings
	Phase 1
	Phase 2
	Interface
	Routing
	Firewall
	NAT

	Peer 3 Setup
	IPsec Settings
	Phase 1
	Phase 2
	Interface
	Routing
	Firewall
	NAT

	Access to the internet for remote network
	TNSR
	NAT/PAT

	Peer 1 Policy Route
	Routing

	Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6
	Use Case
	Example Scenario
	Scenario Topology

	TNSR Configuration Steps
	Step 1: Configure Interfaces
	Step 2: Enable BGP
	Step 3: Create prefix-lists for route export via BGP
	Step 4: Create static route for networks to be advertised in BGP
	Step 5: Configure BGP global options
	Step 6: Configure BGP global neighbor options
	Step 7: Configure BGP neighbor address-family IPv4 unicast options
	Step 8: Configure BGP neighbor address-family IPv6 unicast options

	JSON Configuration

	Service Provider Route Reflectors and Client for iBGP IPv4
	Use Case
	Example Scenario
	Scenario Topology

	TNSR Configuration Steps
	Step 1: Configure Interfaces
	Step 2: Enable BGP
	Step 3: Create prefix-lists for route import into BGP on Route-Reflectors
	Step 4: Create route-map for route import into iBGP on route-reflectors
	Step 5: Create static route for networks to be advertised in BGP
	Step 6: Configure BGP global options
	Step 7: Configure iBGP peer-group for backbone route-reflectors and add neighbor
	Step 8: Configure RR-CLIENT peer-group for route-reflector clients and add neighbor
	Step 9: Configure both peer-group address-family options on route-reflectors
	Step 10: Configure iBGP on gateway router to both route-reflectors

	JSON Configuration
	RR1
	RR2
	GW

	LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver)
	Use Case
	Example Scenario
	TNSR Configuration
	Basic Connectivity
	DHCP
	Outbound NAT
	DNS Resolver

	Local PC Configuration

	Using Access Control Lists (ACLs)
	Use Case
	Example Scenario
	TNSR Configuration

	Inter-VLAN Routing
	Use Case
	Example Scenario
	TNSR Configuration
	Create Subinterfaces
	Configure Interfaces
	Configure DHCP
	Configure Outbound NAT
	Configure DNS Resolver

	GRE ERSPAN Example Use Case
	Example Scenario
	TNSR Configuration
	Server Configuration
	IDS Configuration

	Advanced Configuration
	Dataplane Configuration
	CPU Workers and Affinity
	Worker Configuration
	Worker Example
	Worker Status

	DPDK Configuration
	Memory
	NAT
	Statistics Segment

	Host Memory Management Configuration

	Troubleshooting
	Ping and traceroute do not function without host OS default route
	Unrecognized routes in a routing table
	Services do not receive traffic on an interface with NAT enabled
	NAT session limits / “Create NAT session failed” error
	ACL rules do not match NAT traffic as expected
	Some Traffic to the host OS management interface is dropped
	Locked out by NACM Rules
	How to gain access to the root account
	Console Messages Obscure Prompts
	Diagnosing Service Issues
	Debugging TNSR

	Commands
	Mode List
	Master Mode Commands
	Package Management Commands
	Public Key Infrastructure Commands

	Config Mode Commands
	Show Commands in Both Master and Config Modes
	Access Control List Modes
	Enter Access Control List Mode
	Access Control List Mode Commands
	Remove Access Control List
	Enter ACL Rule Mode
	ACL Rule Mode Commands
	Remove ACL Rule

	MACIP ACL Mode
	Enter MACIP ACL Mode
	MACIP ACL Mode Commands
	Remove MACIP ACL
	Enter MACIP ACL Rule Mode
	MACIP Rule Mode Commands
	Remove MACIP ACL Rule

	GRE Mode
	Enter GRE Mode
	GRE Mode Commands
	Remove GRE Instance

	HTTP mode
	Enter HTTP mode
	HTTP Mode Commands
	Remove http Configuration

	Interface Mode
	Enter Interface mode
	Interface Mode Commands
	Remove Interface

	Loopback Mode
	Enter Loopback Mode
	Loopback Mode Commands
	Remove Loopback interface

	Bridge Mode
	Enter Bridge Mode
	Bridge Mode commands
	Remove Bridge

	NAT Commands in Configure Mode
	NAT Reassmbly Mode
	Enter NAT Reassmbly Mode
	NAT Reassmbly Mode Commands

	DS-Lite Commands in Configure Mode
	Tap Mode
	Enter Tap Mode
	Tap Mode commands
	Remove Tap

	BFD Key Mode
	Enter BFD Key Mode
	BFD Key Mode Commands
	Remove BFD Key Configuration

	BFD Mode
	Enter BFD Mode
	BFD Mode Commands
	Remove BFD Configuration
	Change BFD Admin State
	Change BFD Authentication

	Host Interface Mode
	Enter Host Interface Mode
	Host Interface Mode Commands
	Remove Host Interface

	IPsec Tunnel Mode
	Enter IPsec Tunnel Mode
	IPsec Tunnel Mode Commands
	Remove IPsec Tunnel

	IKE mode
	Enter IKE mode
	IKE Mode Commands
	Remove IKE configuration

	IKE Peer Authentication Mode
	Enter IKE Peer Authentication Mode
	IKE Peer Authentication Mode Commands
	Remove IKE Peer Authentication Configuration

	IKE Peer Authentication Round Mode
	Enter IKE Peer Authentication Round Mode
	IKE Peer Authentication Round Mode Commands
	Remove IKE Peer Authentication Round Configuration

	IKE Child SA Mode
	Enter IKE Child SA Mode
	IKE Child SA Mode Commands
	Remove IKE Child SA

	IKE Child SA Proposal Mode
	Enter IKE Child SA Proposal Mode
	IKE Child SA Proposal Mode Commands
	Remove IKE Child SA Proposal

	IKE Peer Identity Mode
	Enter IKE Peer Identity Mode
	IKE Peer Identity Mode Commands
	Remove IKE Peer Identity Configuration

	IKE Proposal Mode
	Enter IKE Proposal Mode
	IKE Proposal Mode Commands
	Remove IKE Proposal Configuration

	Map Mode
	Enter Map Mode
	Map Mode Commands
	Remove Map Entry

	Map Parameters Mode
	Enter Map Parameters Mode
	Map Parameters Mode Commands

	memif Mode
	Enter memif Mode
	memif mode Commands
	Remove memif Interface

	Dynamic Routing Access List Mode
	Enter Dynamic Routing Access List Mode
	Dynamic Routing Access List Mode Commands
	Remove Dynamic Routing Access List

	Dynamic Routing Prefix List Mode
	Enter Dynamic Routing Prefix List Mode
	Dynamic Routing Prefix List Mode Commands
	Remove Dynamic Routing Prefix List

	Dynamic Routing Route Map Rule Mode
	Enter Dynamic Routing Route Map Rule Mode
	Dynamic Routing Route Map Mode Commands
	Remove Dynamic Routing Route Map
	Remove Dynamic Routing Route Map Rule
	Dynamic Routing Route Map Notes

	Dynamic Routing BGP Mode
	Enter Dynamic Routing BGP Mode
	Dynamic Routing BGP Mode Commands

	Dynamic Routing BGP Server Mode
	Enter Dynamic Routing BGP Server Mode
	Dynamic Routing BGP Server Mode Commands
	Remove Dynamic Routing BGP Server

	Dynamic Routing BGP Neighbor Mode
	Enter Dynamic Routing BGP Neighbor Mode
	Dynamic Routing BGP Neighbor Mode Commands
	Remove Dynamic Routing BGP Neighbor

	Dynamic Routing BGP Address Family Mode
	Enter Dynamic Routing BGP Address Family Mode
	Dynamic Routing BGP IPv4 Unicast Address Family Mode Commands
	Dynamic Routing BGP IPv4 Multicast Address Family Mode Commands
	Dynamic Routing BGP IPv6 Unicast Address Family Mode Commands
	Dynamic Routing BGP IPv6 Multicast Address Family Mode Commands
	Remove Dynamic Routing BGP Address Family
	Dynamic Routing BGP Notes

	Dynamic Routing BGP Address Family Neighbor Mode
	Enter Dynamic Routing BGP Address Family Neighbor Mode
	Dynamic Routing BGP Address Family Neighbor Mode Commands
	Remove Dynamic Routing BGP Address Family Neighbor

	Dynamic Routing BGP Community List Mode
	Enter Dynamic Routing BGP Community List Mode
	Dynamic Routing BGP Community List Mode Commands
	Remove Dynamic Routing BGP Community List

	Dynamic Routing BGP AS Path Mode
	Enter Dynamic Routing BGP AS Path Mode
	Dynamic Routing BGP AS Path Mode Commands
	Remove Dynamic Routing BGP AS Path

	Dynamic Routing Manager Mode
	Enter Dynamic Routing Manager Mode
	Dynamic Routing Manager Mode Commands

	IPv4 Route Table Mode
	Enter IPv4 Route Table Mode
	IPv4 Route Table Mode Commands
	Remove IPv4 Route Table

	IPv6 Route Table Mode
	Enter IPv6 Route Table Mode
	IPv6 Route Table Mode Commands
	Remove IPv6 Route Table

	IPv4 or IPv6 Next Hop Mode
	Enter IPv4 or IPv6 Next Hop Mode
	IPv4 or IPv6 Next Hop Mode Commands
	Remove IPv4 or IPv6 Next Hop

	SPAN Mode
	Enter SPAN Mode
	SPAN Mode Commands
	Remove Single SPAN Destination
	Remove SPAN

	VXLAN Mode
	Enter VXLAN Mode
	VXLAN Mode Commands
	Remove VXLAN Tunnel

	User Authentication Configuration Mode
	Enter User Authentication Configuration Mode
	User Authentication Mode Commands
	Remove User

	NTP Configuration Mode
	Enter NTP Configuration Mode
	NTP Mode Commands
	Remove NTP Server

	NTP Restrict Mode
	Enter NTP Restrict Mode
	NTP Restrict Mode Commands
	Remove NTP Restriction

	NTP Upstream Server Mode
	Enter NTP Upstream Server Mode
	NTP Upstream Server Mode Commands
	Remove NTP Upstream Server

	NACM Group Mode
	Enter NACM Group Mode
	NACM Group Mode Commands
	Remove NACM Group

	NACM Rule-list Mode
	Enter NACM Rule-list Mode
	NACM Rule-list Mode Commands
	Remove NACM Rule-list

	NACM Rule Mode
	Enter NACM Rule Mode
	NACM Rule Mode Commands
	Remove NACM Rule

	DHCP IPv4 Server Config Mode
	Enter DHCP IPv4 Server Mode
	DHCP IPv4 Server Mode Commands
	Remove DHCP IPv4 Server Configuration

	DHCP4 Subnet4 Mode
	Enter DHCP4 Subnet4 Mode
	DHCP4 Subnet4 Mode Commands
	Remove DHCP4 IPv4 Subnet4 Configuration

	DHCP4 Subnet4 Pool Mode
	Enter DHCP4 Subnet4 Pool Mode
	DHCP4 Subnet4 Pool Mode Commands
	Remove DHCP4 IPv4 Subnet4 Pool

	DHCP4 Subnet4 Reservation Mode
	Enter DHCP4 Subnet4 Reservation Mode
	DHCP4 Subnet4 Reservation Mode Commands
	Remove DHCP4 IPv4 Subnet4 Reservation

	Kea DHCP4, Subnet4, Pool, or Reservation Option Mode
	Enter DHCP4 Option Mode
	DHCP4 Option Mode Commands
	Remove DHCP4 Option Configuration

	Unbound Server Mode
	Enter Unbound Server Mode
	Unbound Server Mode Commands
	Remove Unbound Server

	Unbound Forward-Zone Mode
	Enter Unbound Forward-Zone Mode
	Unbound Forward-Zone Mode Commands
	Remove Unbound Forward-Zone Zone

	Subif Mode
	Enter Subif Mode
	Subif Mode Commands
	Remove Subif

	Bond Mode
	Enter Bond Mode
	Bond Mode Commands
	Remove Bond

	Host ACL Mode
	Enter Host ACL Mode
	Host ACL Mode Commands
	Remove Host ACL

	Host ACL Rule Mode
	Enter Host ACL Rule Mode
	Host ACL Rule Mode Commands
	Remove Host ACL Rule

	API Endpoints
	YANG Data Models
	RESTCONF API

	Netgate TNSR Releases
	TNSR 19.05 Release Notes
	About This Release
	General
	ACL
	BGP
	CLI
	Dataplane
	DHCP
	Host ACLs
	HTTP Server / RESTCONF
	Installer
	Interfaces
	IPsec
	NACM
	NAT

	Known Limitations
	Updates
	ACLs
	BFD
	BGP
	CLI
	DHCP
	DNS
	Host ACLs
	HTTP Server / RESTCONF
	Interfaces
	IPsec
	MAP
	NACM
	NAT
	Neighbors
	NTP
	RESTCONF
	Routing
	User Management
	VXLAN

	Reporting Issues

	TNSR 19.02.1 Release Notes
	About This Release
	General
	NAT

	Known Limitations
	ACL
	BFD
	BGP
	CLI
	DHCP
	DNS
	HTTP Server / RESTCONF
	Interfaces
	IPsec
	NACM
	NAT
	Routing
	User Management

	Reporting Issues

	TNSR 19.02 Release Notes
	About This Release
	General
	BGP
	CLI
	Dataplane
	DHCP Server
	DNS
	Host
	Interfaces
	NAT
	RESTCONF
	Routing

	Known Limitations
	ACL
	BFD
	BGP
	CLI
	DHCP
	DNS
	HTTP Server / RESTCONF
	Interfaces
	IPsec
	NACM
	NAT
	Routing
	User Management

	Reporting Issues

	TNSR 18.11 Release Notes
	About This Release
	Access Lists (ACLs)
	Authentication & Access Control
	BGP
	Bridge
	CLI
	Hardware & Installation
	Interfaces
	Host
	IPsec
	NAT
	NTP
	RESTCONF
	VLAN/Subinterfaces

	Known Limitations
	Authentication & Access Control
	BGP
	CLI
	DHCP
	HTTP Server / RESTCONF
	Interfaces
	NAT
	Routing
	User Management

	Reporting Issues

	TNSR 18.08 Release Notes
	About This Release
	Authentication & Access Control
	BGP
	CLI
	DHCP
	DNS Resolver
	Hardware & Installation
	IPsec
	NAT
	NTP
	PKI (Certificates)
	RESTCONF

	Known Limitations
	Authentication & Access Control
	BGP
	Bridge
	CLI
	RESTCONF
	Interfaces
	NAT
	VLAN/Subinterfaces

	Reporting Issues

	TNSR 18.05 Release Notes
	About This Release
	Known Limitations
	Reporting Issues

	TNSR 0.1.0 Release Notes
	About This Release
	Known Limitations
	BGP Routes
	BGP route-map and prefix-list Entries
	DHCP Server

	Reporting Issues

	Licensing
	Apache 2.0 License
	CentOS EULA License
	GPLv2.0 License
	LGPLv2.1 License
	MIT License
	Net SNMP License

