
Product Manual
TNSR v19.02

Netgate

Sep 13, 2019

CONTENTS

1 Introduction 2
1.1 TNSR Business . 2
1.2 TNSR Enterprise . 2
1.3 Software Trials . 2
1.4 TNSR Architecture . 2
1.5 Technology Stack . 4
1.6 Basic Assumptions . 5

2 Installation 6

3 Default Behavior 9
3.1 Default Accounts and Passwords . 9
3.2 Default TNSR Permissions . 10
3.3 Default Allowed Traffic . 10

4 Zero-to-Ping 11
4.1 First Login . 11
4.2 Interface Configuration . 12
4.3 TNSR Interfaces . 13
4.4 NAT . 13
4.5 DHCP Server . 14
4.6 DNS Server . 14
4.7 Ping . 14

5 Command Line Basics 16
5.1 Working in the TNSR CLI . 16
5.2 Finding Help . 16
5.3 Starting TNSR . 17
5.4 Entering the TNSR CLI . 18
5.5 Configuration Database . 19
5.6 Configuration Mode . 21
5.7 Configuration Backups . 22
5.8 Viewing Status Information . 22
5.9 Service Control . 23
5.10 Diagnostic Utilities . 24
5.11 Basic System Information . 25

6 Basic Configuration 27
6.1 Setup Interfaces . 27
6.2 Disable Host OS NICs for TNSR . 28
6.3 Setup NICs in Dataplane . 29

i

6.4 Setup QAT Compatible Hardware . 31
6.5 Remove TNSR NIC for Host Use . 34

7 Updates and Packages 37
7.1 Generate a Key Pair . 37
7.2 Generate a Certificate Signing Request . 38
7.3 Submit the Certificate Signing Request . 39
7.4 Retrieve the signed certificate . 41
7.5 Install the certificate . 41
7.6 Package Management . 42
7.7 Package Information Commands . 42
7.8 Package Installation . 43
7.9 Updating TNSR . 43

8 Interfaces 45
8.1 Locate Interfaces . 45
8.2 Configure Interfaces . 45
8.3 Monitoring Interfaces . 46
8.4 Types of Interfaces . 49

9 Routing Basics 67
9.1 Route Tables . 67
9.2 Viewing Routes . 67
9.3 Managing Routes . 68
9.4 Default Route . 68

10 Access Lists 69
10.1 Standard ACLs . 69
10.2 MACIP ACLs . 70
10.3 Viewing ACL and MACIP Information . 70
10.4 ACL and NAT Interaction . 71

11 Border Gateway Protocol 72
11.1 Required Information . 72
11.2 Enabling BGP . 73
11.3 Example BGP Configuration . 73
11.4 Advanced Configuration . 74
11.5 BGP Information . 74
11.6 Working with Large BGP Tables . 76

12 IPsec 77
12.1 IPsec Cryptographic Acceleration . 77
12.2 Required Information . 77
12.3 IPsec Example . 79
12.4 IPsec Status Information . 85

13 Network Address Translation 87
13.1 Dataplane NAT Modes . 87
13.2 NAT Options . 88
13.3 NAT Pool Addresses . 89
13.4 Outbound NAT . 89
13.5 Static NAT . 90
13.6 NAT Reassembly . 91
13.7 Dual-Stack Lite . 92
13.8 Deterministic NAT . 93

ii

13.9 NAT Examples . 94

14 MAP (Mapping of Address and Port) 99
14.1 MAP Configuration . 99
14.2 MAP Parameters . 102
14.3 MAP Example . 104
14.4 MAP Types . 105

15 Dynamic Host Configuration Protocol 106
15.1 DHCP Configuration . 106
15.2 DHCP Service Control and Status . 111
15.3 DHCP Service Example . 112

16 DNS Resolver 113
16.1 DNS Resolver Configuration . 113
16.2 DNS Resolver Service Control and Status . 119
16.3 DNS Resolver Examples . 120

17 Network Time Protocol 122
17.1 NTP Configuration . 122
17.2 NTP Service Control and Status . 124
17.3 NTP Service Example . 126
17.4 NTP Best Practices . 127

18 Link Layer Discovery Protocol 128
18.1 Configuring the LLDP Service . 128

19 Public Key Infrastructure 130
19.1 Key Management . 130
19.2 Certificate Signing Request Management . 132
19.3 Certificate Management . 134
19.4 Certificate Authority Management . 135

20 Bidirectional Forwarding Detection 139
20.1 BFD Sessions . 139
20.2 BFD Session Authentication . 140

21 User Management 143
21.1 User Configuration . 143
21.2 Authentication Methods . 143

22 NETCONF Access Control Model (NACM) 145
22.1 NACM Example . 145
22.2 View NACM Configuration . 146
22.3 Enable or Disable NACM . 147
22.4 NACM Default Policy Actions . 148
22.5 NACM Username Mapping . 148
22.6 NACM Groups . 148
22.7 NACM Rule Lists . 149
22.8 NACM Rules . 149
22.9 NACM Rule Processing Order . 150
22.10 Regaining Access if Locked Out by NACM . 151
22.11 NACM Defaults . 152

23 HTTP Server 153
23.1 HTTP Server Configuration . 153

iii

23.2 HTTPS Encryption . 153
23.3 Authentication . 154
23.4 RESTCONF Server . 155

24 TNSR Configuration Example Recipes 156
24.1 RESTCONF Service Setup with Certificate-Based Authentication and NACM 156
24.2 TNSR IPsec Hub for pfSense . 163
24.3 Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 183
24.4 Service Provider Route Reflectors and Client for iBGP IPv4 . 194
24.5 LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver) 213
24.6 Using Access Control Lists (ACLs) . 216
24.7 Inter-VLAN Routing . 218
24.8 GRE ERSPAN Example Use Case . 223

25 Commands 226
25.1 Mode List . 228
25.2 Master Mode Commands . 229
25.3 Config Mode Commands . 230
25.4 Show Commands in Both Master and Config Modes . 232
25.5 Access Control List Modes . 233
25.6 MACIP ACL Mode . 234
25.7 GRE Mode . 236
25.8 HTTP mode . 236
25.9 Interface Mode . 237
25.10 Loopback Mode . 238
25.11 Bridge Mode . 238
25.12 NAT Commands in Configure Mode . 239
25.13 NAT Reassmbly Mode . 239
25.14 DS-Lite Commands in Configure Mode . 240
25.15 Tap Mode . 240
25.16 BFD Key Mode . 241
25.17 BFD Mode . 241
25.18 Host Interface Mode . 243
25.19 IPsec Tunnel Mode . 243
25.20 IKE mode . 243
25.21 IKE Peer Authentication Mode . 244
25.22 IKE Peer Authentication Round Mode . 244
25.23 IKE Child SA Mode . 245
25.24 IKE Child SA Proposal Mode . 245
25.25 IKE Peer Identity Mode . 246
25.26 IKE Proposal Mode . 247
25.27 IPsec Related Enumerated Types . 247
25.28 Map Mode . 250
25.29 Map Parameters Mode . 250
25.30 memif Mode . 251
25.31 Dynamic Routing Access List Mode . 252
25.32 Dynamic Routing Prefix List Mode . 252
25.33 Dynamic Routing Route Map Rule Mode . 253
25.34 Dynamic Routing BGP Mode . 255
25.35 Dynamic Routing BGP Server Mode . 256
25.36 Dynamic Routing BGP Neighbor Mode . 257
25.37 Dynamic Routing BGP Address Family Mode . 258
25.38 Dynamic Routing BGP Address Family Neighbor Mode . 259
25.39 Dynamic Routing BGP Community List Mode . 259

iv

25.40 Dynamic Routing BGP AS Path Mode . 260
25.41 Dynamic Routing Manager Mode . 260
25.42 IPv4 Route Table Mode . 261
25.43 IPv6 Route Table Mode . 261
25.44 IPv4 or IPv6 Next Hop Mode . 262
25.45 SPAN Mode . 263
25.46 VXLAN Mode . 263
25.47 User Authentication Configuration Mode . 264
25.48 NTP Configuration Mode . 264
25.49 NACM Group Mode . 266
25.50 NACM Rule-list Mode . 266
25.51 NACM Rule Mode . 267
25.52 DHCP IPv4 Server Config Mode . 267
25.53 DHCP4 Subnet4 Mode . 268
25.54 DHCP4 Subnet4 Pool Mode . 269
25.55 DHCP4 Subnet4 Reservation Mode . 269
25.56 Kea DHCP4, Subnet4, Pool, or Reservation Option Mode . 270
25.57 Unbound Mode . 273
25.58 Unbound Forward-Zone Mode . 274
25.59 Subif Mode . 274
25.60 Bond Mode . 275

26 API Endpoints 276
26.1 YANG Data Models . 276
26.2 RESTCONF API . 276

27 Netgate TNSR Releases 277
27.1 TNSR 19.02.1 Release Notes . 277
27.2 TNSR 19.02 Release Notes . 281
27.3 TNSR 18.11 Release Notes . 286
27.4 TNSR 18.08 Release Notes . 291
27.5 TNSR 18.05 Release Notes . 295
27.6 TNSR 0.1.0 Release Notes . 298

28 Licensing 299
28.1 Apache 2.0 License . 299
28.2 CentOS EULA License . 303
28.3 GPLv2.0 License . 303
28.4 LGPLv2.1 License . 310
28.5 MIT License . 319
28.6 Net SNMP License . 319

v

Product Manual, TNSR v19.02

This documentation has all the details needed to fully configure your TNSR platform, from the basics of TNSR all
the way to the complexities of implementing different applications. For quotes, updates, and more information about
TNSR, please contact sales@netgate.com.

CONTENTS 1

mailto:sales@netgate.com

CHAPTER

ONE

INTRODUCTION

TNSR is an open-source based packet processing platform that delivers superior secure networking solution perfor-
mance, manageability, and services flexibility. TNSR can scale packet processing from 1 to 10 to 100 Gbps, even 1
Tbps and beyond on commercial-off-the-shelf (COTS) hardware - enabling routing, firewall, VPN and other secure
networking applications to be delivered for a fraction of the cost of legacy brands. TNSR features a RESTCONF API
- enabling multiple instances to be orchestration managed - as well as a CLI for single instance management.

1.1 TNSR Business

TNSR Business is designed for users who have secure networking products with up to 10 Gbps network interface
cards (NICs), making it a viable replacement for users with moderate bandwidth secure networking needs.

TNSR Business is available from the Netgate store as a bare metal installer for hardware or virtual machines, or
pre-installed on select Netgate hardware.

Each licensed instance comes bundled with TNSR Business Technical Assistance from our 24/7 world-wide team of
support engineers, and it can be upgraded to TNSR Business Plus for even faster response times.

1.2 TNSR Enterprise

TNSR Enterprise is designed for enterprise and service provider users who want a full-featured secure networking
software solution. TNSR Enterprise is the right choice for throughput needs that range from 10 Gbps to terabits per
second.

Call us to begin a conversation about your needs. We’ll be happy to help.

Each licensed instance comes bundled with TNSR Enterprise Technical Assistance from our 24/7 world-wide team of
support engineers.

1.3 Software Trials

Both TNSR Business and TNSR Enterprise have 120-day trial versions available. You can visit the pricing page of
tnsr.com to find out full details on how the trial works.

1.4 TNSR Architecture

TNSR runs on a Linux host operating system. Initial configuration of TNSR includes installing associated services
and configuring network interfaces. It is important to note that network interfaces can be managed by the host OS or

2

https://store.netgate.com/TNSR-Systems-C335.aspx
https://www.netgate.com/company/contact-us.html
https://www.tnsr.com/pricing

Product Manual, TNSR v19.02

by TNSR, but not by both. In other words, once a network interface is assigned to TNSR, it is no longer available - or
even visible - to the host OS.

A little background. TNSR is the result of Netgate development, using many open source technologies to create a
product that can be supported and easily implemented in production environments.

Without TNSR, Linux systems use drivers to plumb the connections from hardware interfaces (NICs) to the OS kernel.
The Linux kernel then handles all I/O between these NICs. The kernel also handles all other I/O tasks, as well as
memory and process management.

In high I/O situations, the kernel can be tasked with servicing millions of requests per second. TNSR uses two open
source technologies to simplify this problem and service terabits of data in user space. Data Plane Development Kit
(DPDK) bypasses the kernel, delivering network traffic directly to user space, and and Vector Packet Processing (VPP)
accelerates traffic processing.

1.4. TNSR Architecture 3

Product Manual, TNSR v19.02

In practical terms, this means that once a NIC is assigned to TNSR, that NIC is attached to a fast data plane, but
it is no longer available to the host OS. All management - including configuration, troubleshooting and update - of
TNSR is performed either at the console or via RESTCONF. In cloud or virtual environments, console access may be
available, but the recommended configuration is still to dedicate a host OS interface for RESTCONF API access.

The recommended configuration of a TNSR system includes one host NIC for the host OS and all other NICs assigned
to TNSR.

This is important and bears repeating:

• The host OS cannot access NICs assigned to TNSR

• In order to manage TNSR, you must be able to connect to the console

1.5 Technology Stack

TNSR is designed and built from the ground up, using open source software projects including:

• Vector Packet Processing (VPP)

• Data Plane Developer Kit (DPDK)

• YANG for data modeling

• Clixon for system management

– Command Line Interface (CLI)

– RESTCONF for REST API configuration

• FRR for routing protocols

• strongSwan for IPsec key management

• Kea for DHCP Services

See also:

1.5. Technology Stack 4

https://fd.io/technology/#vpp
https://www.dpdk.org/
http://www.yang-central.org
http://www.clicon.org/
https://tools.ietf.org/html/rfc8040
https://frrouting.org/
https://strongswan.org/
https://kea.isc.org/

Product Manual, TNSR v19.02

What is Vector Packet Processing? Vector processing handles more than one packet at a time, as opposed to scalar
processing which handles packets individually. The vector approach fixes problems that scalar processing has with
cache efficiency, read latency, and issues related to stack depth/misses.

For technical details on how VPP accomplishes this feat, see the VPP Wiki.

1.6 Basic Assumptions

This documentation assumes the reader has moderate to advanced networking knowledge and some familiarity with
the CentOS Linux distribution.

1.6. Basic Assumptions 5

https://wiki.fd.io/view/VPP/What_is_VPP%3F

CHAPTER

TWO

INSTALLATION

Use the following instructions to install TNSR 19.02-1 from an .ISO image. Ensure that your selected system meets
the minimum specifications for a TNSR Supported Platform.

1. Obtain the TNSR .iso file image from Netgate®.

2. Write the .iso image to bootable media (DVD or USB drive).

3. Connect to the system console.

Note: The installer supports both VGA and serial console output, with VGA as the default..

4. Boot the system to the TNSR image on DVD or USB.

Note: If the optical drive or removable media is not set as the primary boot device for the hardware, then use
the system boot menu to manually select the boot device.

5. After a few seconds, the installer displays a TNSR 19.02-1 screen.

Fig. 1: TNSR 19.02-1 Installation Menu

6

https://docs.netgate.com/tnsr/en/latest/platforms/

Product Manual, TNSR v19.02

6. Press any key, such as space, to stop the 60-second timer. The menu contains, at minimum, the following
choices:

• Install TNSR: Select this option for installation via VGA console

• Install (serial-console) TNSR: Select this option for hardware that uses serial port 0.

7. Highlight the correct option for your system and press Enter to begin the installation of TNSR. It may take a
few seconds for the installer to display output to the console.

8. Once Anaconda launches, a menu labeled Installation will be displayed with nine choices. All options marked
with [!] must be resolve all installation requirements.

Note: Configuring 2) Timezone settings, 5) Installation Destination, and an administrator account on 9)
User creation will correct them all.

Option 7) Network configuration can enable a NIC in the host OS for use as a management interface. This
interface can then be used to access the system for troubleshooting or maintenance. If an interface is connected to
a network with a DHCP server during installation, the installer will automatically configure it as a management
interface.

Option 8 - Root password can be used instead of option 9 above. Security best practices dictate that it is best
not to enable interactive logon for the Root account.

Fig. 2: TNSR 19.02-1 Setup Menu

9. Once all options with [!] have been resolved, press b from the main menu to begin the installation, then press
the Enter key. Messages are displayed indicating the progress of the installation. Once all installation steps
have completed, a message is displayed that says “Installation complete. Press return to quit”. At that point,
press Enter and the system will reboot.

Note: The installer may spend several minutes displaying the message Performing post-installation setup
tasks, but it will eventually continue.

7

Product Manual, TNSR v19.02

10. When the system is restarting, remove the DVD or USB drive while the system reboots. CentOS 7 will start up
automatically from the hard drive. If the media remains inserted, the system may boot into the installer again.

Note: The boot options in the system BIOS may need changed if it does not boot automatically into CentOS 7.

11. After the system finishes rebooting, you can log in with the user and password you chose during the installation.

12. Once logged in, type clixon_cli to open the TNSR prompt.

Note: Once the system reboots, all of the network interfaces will be disabled in CentOS. The interfaces will need to
be re-enabled in TNSR.

Tip: One network interface should be enabled in the host OS as a management interface to allow access to the
system for troubleshooting or maintenance.

8

CHAPTER

THREE

DEFAULT BEHAVIOR

After the installation completes and TNSR boots for the first time, TNSR has an empty default configuration. This
means that TNSR has no pre-configured interfaces, addresses, routing behavior, and so on.

The host OS defaults are set during installation, and depend on the base OS, CentOS 7.4. For example, host manage-
ment interfaces may have been configured by the installer.

3.1 Default Accounts and Passwords

By default, the TNSR installation includes host OS accounts for root with interactive login disabled, and a tnsr
account.

For ISO installations, the best practice is to create at least one additional initial administrator account during the
installation process. That user is custom created by the person performing the installation, and thus is not a common
default that can be listed here.

Warning: When installing TNSR from an ISO image, the installer allows the root account to be unlocked and
assigned a password. The best practice, however, is to leave the root account locked and create at least one
additional administrator account using the installer. These additional accounts may use sudo to elevate privileges.
Any users added to the wheel group later may also use sudo to execute commands as root.

The default behavior of the tnsr account varies by platform:

ISO/Bare Metal Login for the tnsr user is disabled until its password is reset by an administrator.

Appliances Shipped with TNSR Pre-installed The tnsr user is available with a default password of
tnsr-default.

AWS The tnsr account is present but restricted to key-based authentication via ssh, using a key selected
when launching the TNSR instance.

Azure The tnsr account is present but restricted to key-based authentication via ssh, using a key se-
lected when launching the TNSR instance.

The password for the tnsr account can be reset by any other account with access to sudo. For example, the command
sudo passwd tnsr will prompt to set and confirm a new password for the tnsr user. The same action may also
be performed for the root account (sudo passwd root). As mentioned in the previous warning, it is best to
leave interactive logins for root disabled.

Warning: Change default passwords, even randomized default passwords or passwords pre-configured when
launching a cloud-based instance, after the first login. Do not leave default passwords active!

9

Product Manual, TNSR v19.02

Note: User authentication is performed by the host OS. Though users may be created inside TNSR (User Manage-
ment), these users are propagated to the host. To control what users may access, see NETCONF Access Control Model
(NACM).

3.2 Default TNSR Permissions

By default, there is no TNSR configuration present. As such, there are no pre-configured access permissions for users
to restrict access to TNSR. Thus, any operating system user on the TNSR host will be able to reach the TNSR CLI
and make changes.

To restrict which accounts have access to TNSR, see NETCONF Access Control Model (NACM).

3.3 Default Allowed Traffic

For the default behavior of allowed traffic to and from TNSR, there are two separate areas to consider:

• Traffic flowing through TNSR

• Traffic for the host OS management interface

3.3.1 TNSR

By default, there is no TNSR configuration present. As such, there are no default access lists (ACLs) and once TNSR
is able to route traffic, all packets flow freely. See Access Lists for information on configuring access lists.

3.3.2 Host OS

The TNSR installation configures a default set of Netfilter rules for the host OS management interface. The following
traffic is allowed to pass into and out of the host operating system interfaces:

• ICMP / ICMP6

• ssh (TCP/22)

• HTTP (TCP/80)

• HTTPS (TCP/443)

• BGP (TCP/179)

• ISAKMP (UDP/500)

• NTP (UDP/123, TCP/123)

• DNS (UDP/53, TCP/53)

• SNMP (UDP/161)

• DHCP Server (UDP/67)

• UDP Traceroute (UDP ports 33434-33524 with TTL=1)

Future versions of TNSR will include the ability to manage the host OS Netfilter rules.

3.2. Default TNSR Permissions 10

CHAPTER

FOUR

ZERO-TO-PING

This document is a crash course in getting TNSR up and running quickly after installation. The topics included here
are covered in more detail throughout the remainder of the documentation.

4.1 First Login

When TNSR boots, it will present a login prompt on the console (video and serial). Login at this prompt using the
administrator account created during the installation process.

Alternately, if the host OS management interface was configured in the installer, login using an SSH client connecting
to that interface.

See also:

• Installation

4.1.1 Changing the Password

The password for administrator accounts was set during the installation process, but the default tnsr account should
have its password reset before making other changes.

Once logged in as an administrator, change the password for the default tnsr account using sudo. This tnsr
account can then be used to login and load the TNSR CLI automatically:

$ sudo passwd tnsr
Changing password for user tnsr.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
$

Warning: Use a strong password for this account as it will be able to make changes to the TNSR configuration,
unless restricted by a custom NACM configuration.

See also:

• Installation

• NETCONF Access Control Model (NACM)

11

Product Manual, TNSR v19.02

4.2 Interface Configuration

There are two types of interfaces on a TNSR system: Host OS interfaces for managing the device and dataplane
interfaces which are available for use by TNSR.

4.2.1 Host OS Management Interface

By default the installer will attempt to configure a host OS interface using DHCP. This is by far the easiest method
of configuring an interface for management. That said, not every environment will have or want DHCP enabled on a
management network. In these cases, the interface must be configured manually in CentOS. A manual, non-DHCP,
configuration is also possible in the installer.

At a minimum, the host OS must have an interface address, subnet mask, and a default gateway configured. The
default gateway is necessary so that the host OS may retrieve updates as that traffic does not flow through TNSR, but
over the management interface. Additionally, other host traffic may flow through the management interface, such as
the ping command from within the TNSR CLI.

If an interface was not configured for management in the installer, it will need to be manually changed back to host
OS control and then configured for network access.

Consult CentOS 7.4 documentation for the specifics of network configuration for other environments.

See also:

• Installation

• Disable Host OS NICs for TNSR

4.2.2 Dataplane Interfaces

Interfaces not configured for host OS management control in the installer will be setup in such a way that they are
available for use by the dataplane and thus TNSR.

Enter the TNSR CLI (Entering the TNSR CLI) and configure the network interfaces:

tnsr# configure
tnsr(config)# dataplane dpdk dev ?
0000:00:14.0 Ethernet controller: Intel Corporation Ethernet

Connection I354 (rev 03)
0000:00:14.1 Ethernet controller: Intel Corporation Ethernet

Connection I354 (rev 03)
0000:00:14.2 Ethernet controller: Intel Corporation Ethernet

Connection I354 (rev 03)
0000:00:14.3 Ethernet controller: Intel Corporation Ethernet

Connection I354 (rev 03)
0000:03:00.0 Ethernet controller: Intel Corporation I211 Gigabit

Network Connection (rev 03)
0000:04:00.0 Ethernet controller: Intel Corporation I211 Gigabit

Network Connection (rev 03) (Active Interface enp4s0)
tnsr(config)# dataplane dpdk dev 0000:00:14.1 network
tnsr(config)# dataplane dpdk dev 0000:00:14.2 network
tnsr(config)# service dataplane restart
tnsr(config)# exit

See also:

• Installation

4.2. Interface Configuration 12

Product Manual, TNSR v19.02

• Setup NICs in Dataplane

4.3 TNSR Interfaces

Next, the interfaces inside TNSR must be configured with addresses and routing.

4.3.1 WAN Interface

In this example, WAN will be set with a static IP address and configured as the outside NAT interface:

tnsr# configure terminal
tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# description Internet
tnsr(config-interface)# ip address 203.0.113.2/24
tnsr(config-interface)# enable
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit
tnsr(config)# exit

See also:

• Configure Interfaces

4.3.2 LAN Interface

Next, configure an address for the internal network and set it as the inside NAT interface:

tnsr(config)# interface GigabitEthernet0/14/2
tnsr(config-interface)# ip address 172.16.1.1/24
tnsr(config-interface)# description Local
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# enable
tnsr(config-interface)# exit

See also:

• Configure Interfaces

4.4 NAT

Configure TNSR to use the WAN interface address for NAT, and enable NAT forwarding:

tnsr(config)# nat pool interface GigabitEthernet0/14/2
tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)#

See also:

• Network Address Translation

• NAT Pool Addresses

• NAT Forwarding

4.3. TNSR Interfaces 13

Product Manual, TNSR v19.02

4.5 DHCP Server

Setup a basic DHCP server on the LAN side to hand out addresses, also instruct clients to use TNSR as their gateway
and DNS server.

tnsr(config)# dhcp4 server
tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet0/14/2
tnsr(config-kea-dhcp4)# subnet 172.16.1.0/24
tnsr(config-kea-subnet4)# pool 172.16.1.100-172.16.1.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-dhcp4)# exit
tnsr(config)# dhcp4 enable

See also:

• Dynamic Host Configuration Protocol

4.6 DNS Server

Configure TNSR to act as a DNS server for local clients, using upstream forwarding DNS servers of 8.8.8.8 and
8.8.4.4:

tnsr# configure
tnsr(config)# unbound server
tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 172.16.1.1
tnsr(config-unbound)# access-control 172.16.1.0/24 allow
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4
tnsr(config-unbound-fwd-zone)# exit
tnsr(config-unbound)# exit
tnsr(config)# unbound enable

See also:

• DNS Resolver

4.7 Ping

4.7.1 From the Host

The TNSR CLI includes a ping utility which will send an ICMP echo request out.

4.5. DHCP Server 14

Product Manual, TNSR v19.02

tnsr# ping 203.0.113.1
PING 203.0.113.1 (203.0.113.1) 56(84) bytes of data.
64 bytes from 203.0.113.1: icmp_seq=1 ttl=64 time=0.680 ms
64 bytes from 203.0.113.1: icmp_seq=2 ttl=64 time=0.176 ms
64 bytes from 203.0.113.1: icmp_seq=3 ttl=64 time=0.505 ms
64 bytes from 203.0.113.1: icmp_seq=4 ttl=64 time=0.453 ms
64 bytes from 203.0.113.1: icmp_seq=5 ttl=64 time=0.420 ms
64 bytes from 203.0.113.1: icmp_seq=6 ttl=64 time=0.144 ms
64 bytes from 203.0.113.1: icmp_seq=7 ttl=64 time=0.428 ms
64 bytes from 203.0.113.1: icmp_seq=8 ttl=64 time=0.494 ms
64 bytes from 203.0.113.1: icmp_seq=9 ttl=64 time=0.163 ms
64 bytes from 203.0.113.1: icmp_seq=10 ttl=64 time=0.346 ms

--- 203.0.113.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9000ms
rtt min/avg/max/mdev = 0.144/0.380/0.680/0.167 ms

tnsr#

By default this will follow the host OS routing table, but by specifying a source address, it will use addresses from
TNSR:

tnsr# ping 203.0.113.1 source 203.0.113.2
PING 203.0.113.1 (203.0.113.1) from 203.0.113.2 : 56(84) bytes of data.
64 bytes from 203.0.113.1: icmp_seq=1 ttl=64 time=0.700 ms
64 bytes from 203.0.113.1: icmp_seq=2 ttl=64 time=0.353 ms
64 bytes from 203.0.113.1: icmp_seq=3 ttl=64 time=0.590 ms
64 bytes from 203.0.113.1: icmp_seq=4 ttl=64 time=0.261 ms
64 bytes from 203.0.113.1: icmp_seq=5 ttl=64 time=0.395 ms
64 bytes from 203.0.113.1: icmp_seq=6 ttl=64 time=0.598 ms
64 bytes from 203.0.113.1: icmp_seq=7 ttl=64 time=0.490 ms
64 bytes from 203.0.113.1: icmp_seq=8 ttl=64 time=0.790 ms
64 bytes from 203.0.113.1: icmp_seq=9 ttl=64 time=0.155 ms
64 bytes from 203.0.113.1: icmp_seq=10 ttl=64 time=0.430 ms

--- 203.0.113.1 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9001ms
rtt min/avg/max/mdev = 0.155/0.476/0.790/0.187 ms

See also:

• Diagnostic Utilities

4.7.2 From LAN Client

At this stage a LAN client will be able to connect to the network (port or switch) connected to the LAN interface. It
can pull an IP address and other configuration via DHCP, resolve domain names via DNS, and reach hosts beyond
TNSR using it as a gateway.

A ping executed on a client will flow through TNSR and replies will return.

4.7. Ping 15

CHAPTER

FIVE

COMMAND LINE BASICS

The TNSR command line interface (CLI) may seem familiar to administrators who are familiar the CLI of other routers
or networking equipment. However, the specific behavior and structure of the TNSR CLI differs in several aspects.

Tip: For a full TNSR CLI command reference, visit Commands.

5.1 Working in the TNSR CLI

The TNSR CLI supports case-sensitive tab expansion and prediction for input to speed up interactive work. For
example, the first few letters of a command or entity may be typed, depending on context, and then pressing the
tab key will complete a portion or all of the remaining input where possible. Additionally, in cases when there is an
existing entry or only one possible choice, pressing tab will automatically insert the entire entry. Commands or entities
may also be shortened provided the input is not ambiguous.

The TNSR CLI supports common CLI navigation and editing key combinations, including:

• Recalling command history from the current session by using Ctrl-P, Ctrl-N, or the up and down arrow
keys

• Erasing characters with backspace or Ctrl-H, or whole words with Ctrl-W

• Moving the cursor to the beginning of the line with Ctrl-A or end with Ctrl-E

• Clearing and redrawing the screen with Ctrl-L

• Exiting the CLI with Ctrl-D

Be aware that exiting the CLI will not commit changes.

When working with the command line configuration, the prefix before the prompt changes depending on context to
indicate that a different subset of commands is required.

5.2 Finding Help

The CLI includes context-sensitive help. At any point, enter a ? and TNSR will print a list of available commands or
keywords that are valid in the current context. Enter a space before the ? to ensure correct context.

Additionally, the help command can be issued in any mode. There are three variations:

help, help commands These are equivalent and print a list of available commands in the current mode.

help mode Prints information about the current mode, including whether or not exiting the mode will
cause a commit (Configuration Database).

16

Product Manual, TNSR v19.02

5.3 Starting TNSR

The services required by TNSR to run are enabled by the installer, and they will automatically start at boot time. There
is no need to manually stop or start TNSR services during normal operation.

5.3.1 TNSR Service Relationships

TNSR requires the vpp, clixon-backend, and clixon-restconf services.

The clixon-backend service is configured to depend on vpp, thus:

• If the vpp service is restarted, clixon-backend will also restart if it is running.

• If the vpp service is stopped, clixon-backend will stop if it is running.

• If both vpp and clixon-backend are stopped, then starting clixon-backend will also start vpp.

Note: TNSR may require additional services depending on features enabled by the TNSR configuration. These will
be automatically managed as needed.

5.3.2 Manual TNSR Service Operations

Stop TNSR services:

$ sudo systemctl stop vpp clixon-restconf

Start TNSR services:

$ sudo systemctl start clixon-backend clixon-restconf

Restarting TNSR services if they are already running:

$ sudo systemctl restart vpp clixon-restconf

These services are all daemons and not interactive. To configure TNSR, the administrator must initiate the TNSR CLI
separately, as described in Entering the TNSR CLI.

Convenience Alias

For convenience, an alias in the shell can be used to handle this task. For example, the following single line can be
added to ~/.bashrc:

alias restarttnsr='sudo systemctl stop vpp clixon-restconf;
sudo systemctl start clixon-backend clixon-restconf'

Note: The changes to ~/.bashrc will not take effect immediately. Either logout and login again, or source the file
by running source ~/.bashrc or . ~/.bashrc.

The above actions can then be accomplished all at once by running restarttnsr.

5.3. Starting TNSR 17

Product Manual, TNSR v19.02

5.4 Entering the TNSR CLI

The TNSR CLI can be started a few different ways. The command to start the CLI is /usr/bin/clixon_cli, but
the exact method varies, as discussed in this section.

When started, the TNSR CLI will print the hostname followed by the prompt:

tnsr#

From that prompt, commands can be entered to view status information or perform other tasks. Throughout this
documentation, the router hostname will typically be omitted unless it is required for clarification.

5.4.1 Using the tnsr account

TNSR includes a tnsr user by default, and this user will automatically load the TNSR CLI at login. To take advantage
of this user, login to it directly using ssh, or switch to it using sudo or su from another account.

The behavior of the tnsr account varies by platform, and its password can be reset using any account with access to
sudo (See Default Accounts and Passwords).

To switch from another user to the tnsr user, use sudo:

$ sudo su - tnsr

Alternately, use su and enter the password for the tnsr user:

$ su - tnsr
Password:

5.4.2 Using another account

The TNSR CLI can also be started manually from any user.

This command will start the TNSR CLI as the current user, which is ideal to use in combination with NACM:

$ /usr/bin/clixon_cli

5.4.3 Using root

This command will start the TNSR CLI as root, which generally should be avoided unless absolutely necessary (for
example, recovering from a flawed NACM configuration):

$ sudo /usr/bin/clixon_cli

5.4.4 Shell Alias

For convenience, the command to launch the TNSR CLI can be added to an alias in the shell. For example, the
following line can be added to ~/.bashrc to run TNSR as the current user:

alias tnsrcli='/usr/bin/clixon_cli'

5.4. Entering the TNSR CLI 18

Product Manual, TNSR v19.02

Note: The changes to ~/.bashrc will not take effect immediately. Either logout and login again, or source the file
by running source ~/.bashrc or . ~/.bashrc.

Then the TNSR CLI may be accessed using the alias from the shell, tnsrcli.

5.5 Configuration Database

TNSR maintains three separate configuration databases: startup, candidate, and running. These files are stored as
XML in plain text files.

startup The configuration loaded when the host boots up.

Note: A restart of TNSR services is not the same as a reboot. If, for example, the clixon services
are restarted, TNSR will still be using the running database.

candidate An in-process potential configuration that exists while the TNSR configuration is being ac-
tively edited. When committed, this configuration will be accepted as the running configuration by
TNSR if it is free of errors.

running The active running configuration, which reflects the current state of TNSR.

Note: These databases are located in /var/tnsr/ on the host, but these files are not intended to be accessed outside
of TNSR.

The configuration database is managed using the configuration command from within config mode.

5.5.1 Saving the Configuration

For changes to persist between reboots of the TNSR host, the running configuration must be copied to the startup
configuration as shown in this example:

tnsr# configure
tnsr(config)# configuration copy running startup

5.5.2 Viewing the Configuration

To view the configuration databases, use the show configuration command followed by the database name, for
example:

tnsr# show configuration running

or:

tnsr# show conf run

The default output is XML, but the configuration may also be printed in json format by adding json to the end of the
command.

5.5. Configuration Database 19

Product Manual, TNSR v19.02

5.5.3 Reverting to the Startup Configuration

TNSR can also revert to the previously saved startup configuration to remove undesirable changes to the running
configuration, should a regression in behavior occur.

For example:

tnsr# configure
tnsr(config)# configuration copy startup candidate
tnsr(config)# configuration candidate commit
tnsr(config)# exit

Warning: It is not possible to copy the startup configuration directly to the running configuration as that will not
result in the settings being active. The configuration must be committed after copying to the candidate.

5.5.4 Configuration Database Commands

These brief examples show other available configuration database management commands.

Delete the candidate database entirely, which if committed will leave TNSR with an empty configuration:

tnsr(config)# configuration candidate clear

Commit changes made to the candidate database, which if successful will become the running database:

tnsr(config)# configuration candidate commit

Discard the current candidate database to remove a change that has failed to validate, returning to the running config-
uration without the attempted changes:

tnsr(config)# configuration candidate discard

Attempt to validate the current candidate configuration to locate errors:

tnsr(config)# configuration candidate validate

Load a file from the host into the candidate database. The contents of the file can replace the candidate entirely, or
merge a new section into an existing configuration. After loading, the candidate must be committed manually.

tnsr(config)# configuration candidate load <filename> [(replace|merge)]

Copy the candidate configuration to the startup configuration:

tnsr(config)# configuration copy candidate startup

Copy the running configuration to either the candidate or startup configuration:

tnsr(config)# configuration copy running (candidate|startup)

Copy the startup configuration to the candidate configuration:

tnsr(config)# configuration copy startup candidate

Save either the candidate or running configuration to a file on the host.

5.5. Configuration Database 20

Product Manual, TNSR v19.02

tnsr(config)# configuration save (candidate|running) <filename>

While not a configuration database command directly, the TNSR CLI automatically discards the candidate database if
it fails to validate. This behavior can be changed using the following command:

tnsr(config)# no cli option auto-discard

5.6 Configuration Mode

After starting the TNSR CLI, the administrator is in basic mode and not configuration mode. To enter configuration
mode, enter the configure command. This command may be abbreviated to config and it is also acceptable to
write terminal after, as a convenience for administrators familiar with IOS who type it out of habit.

All of the following commands are equivalent:

tnsr# configure
tnsr# configure terminal
tnsr# config
tnsr# conf t

After entering any one of the above commands, the prompt changes to reflect the new configuration mode:

tnsr# configure terminal
tnsr(config)#

After entering other configuration commands, the new configuration is stored in the candidate database. A candidate
database may be committed either when all of the required information is present, or when exiting the current context.
Some commands are committed immediately.

Enter the exit command until the prompt returns to basic mode. At that point, if no errors have been encountered by
TNSR, all changes will have been committed to the running database:

tnsr(config-interface)# exit
tnsr(config)# exit
tnsr#

Items are removed or negated using no, for example, to remove an interface description:

tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# no description

5.6.1 Troubleshooting

If a change to the candidate database fails a validation check or application of the change to the system fails for some
reason, it is discarded automatically by default. TNSR resets the candidate database to the current contents of the
running database to avoid further attempts to apply the faulty configuration contained in the candidate database.

This automatic behavior can be changed, however, in cases where power users want more control to troubleshoot failed
configuration transactions:

tnsr# configure
tnsr(config)# no cli option auto-discard

5.6. Configuration Mode 21

Product Manual, TNSR v19.02

When auto-discard is disabled, if a configuration commit fails the candidate database retains the faulty configuration
data. Further configuration commands may apply additional changes to the candidate database. However, until the
configuration data which caused the failure is removed or set to a value which can be successfully applied, no further
commit will succeed.

Disabling the auto-discard feature only persists for the duration of the current CLI session in which it was disabled.
At the start of a new CLI session, auto-discard will again be enabled by default.

A faulty candidate can be viewed with the show configuration candidate command, as described in Con-
figuration Database

There are three approaches to rectify this situation:

• Issue alternate commands that directly correct the faulty configuration.

• Abandon the attempted configuration:

tnsr# configure
tnsr(config)# configuration candidate discard

• Removed the fault from the candidate configuration by reverting to the running configuration:

tnsr# configure
tnsr(config)# configuration copy running candidate
tnsr(config)# configuration candidate commit

5.7 Configuration Backups

The candidate and running databases can be saved to or loaded from files in the host OS. This can be used to make
backups, copy configurations to other routers, or similar purposes.

The filenames can take an absolute path and filename, or the path may be omitted to save the file in the directory
from which the TNSR CLI was invoked by the administrator. When saving, this file must be writeable by the TNSR
backend daemon. When loading, this file must be readable by the TNSR backend daemon.

Saving the running configuration as a backup:

tnsr# config
tnsr(config)# configuration save running backup.xml

Loading a configuration file from a backup:

tnsr# config
tnsr(config)# configuration candidate load backup.xml
tnsr(config)# configuration candidate commit

5.8 Viewing Status Information

Status information can be viewed using the show command from either basic or configuration mode.

For a full list of possible show commands, enter show ?:

tnsr# show ?
acl Access Control Lists
bfd Bidirectional Forwarding Detection

(continues on next page)

5.7. Configuration Backups 22

Product Manual, TNSR v19.02

(continued from previous page)

cli State of per-session CLI options
clock Show the current system date and time
configuration Config DB configuration state
counters Interface counters
dslite DS-Lite
gre GRE tunnels
host Host information
http HTTP
interface Interface details
ipsec IPsec
kea Kea/DHCP
macip MACIP Access Control Lists
map MAP-E/MAP-T
nacm NACM data
nat Network Address Translation
neighbor Neighbors (ARP/NDP)
ntp NTP
packet-counters Packet statistic and error counters
route Show routing info.
span SPAN mirrors
sysctl Sysctl parameters
system System information
unbound Unbound DNS
version Show version of system components
vxlan VXLAN tunnels

tnsr# show version
Version: tnsr-v19.02-1
Build timestamp: Thu Feb 21 17:12:00 2019 CST
Git Commit: 0x40204091

5.9 Service Control

Services controlled directly by TNSR can be restarted from within the TNSR CLI in configuration mode.

To control a service, use the service command as follows:

tnsr# configure
tnsr(config)# service <name> <action>

The service name must be one of the following:

backend Configuration backend (clixon_backend)

bgp BGP routing (bgpd, zebra)

dataplane Dataplane (vpp)

dhcp DHCP (kea)

http HTTP for RESTCONF API (nginx)

ntp Time service (ntpd)

restconf RESTCONF API (clixon_restconf)

unbound DNS Resolver (unbound)

The following action types are available:

5.9. Service Control 23

Product Manual, TNSR v19.02

start Start the service if it is not already running.

stop Stop the service if it is currently running.

restart Stop and restart the service, or start the service if it is not running.

status Show the current status of the service daemon(s) and the last few log entries.

5.10 Diagnostic Utilities

The TNSR CLI includes convenience utilities for testing connectivity.

5.10.1 Diagnostic Routing Behavior

The utilities in this section behave the same with regard to routing. These utilities will send traffic using the host OS
routing table by default unless a specific source address is passed to the command.

5.10.2 Ping

To perform a basic ICMP echo request, use the ping command:

tnsr# ping <destination host> source <interface IP address>

TNSR will send 10 ICMP echo requests to the destination host, waiting a maximum of 12 seconds for a reply. The
source address would be a TNSR interface address, which will allow ping to send its request using the routing table
in TNSR.

The ping command supports a number of additional parameters which alter its behavior:

tnsr# ping (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>] [source <src-
→˓addr>]

[count <count>] [packet-size <bytes>] [ttl <ttl-hops>] [timeout <wait-sec>]

dest-host|dest-ip The target of the ICMP echo request. This may be a hostname, IPv4 IP address, or
IPv6 IP address.

ipv4|ipv6 When a hostname is used for the destination, this parameter controls the address family used
for the ICMP echo request when the DNS response for the hostname contains both IPv4 (A) and
IPv6 (AAAA) records.

interface The TNSR interface from which the ICMP echo requests will originate.

source The source IP address for the ICMP echo requests. This is required to initiate an ICMP echo
request using the routing table in TNSR. If omitted, the ICMP echo request will use the host OS
routing table.

count The number of ICMP echo requests to send. Default value is 10.

packet-size The size of of the ICMP echo request payload, not counting header information. Default
value is 56.

ttl The Time To Live/Hop Limit value for ICMP echo requests, which can limit how far they may travel
across the network. Default value is 121 hops.

timeout The total time to wait for the command to complete.

5.10. Diagnostic Utilities 24

Product Manual, TNSR v19.02

5.10.3 Traceroute

To perform a network routing trace to a destination host, use the traceroute command:

tnsr# traceroute <destination host> source <interface IP address>

The source address would be a TNSR interface address, which will allow traceroute to send its request using the
routing table in TNSR.

As with the ping command, there several additional parameters to change the behavior of the trace:

tnsr# traceroute (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>] [source
→˓<src-addr>]

[packet-size <bytes>] [no-dns] [timeout <seconds>] [ttl <ttl-hos>] [waittime
→˓<wait-sec>]

Most parameters are the same as those found in ping (Ping). Only the items that differ are listed here:

no-dns Do not attempt to use DNS to reverse resolve hosts that respond to probes.

waittime Amount of time the command will wait for individual probe responses to return.

Warning: The traceroute command requires /usr/bin/traceroute to be present in the base operating
system. The TNSR package set includes a dependency which will automatically install a package for traceroute. It
may also be installed manually using sudo yum install -y traceroute or a similar command, depend-
ing on the host OS package management configuration.

5.11 Basic System Information

The TNSR CLI can set several basic elements about the system itself, which also serves as a good introduction to
making changes on TNSR. These settings are made in config mode.

The following parameters are available:

system contact <text> System contact information, such as an e-mail address or telephone number.

system description <text> A brief description of this TNSR instance, for example its role or other iden-
tifying information.

system location <text> The location of this TNSR instance, for example a physical location (building,
room number, rack number and position, VM host)

system name <text> The hostname of this TNSR instance.

Warning: This setting also changes the hostname in the host operating system to match, re-
placing any previously configured hostname.

This example shows how to set the above parameters, starting from master mode:

gw tnsr# configure
gw tnsr(config)# system contact support@example.com
gw tnsr(config)# system description TNSR Lab Router
gw tnsr(config)# system location HQ MDF/Rack 2 Top
gw tnsr(config)# system name labrtr01
labrtr01 tnsr(config)# exit

5.11. Basic System Information 25

Product Manual, TNSR v19.02

To view the values of these parameters, along with uptime and memory usage, use the show system command from
either master or config mode:

labrtr01 tnsr# show system
System Parameters:

description: TNSR Lab Router
contact: support@example.com
name: labrtr01
location: HQ MDF/Rack 2 Top
object-id: 1.3.6.1.4.1.13644
uptime: 1303615 seconds
total-ram: 8004488 KiB
free-ram: 3236820 KiB
total-swap: 2932732 KiB
free-swap: 2932732 KiB

5.11. Basic System Information 26

CHAPTER

SIX

BASIC CONFIGURATION

Now that TNSR is installed, it needs additional manual setup.

Note: This section assumes TNSR was installed as described in Installation. Devices pre-loaded with TNSR by
Netgate do not require these extra steps.

This section contains information for a manual setup of interfaces. It can also serve as a reference for activating
additional hardware added to an existing installation.

6.1 Setup Interfaces

TNSR requires complete control of the network interfaces that it will use. This means that the host operating system
must not be attempting to use or control them in any way. The device ID of the interface(s) also must be obtained to
inform VPP and TNSR what interfaces to use. The interface link can be tuned through VPP and configured through
TNSR.

Warning: The host management interface must remain under the control of the host operating system. It must
not be configured as an interface to be controlled by TNSR.

Network interfaces not configured in the installer will be disabled in CentOS during the installation process. The
interfaces will need to be re-enabled in TNSR. For a fresh installation of TNSR, skip ahead to Setup NICs in Dataplane.

Interfaces added to the TNSR instance after the initial setup will need to be disabled using the following procedure.

6.1.1 Identify NICs to use with TNSR

To start, locate the network interfaces in use by the host operating system. View a list of network interfaces known to
the host OS with this command:

$ ip link

To determine if a network interface is in use by the host OS, run the following command:

$ ip link show up

If an interface shows in that list, and its name does not start with vpp, then it is under control of the host.

27

Product Manual, TNSR v19.02

Note: The TNSR installer will automatically mark any interface not configured in the installer for use by TNSR.

Make a note of the network interfaces and their purpose. Note which interface will be used for host management,
and which interfaces will be used by TNSR. The host management interface will be left under the control of the
operating system, while the remaining interfaces may be used by TNSR. In this example, the host contains four
network interfaces: enp0s20f0, enp0s20f1, enp0s20f2, and enp0s20f3 and TNSR will use enp0s20f1
and enp0s20f2.

6.2 Disable Host OS NICs for TNSR

In order for TNSR to control network interfaces, they must be disabled in the host OS. In most cases this is not
necessary, as network interfaces not configured in the installer will be automatically disabled in CentOS during the
installation process. For a fresh installation of TNSR, skip ahead to Setup NICs in Dataplane. This section remains to
explain how to change interfaces added after initial installation, or for installations which do not contain whitelisted
network interfaces.

This is a two-step process. First, the link must be forced down, and then the network interface must be disabled in
Network Manager.

Warning: The host management interface must remain under the control of the host operating system. It must
not be configured as an interface to be controlled by TNSR. Do not disable the management interface during this
step.

For each of the interfaces noted in the last section, manually force the link down:

$ sudo ip link set <interface name> down

For example:

$ sudo ip link set enp0s20f1 down
$ sudo ip link set enp0s20f2 down

Next, disable these network interfaces in Network Manager. For each of these interfaces, edit the corresponding startup
script:

$ sudo vi /etc/sysconfig/network-scripts/ifcfg-<interface name>

In each of these files, ensure the following values are set. Add lines if they are not already present in the file:

ONBOOT=no
NM_CONTROLLED=no

Note: To change an interface from being usable by TNSR to back under host OS control, see Remove TNSR NIC for
Host Use.

6.2. Disable Host OS NICs for TNSR 28

Product Manual, TNSR v19.02

6.3 Setup NICs in Dataplane

Next, determine the device ID for the interfaces. Start the CLI (Entering the TNSR CLI) and run the following
command to output the device IDs as seen by the dataplane:

tnsr# configure
tnsr(config)# dataplane dpdk dev ?

0000:02:01.0 Ethernet controller: Intel Corporation 82545EM Gigabit
→˓Ethernet

Controller (Copper) (rev 01) (Active Interface eth0)
0000:02:02.0 Ethernet controller: Intel Corporation 82545EM Gigabit

→˓Ethernet
Controller (Copper) (rev 01)

0000:02:03.0 Ethernet controller: Intel Corporation 82545EM Gigabit
→˓Ethernet

Controller (Copper) (rev 01)

Interfaces under host control will be noted in the output with Active Interface. Other listed interfaces are usable by
TNSR.

For a fresh installation of TNSR, skip ahead to Configuring Interfaces for TNSR, otherwise continue on to identify
host interfaces added after TNSR was installed.

6.3.1 Host Interface Name to Dataplane ID Mapping

The output of the dataplane dpdk dev ? command includes the device IDs in the first column. The device IDs
will map to the network cards in a way that is typically easy to determine. For example:

Table 1: Interface Identifiers
Interface Identifier
enp0s20f0 0000:00:14.0
enp0s20f1 0000:00:14.1
enp0s20f2 0000:00:14.2
enp0s20f3 0000:00:14.3
enp3s0 0000:03:00.0
enp4s0 0000:04:00.0

The host OS interface name and VPP identifiers contain the same information represented in different ways. They both
reference the PCI bus number, slot number, and function number. The Interface name contains the values in decimal
while the identifier shown in VPP uses hexadecimal.

Deconstructing the first interface name, it contains the following:

Table 2: Interface Name Components
Component Interface Value VPP ID Value
Device Type en (Ethernet) n/a
PCI Bus p0 00
Bus Slot s20 14 (Decimal 20 in Hex)
Function f0 .0

Using this pattern, make a note of the VPP identifiers for the next step. In this example, since enp0s20f1 and
enp0s20f2 are the interfaces to use, the corresponding VPP IDs are 0000:00:14.1 and 0000:00:14.2.

6.3. Setup NICs in Dataplane 29

Product Manual, TNSR v19.02

6.3.2 Configuring Interfaces for TNSR

Next, edit the dataplane configuration. Start the CLI (Entering the TNSR CLI) and enter configuration mode:

tnsr# configure
tnsr(config)#

Add the device IDs of the interfaces to be used by the VPP dataplane, determined above:

tnsr(config)# dataplane dpdk dev 0000:00:14.1 network
tnsr(config)# dataplane dpdk dev 0000:00:14.2 network

Then commit the configuration:

tnsr(config)# configuration candidate commit

Restart the VPP dataplane:

tnsr(config)# service dataplane restart
tnsr(config)# exit

The interfaces will now be available for TNSR. Start the CLI again and run show interface and verify that the
interfaces appear in the output. The output example below has been shortened for brevity:

tnsr# show interface
Interface: GigabitEthernet0/14/1
[...]
Interface: GigabitEthernet0/14/2
[...]
Interface: local0
[...]

The TNSR interface name also reflects the type, followed by the PCI Bus/Slot/Function ID of each interface, using the
same hexadecimal notation as VPP.

Note: Once TNSR attaches to interfaces in this way, they will no longer be shown as devices in the host OS. To return
a network interface back to host OS control, see Remove TNSR NIC for Host Use.

One exception to this behavior is Mellanox network interfaces as they use the same driver for both host OS and DPDK,
they still appear in the host OS.

6.3.3 Troubleshooting

If the interfaces do not appear in the show interface output, the default driver did not attach to those interfaces
and they may require a different driver instead. To see a list of available drivers, use the following command from
config mode:

tnsr(config)# dataplane dpdk uio-driver ?
igb_uio UIO igb driver
uio_pci_generic Generic UIO driver
vfio-pci VFIO driver

To enable a different driver, complete the command using the chosen driver name, then commit the configuration and
restart the dataplane.

6.3. Setup NICs in Dataplane 30

Product Manual, TNSR v19.02

Note: Mellanox devices use RDMA and not UIO, so changing this driver will not have any effect on their behavior.
If a Mellanox device does not appear automatically, TNSR may not support that device.

tnsr(config)# dataplane dpdk uio-driver igb_uio
tnsr(config)# configuration candidate commit
tnsr(config)# service dataplane restart
tnsr(config)# exit

Then attempt to view the interfaces with show interface again. If they are listed, then the correct driver is now
active.

6.4 Setup QAT Compatible Hardware

TNSR Supports hardware compatible with Intel® QuickAssist Technology, also known as QAT, for accelerating cryp-
tographic and compression operations.

This hardware can be found in CPIC cards as well as many C3000 and Skylake Xeon systems. Netgate XG-1541 and
XG-1537 hardware has an add-on option for a CPIC card.

6.4.1 Setup Process

Enable SR-IOV in the BIOS

SR-IOV is required for QAT to function in TNSR. SR-IOV enables Virtual Functions which are required for binding
by crypto devices.

The procedure to enable SR-IOV varies by platform. Generally this involves rebooting the hardware and entering the
BIOS setup, making the change, and then saving and rebooting. The exact location of the SR-IOV option also varies
in different BIOS implementations.

Note: Netgate devices which ship with a CPIC card preinstalled will have this step completed at the factory, but
double check the BIOS to ensure it is set as expected.

Enable IOMMU in grub

IOMMU (Input–Output Memory Management Unit), which in this context is also known as Intel VT-d, must be
enabled in grub for QAT to function. It functions similar to PCI passthrough, allowing the dataplane to access the
QAT device.

To enable IOMMU in grub:

• Open /etc/default/grub in a text editor (as root or with sudo)

• Locate the line starting with GRUB_CMDLINE_LINUX

• Check if that line includes intel_iommu=on iommu=pt

• If those parameters are not included on the line, append them to the end, before the end quote.

• Save and exit the text editor

• Run one following commands (depending on how the device boots):

6.4. Setup QAT Compatible Hardware 31

Product Manual, TNSR v19.02

– Legacy: sudo grub2-mkconfig -o /boot/grub2/grub.cfg

– UEFI: sudo grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg

• Reboot the device

Change the uio driver to igb_uio

Next, change the TNSR dataplane uio driver to igb_uio:

tnsr# configure
tnsr(config)# dataplane dpdk uio-driver igb_uio

Configure the QAT PCI device in TNSR

Next, configure the QAT device in TNSR.

To configure this device, first locate its PCI ID. TNSR will print the PCI ID when viewing possible parameters for
dataplane devices

tnsr(config)# dataplane dpdk dev ?
0000:03:00.0 Ethernet controller: Intel Corporation Ethernet Connection
→˓X552 10 GbE SFP+
0000:03:00.1 Ethernet controller: Intel Corporation Ethernet Connection
→˓X552 10 GbE SFP+
0000:04:00.0 Co-processor: Intel Corporation DH895XCC Series QAT
0000:05:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network
→˓Connection (rev 01) (Active Interface eno1)
0000:05:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network
→˓Connection (rev 01)

In this instance, the following line from the output is for the QAT device:

0000:04:00.0 Co-processor: Intel Corporation DH895XCC Series QAT

The first value printed on the line is the PCI ID, 0000:04:00.0.

Now, tell TNSR the device at that address is a crypto device:

tnsr(config)# dataplane dpdk dev 0000:04:00.0 crypto

Activate and check the settings

When viewing the XML configuration with show configuration running, it will contain settings similar to
the following example. Note that if other dataplane options are present in the configuration, those will also be visible.
Here is how it looks once configured:

<dataplane-config>
<dpdk>

<dev>
<id>0000:04:00.0</id>
<device-type>crypto</device-type>

</dev>
<uio-driver>igb_uio</uio-driver>

</dpdk>
</dataplane-config>

6.4. Setup QAT Compatible Hardware 32

Product Manual, TNSR v19.02

After configuring the crypto device and uio driver, TNSR will commit the settings to the dataplane configuration.

To activate the new settings, restart the dataplane.

tnsr(config)# service dataplane restart
tnsr(config)# exit
tnsr#

Lastly, using the shell command, verify that VPP can see the crypto device:

tnsr# shell sudo vppctl show dpdk crypto devices
0000:04:00.0_qat_sym crypto_qat up

numa_node 0, max_queues 2
free_resources 0, used_resources 1
SYMMETRIC_CRYPTO, SYM_OPERATION_CHAINING, HW_ACCELERATED, IN_PLACE_SGL, OOP_SGL_IN_

→˓SGL_OUT, OOP_SGL_IN_LB_OUT, OOP_LB_IN_SGL_OUT, OOP_LB_IN_LB_OUT
Cipher: none, aes-cbc-128, aes-cbc-192, aes-cbc-256, aes-ctr-128, aes-ctr-192, aes-

→˓ctr-256, aes-gcm-128, aes-gcm-192, aes-gcm-256
Auth: none, md5-96, sha1-96, sha-256-96, sha-256-128, sha-384-192, sha-512-256

6.4.2 Troubleshooting

If the QAT device does not appear in the show dpdk crypto devices output, or it only shows an AES-NI
device, then VPP can not see the crypto device. To correct this, first verify the QAT drivers are loaded, VFs exist for
the QAT device, and grub BOOT_IMAGE is passing the necessary iommu parameters.

Verify IOMMU parameters:

$ dmesg | grep iommu

The following parameters should appear somewhere on the BOOT_IMAGE line in the dmesg output:

intel_iommu=on iommu=pt

Verify that the QAT drivers are loaded in the operating system:

$ lsmod | grep qat
qat_dh895xccvf 13281 0
qat_dh895xcc 13510 0
intel_qat 141755 2 qat_dh895xccvf,qat_dh895xcc
dh_generic 13286 1 intel_qat
rsa_generic 18819 1 intel_qat
authenc 17776 1 intel_qat

Verify Virtual Functions (VFs) exist for the QAT device:

$ lspci | grep QAT | wc -l

The number of listings are dependent on how many threads VPP uses to process packets. At minimum there will be at
least three entries, but there may be many more. The lines will look similar to this example:

04:00.0 Co-processor: Intel Corporation DH895XCC Series QAT
04:01.0 Co-processor: Intel Corporation DH895XCC Series QAT Virtual Function
04:01.1 Co-processor: Intel Corporation DH895XCC Series QAT Virtual Function

TNSR stores the device Physical Function (PF), 04:00.0 for example, in its configuration because the VFs do not
yet exist at boot time. They are created by clixon-backend when it processes the crypto device. Then, the
allocated VFs on the PF have their addresses written to startup.conf.

6.4. Setup QAT Compatible Hardware 33

Product Manual, TNSR v19.02

The VFs are bound to igb_uio because igb_uio is a driver which allows a userspace process to do RDMA on
buffers that are used by a PCI device.

If the drivers are loaded and the VFs show under lspci, then verify /etc/vpp/startup.conf has the appro-
priate dpdk settings. The igb_uio driver must be present and the PCI IDs of TNSR interfaces along with one of the
VFs for the QAT device:

dpdk {
uio-driver igb_uio
dev 0000:04:01.0
dev 0000:05:00.1
dev 0000:03:00.0
dev 0000:03:00.1

}

If that looks correct, verify igb_uio is being used by the QAT VF and interfaces:

$ sudo vppctl show pci all | grep igb_uio
0000:03:00.0 0 8086:15ac 2.5 GT/s x1 igb_uio
0000:03:00.1 0 8086:15ac 2.5 GT/s x1 igb_uio
0000:04:01.0 0 8086:0443 unknown igb_uio
0000:05:00.1 0 8086:1521 5.0 GT/s x4 igb_uio

Physical TNSR interfaces will display there in addition to the QAT VF ID, which matches the QAT VF ID configured
for dpdk in /etc/vpp/startup.conf.

If any of those tests do not provide the expected output, then reboot the system and check again. Ensure the TNSR
services and VPP are running, and then check the VPP QAT status again.

$ sudo vppctl show dpdk crypto devices

If there is still no output, verify the PCI ID for the crypto device specified in TNSR is accurate. It must be the first PCI
ID displayed by lspci | grep qat. Then verify the PCI ID of the next listing in that output (first VF device) is
specified in /etc/vpp/startup.conf properly and also the same PCI ID seen by VPP when running:

$ sudo vppctl show pci all | grep igb_uio

6.5 Remove TNSR NIC for Host Use

If TNSR is controlling a network interface that should be used by the host OS, it can be returned to host OS control in
a few steps.

6.5.1 Locate the Interface

First, identify the interface in question. The PCI ID and Linux interface name are required to proceed, and Host
Interface Name to Dataplane ID Mapping explains the relationship between these interface names and IDs.

In this example, the TNSR interface GigabitEthernet0/14/3 will be returned to the host OS. Based on the
name, the PCI ID is 0000:00:14.3, and converting from hexadecimal to decimal yields the Linux interface name
enp0s20f3. This is determined based on PCI bus 0, Bus slot 20 (decimal), function 3.

6.5. Remove TNSR NIC for Host Use 34

Product Manual, TNSR v19.02

6.5.2 Remove the Interface from TNSR

First, remove any configuration items using the interface. The interface could be present in several places, so inspect
the entire running configuration for references to this interface and then remove them.

Next, remove the interface configuration itself:

tnsr# configure
tnsr(config)# no interface GigabitEthernet0/14/3

If the interface was manually specified in the dataplane by PCI ID as mentioned in Configuring Interfaces for TNSR,
that must be also be removed. This will be present in the running configuration inside the <dataplane> section, if
one exists. To remove the configuration, follow this example using the correct PCI ID:

tnsr(config)# no dataplane dpdk dev 0000:00:14.3

Save the configuration after making these changes, as the next steps will involve actions that may result in the startup
configuration being used by TNSR:

tnsr(config)# configuration copy running startup

Exit the TNSR CLI.

6.5.3 Edit the Host Interface Configuration

The network manager interface configuration scripts are located in /etc/sysconfig/network-scripts/.
This directory will contain an interface configuration script for the Linux interface name determined above, in the
form of ifcfg-<name>. In this example, this is ifcfg-enp0s20f3.

From a shell on the host OS, edit the file for this interface using sudo, for example:

$ sudo vi /etc/sysconfig/network-scripts/ifcfg-enp0s20f3

Inside that file change ONBOOT to yes:

ONBOOT=yes

Remove the NM_CONTROLLED line. if one is present.

6.5.4 Reactivate the Host Interface

At this point, the interface is ready to return to host OS control. There are two methods to complete the process:
Reboot the host, or manually reactivate the interface.

Reboot

The fastest and easiest option is to reboot the host. This will allow the host to naturally locate and resume control of
the device.

Warning: All traffic processing by TNSR will stop while the host is rebooting!

Reboot the host from the shell as follows:

6.5. Remove TNSR NIC for Host Use 35

Product Manual, TNSR v19.02

$ sudo shutdown -r

Manually Reactivate

Warning: The following procedure is advanced and we do not recommend using this method. We strongly advise
rebooting the host instead.

There is also a manual method which may be used if a reboot is not feasible.

First, stop the dataplane and related services:

Warning: All traffic processing by TNSR will stop while this service is stopped!

$ sudo systemctl stop vpp

Next, start a root shell and unbind the device from the current driver (TNSR):

$ sudo -s
echo '0000:00:14.3' > '/sys/bus/pci/devices/0000:00:14.3/driver/unbind'

Warning: Note the use of the PCI ID in both locations in the command, and the use of quotes around parameters.

That leaves the device unbound. Now it must be returned to a host kernel driver. The name of this driver depends on
the hardware. For most Netgate TNSR devices this will be igb, as in the following example.

Still using the root shell from the previous command, bind the interface to the driver as follows:

echo '0000:00:14.3' > '/sys/bus/pci/drivers/igb/bind'

Lastly, start the dataplane and related services:

$ sudo systemctl start clixon-backend

6.5.5 Configure the Host Interface

At this point the interface is now under host OS control and will be listed in the output of ip and similar commands.

$ ip addr show dev enp0s20f3
5: enp0s20f3: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group
→˓default qlen 1000

link/ether 00:08:a2:09:95:b4 brd ff:ff:ff:ff:ff:ff

The interface configuration in the host OS can be used to change the interface behavior as needed. The default
behavior is to act as a DHCP client. This can be changed by editing the interface configuration file noted in Edit the
Host Interface Configuration. Consult the CentOS documentation for additional details.

6.5. Remove TNSR NIC for Host Use 36

CHAPTER

SEVEN

UPDATES AND PACKAGES

TNSR software updates are available to download over the Internet using Linux package management tools (RPM,
yum). The settings required to communicate with the software repository containing TNSR updates are preconfigured
on TNSR. Connections to the Netgate TNSR repository must be authenticated using a valid signed client certificate.

Warning: Trial versions of TNSR cannot be updated. Reinstall with a full version of TNSR or install a new trial
version.

This guide explains how to obtain and install the required client certificate on a TNSR instance.

Warning: Portions of this process are not final and may change.

Commands must be executed on the TNSR instance to generate an X.509 certificate signing request. The request must
then be submitted to Netgate for signing. Once the request has been signed and a certificate has been generated, the
certificate must be downloaded and installed in TNSR.

Note: While it is possible to create the certificate outside of TNSR and import it afterward, this guide only demon-
strates using TNSR directly. See Public Key Infrastructure for more details about creating and importing certificates.

At a high level, the steps involved in the process can be summarized as:

7.1 Generate a Key Pair

This guide uses the TNSR CLI pki commands documented in Public Key Infrastructure to generate cryptographic
keys that can be used for secure communications and authentication.

Warning: When creating keys and certificates for updates, the name of each component must be
tnsr-updates, which is the name required by the software repository configuration.

The first step is to generate a set of cryptographic keys:

tnsr# pki private-key tnsr-updates generate
-----BEGIN PRIVATE KEY-----
[...]
-----END PRIVATE KEY-----
tnsr#

37

Product Manual, TNSR v19.02

Note: This command can be run only once successfully. Subsequent attempts will result in an error unless the existing
key is deleted.

This new tnsr-updates key object contains the private key, which is secret, and a public key, which is included in
the certificate.

The same key pair can be used as the basis for multiple certificate signing requests. If a certificate expires, is acci-
dentally deleted, or needs to be replaced for any other reason other than the keys being compromised, generate a new
signing request using the existing key pair.

7.2 Generate a Certificate Signing Request

The Certificate Signing Request (CSR) contains a public key derived from the key pair generated in the previous step,
plus attributes that uniquely identify the requester. A CSR is signed by a Certificate Authority to generate a certificate.

To generate a CSR, first set values which identify this TNSR instance:

tnsr# pki signing-request set common-name tnsr-example.netgate.com
tnsr# pki signing-request set country US
tnsr# pki signing-request set state Texas
tnsr# pki signing-request set city Austin
tnsr# pki signing-request set org Netgate
tnsr# pki signing-request set org-unit Engineering Testing 1 2 3

For the Common Name, enter the fully qualified domain name or Public IP address of the TNSR instance. For the
other fields, enter information about the name and location of the organization controlling this TNSR instance.

A Digest Algorithm is also required to sign the request:

tnsr# pki signing-request set digest sha256

View the values that have been set before generating the request:

tnsr# pki signing-request settings show
Certificate signing request fields:

common-name: tnsr-example.netgate.com
country: US
state: Texas
city: Austin
org: Netgate
org-unit: Engineering Testing 1 2 3
digest: sha256

Any typos can be corrected by re-running the appropriate set commands.

When all values are correct, generate the request:

Warning: As with the key pair, the request must have the name tnsr-updates.

tnsr# pki signing-request tnsr-updates generate
-----BEGIN CERTIFICATE REQUEST-----
MIICzTCCAbUCAQAwgYcxITAfBgNVBAMMGHRuc3ItZXhhbXBsZS5uZXRnYXRlLmNv
bTELMAkGA1UEBhMCVVMxDjAMBgNVBAgMBVRleGFzMQ8wDQYDVQQHDAZBdXN0aW4x

(continues on next page)

7.2. Generate a Certificate Signing Request 38

Product Manual, TNSR v19.02

(continued from previous page)

EDAOBgNVBAoMB05ldGdhdGUxIjAgBgNVBAsMGUVuZ2luZWVyaW5nIFRlc3Rpbmcg
MSAyIDMwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDAUxpX5KYNnu1t
7xIKV5ES6kPMDtBHqXB7d2fywtqfI/UVvV9+LhCHLL0z8ovqq/GcHioddCBQH63a
+Uqh0cMIZVOwRQhe7eYMO3GmHMyuxz6P5eWO3E9d/3sT0rL+fUDH8CVWwjmwX0tC
ldP3PADH4ennxqaWk0+lHga0Dm93hrErX5crzJMyZpGZ/BXfDYo+0uxktZOHIsSb
9gDtEN2534I2wk0hm6mFashDWxmYpcb8ventcVwtEOQGAByNsCg8z3VwcPQY6x9k
YIKFuQM3U8hZ2y6oEjjPqfsc+GnZ6b+7bWnck7tITqz6FQwnSW3sKvXkwsyeDnEa
3eyIjSrFAgMBAAGgADANBgkqhkiG9w0BAQsFAAOCAQEAetjRqn6IoekxZErrPvZf
encbvedPUTLSEbGF923PMpmH5KBAOe4QMT2wEA7dWd5GeuOEA5+6/QlvQh3kl1yU
bzDqRASjl67cKFxp6fL2iDkvoaGf+PusLGM3eQthGzF6t7q6cHl5O0ANVbrLZws2
quO9evqHgPCJkOhcmPLXSGgitMJwH7EBSmySsZPuEyUCsozA8YLsDLM0dxU5PQnX
XesDhG0AMcFhu34nmsUrCqJwi3CM4ruLT1YseVVyZDyjhTEWuCp9lZf7jzRl2qEF
afis853CjtURIekfzeKIqqacr1Y0XXt119DtKDzl9Z4sWu3C1PsdciOgalCnSVHh
5g==
-----END CERTIFICATE REQUEST-----

TNSR will print the CSR data to the terminal, as shown above. Copy the text, including the lines containing BEGIN
CERTIFICATE REQUEST and END CERTIFICATE REQUEST, and save it to a file.

7.3 Submit the Certificate Signing Request

To generate a signed certificate, the signing request must be submitted to Netgate. Netgate will sign the request with a
Certificate Authority key trusted by the TNSR update repository servers.

7.3.1 Required Customer Information

The certificate signing request must be accompanied by information Netgate can use to identify the customer and
validate the request. This information varies by platform.

TNSR Device or ISO Install

For customers using a device preloaded with TNSR or installing TNSR from an ISO image, the certificate signing
support request must be accompanied by information that Netgate can use to validate the request. Netgate must be
able to determine that the request is being sent from an authorized user on an account that has an appropriate TNSR
purchase.

For example, send the support request from the same e-mail address which was used when making the TNSR purchase
and include an order number and other relevant information in the support request when submitting the CSR.

TNSR in AWS

For AWS customers, two additional pieces of information are necessary to validate the status of customer accounts
before Netgate can sign a certificate:

• The AWS Customer ID

• The AWS Instance ID

Note: When registering a TNSR instance to obtain a client certificate, Netgate must be able to prove that this instance
of TNSR is a valid instance of the currently published AWS image. To do this, Netgate utilizes the AWS API that

7.3. Submit the Certificate Signing Request 39

Product Manual, TNSR v19.02

indicates which TNSR image the specified instance ID is an instance of. This is the only use of the customer instance
ID, which is not stored or retained in any way.

The AWS Customer ID can be found using the instructions at https://docs.aws.amazon.com/general/latest/gr/
acct-identifiers.html

The AWS Instance ID can be retrieved from the EC2 Web Console:

1. Navigate to https://console.aws.amazon.com/ec2/

2. Click Instances

3. Click the box next to the TNSR instance to select it

4. The AWS Instance ID is displayed at the bottom of the page under the Description tab

7.3.2 Create a Support Request for the CSR

Using the CSR and customer information, submit a request on the Netgate Support Portal.

Warning: The following steps are still under design and development and may change at any time.

1. Navigate to https://go.netgate.com/support/login

2. Log in with an existing account using an email address and password, or register a new account using the Sign
Up button and following the prompts

3. Create a new support request with the following properties:

Department Select Netgate Global Support

Software Product Select the matching purchased TNSR product, either TNSR Business or
TNSR Enterprise

Platform Choose the value that matches where TNSR is running, for example TNSR in AWS,
Netgate XG-1541 1U, or Whitebox / Other

General Problem Description Select TNSR Certificate Authorization

Support Level Choose the support level that matches the purchased TNSR product, TNSR
Business, TNSR Business Plus, or TNSR Enterprise

AWS Instance ID For TNSR on AWS customers only, The ID for this TNSR instance located pre-
viously

AWS Customer ID For TNSR on AWS customers only, the AWS Customer ID located previously

Order Number For device and ISO customers, the order number of the TNSR purchase for this
device

4. Include any other necessary identifying information in the Description field

5. Click Attach file and attach the file containing the CSR text

6. Submit the support request

7.3. Submit the Certificate Signing Request 40

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://console.aws.amazon.com/ec2/
https://go.netgate.com/support/login

Product Manual, TNSR v19.02

7.4 Retrieve the signed certificate

Warning: The following steps are still under design and development and may change at any time.

Once the certificate signing request has been signed by Netgate, the status of the support request will be updated to
reflect that the certificate is ready.

When this occurs, download the signed certificate:

1. Navigate to https://go.netgate.com/support/login

2. Locate the support request

3. Download the attached signed certificate file

7.5 Install the certificate

With the signed certificate in hand, it can now be installed on the TNSR instance:

Warning: As with the key and CSR, the name of the certificate must be tnsr-updates.

tnsr# pki certificate tnsr-updates enter
Type or paste a PEM-encoded certificate.
Include the lines containing 'BEGIN CERTIFICATE' and 'END CERTIFICATE'
-----BEGIN CERTIFICATE-----
MIIE7DCCAtSgAwIBAgIJANbZBxsCVDpvMA0GCSqGSIb3DQEBCwUAMHQxCzAJBgNV
BAYTAlVTMQ4wDAYDVQQIDAVUZXhhczEPMA0GA1UEBwwGQXVzdGluMRAwDgYDVQQK
DAdOZXRnYXRlMRgwFgYDVQQLDA9OZXRnYXRlIFROU1IgQ0ExGDAWBgNVBAMMD05l
dGdhdGUgVE5TUiBDQTAeFw0xODA0MzAxNTE1MDFaFw0xODA1MzAxNTE1MDFaMIGH
MSEwHwYDVQQDDBh0bnNyLWV4YW1wbGUubmV0Z2F0ZS5jb20xCzAJBgNVBAYTAlVT
MQ4wDAYDVQQIDAVUZXhhczEPMA0GA1UEBwwGQXVzdGluMRAwDgYDVQQKDAdOZXRn
YXRlMSIwIAYDVQQLDBlFbmdpbmVlcmluZyBUZXN0aW5nIDEgMiAzMIIBIjANBgkq
hkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwFMaV+SmDZ7tbe8SCleREupDzA7QR6lw
e3dn8sLanyP1Fb1ffi4Qhyy9M/KL6qvxnB4qHXQgUB+t2vlKodHDCGVTsEUIXu3m
DDtxphzMrsc+j+XljtxPXf97E9Ky/n1Ax/AlVsI5sF9LQpXT9zwAx+Hp58amlpNP
pR4GtA5vd4axK1+XK8yTMmaRmfwV3w2KPtLsZLWThyLEm/YA7RDdud+CNsJNIZup
hWrIQ1sZmKXG/L3p7XFcLRDkBgAcjbAoPM91cHD0GOsfZGCChbkDN1PIWdsuqBI4
z6n7HPhp2em/u21p3JO7SE6s+hUMJ0lt7Cr15MLMng5xGt3siI0qxQIDAQABo20w
azAJBgNVHRMEAjAAMBEGCWCGSAGG+EIBAQQEAwIFoDAdBgNVHQ4EFgQUXP0sedA8
QS34KxEmzZJInKWjZKQwHwYDVR0jBBgwFoAU8CpQYHQGB9CuwnHWUOlUnf7WE50w
CwYDVR0PBAQDAgXgMA0GCSqGSIb3DQEBCwUAA4ICAQC+6M81sTW9c/NL1LsS1ziQ
LWWd0L3qc7QlR6r+HdouU2R//+gP2ylHJelCM9kjCqHSQos5y+BDJ1/cbrV5JR5U
cnA2s54uePzGZGk89vZHCcUkuXDIgloU8q+p6e7pIyLoJxRU99psj8gT4nUBcczD
W+Vb7x4fotekPwXNWohsRsAXSPqEKbwuf03H4ntfmXLMHSq/qWmv1/g2nH79DRRN
M+A1sEyKL1XwGljY4mjblsOV8PY42LAjnSf7x+LZXnLSYL+9jZGt1A3U8FnQn4Wd
cSEUDDPE5yAj7xye96AAE7ayHtrBLKqbrVQXzVUX8xYQKroXyt1WabMnTdHzXu7K
ZM92H2OglSW2VO1ABjzBIIPPJ2pvCZWvt4XM1krmyTJEsem+U3oByY/wGp93DN0e
S0sM7GMBeJ8+aYNgEYIrVcX63VKy3dCLWjZpldwH1v8BNwJn/npWP0MbIh0EIe7/
WeqGTJu86UVKzuezi1sPkUjqP0cdGJHHMrGB8Q8uJ4ReHdRLs7Rs6CK00F2v68iQ
MyILSwy3cnlsxDnsm3JGIhXkm5aVCkLhBV0EM8GXJtW49ftP9ts0DKM3DWLLe82p
CG4IiLHO/nlVMEe0Hn5xE05r+GjYy8vDLJvAukDaet9li3ZaPAOFHZgLxNhWaPF5
jiSpPVrJiAlsJCv6Fy2FvA==

(continues on next page)

7.4. Retrieve the signed certificate 41

https://go.netgate.com/support/login

Product Manual, TNSR v19.02

(continued from previous page)

-----END CERTIFICATE-----
tnsr#

After successfully installing the certificate, TNSR can now download software updates from the repository.

7.6 Package Management

The package management commands allow the operator to install new software packages as well as discover and
perform updates for installed packages.

7.7 Package Information Commands

There are three commands which query the package database.

A <pkg-glob> is a simple regular expression. It consists of a string of alphanumeric characters which is optionally
prefixed or suffixed with a * character. The * character indicates zero or more characters.

For example:

abc matches only the package abc and would not match abcd.
*abc matches abc or zabc and would not match abcz.
abc* matches abc or abcz and would not match zabc.
abc matches any package with abc contained anywhere in its name.
* matches any package.

Tip: Do not escape or quote the glob as would typically be required by a Unix shell. The glob abc* is not the
same as abc*.

The first two commands have qualifiers that limit the scope of the packages to all, installed, or updatable packages.
These limitations are optional, and if not specified then it defaults to all packages in the database.

To display detailed information on packages:

tnsr# package info [available | installed | updates] <pkg-glob>

Warning: package information is limited to the first 25 packages found. If a query returns more items, a more
specific pkg-glob must be used to narrow the search.

To display a simple listing of package names and versions for all matching packages:

tnsr# package list [available | installed | updates] <pkg-glob>

The search command searches for a string in either the package name or description. The output includes the
package name and description of the package. The search term is literal, it is not a regular expression or glob:

tnsr# package search <term>

7.6. Package Management 42

Product Manual, TNSR v19.02

7.8 Package Installation

Warning: Recommended procedure is to reboot the router after any package install, remove, or upgrade operation.

To install a package and its required dependencies:

package install <pkg-glob>

To remove a package:

package remove <pkg-glob>

To upgrade a package:

package upgrade [<pkg-glob>]

7.9 Updating TNSR

Warning: Trial versions of TNSR cannot be updated. Reinstall with a full version of TNSR or install a new trial
version.

With a signed client certificate from Netgate in place, TNSR has access to the Netgate software repositories which
contain important updates. These updates can be retrieved using the package command in the TNSR CLI, or yum
in the host OS shell.

7.9.1 Pre-Upgrade Tasks

Before updating TNSR, perform the following tasks:

• Make sure the signed certificate is in place (Install the certificate)

• Make sure the TNSR instance has working Internet connectivity through the host OS management interface

• Take a backup of the running and startup configurations (Configuration Backups)

7.9.2 Updating via the TNSR CLI

The easiest way to update TNSR is from within the TNSR CLI itself.

tnsr# package upgrade

That command will download and apply all available updates. Afterward, exit the CLI and start it again.

7.9.3 Updating via the shell

TNSR can also be updated from the command line using the host OS package management commands, in this case,
yum:

7.8. Package Installation 43

Product Manual, TNSR v19.02

$ sudo yum clean all
$ sudo yum clean expire-cache
$ sudo yum -y upgrade

Update Script

The following shell script may be used to keep TNSR and CentOS updated. In addition to the updates it also makes a
local backup before performing the update.

Listing 1: Download: updatetnsr.sh

1 #!/bin/sh
2

3 # Stop existing services
4 sudo systemctl stop strongswan-swanctl frr vpp clixon-restconf
5

6 # Time to make the backups
7 mkdir -p ~/tnsr-config-backup
8 sudo cp -p /var/tnsr/running_db ~/tnsr-config-backup/running_db-`date +%Y%m%d%H%M%S`.

→˓xml
9 sudo cp -p /var/tnsr/startup_db ~/tnsr-config-backup/startup_db-`date +%Y%m%d%H%M%S`.

→˓xml
10

11 # Update all RPMs
12 sudo yum clean all
13 sudo yum clean expire-cache
14 sudo yum -y upgrade
15

16 # Ensure services are stopped, in case some automatically started after update.
17 sudo systemctl stop strongswan-swanctl frr vpp clixon-restconf
18 # Start services
19 sudo systemctl start clixon-backend clixon-restconf

7.9.4 Update Troubleshooting

If the TNSR CLI method does not work, use the shell method instead.

If either method prints an error referring to a broken package database, recover it as follows:

$ mkdir -p ~/tmp/
$ sudo mv /var/lib/rpm/__db* ~/tmp/
$ sudo rpm --rebuilddb
$ sudo yum clean all

7.9. Updating TNSR 44

CHAPTER

EIGHT

INTERFACES

An interface must exist in TNSR before it is available for configuration. For hardware interfaces this is handled by the
procedure in Setup Interfaces. To create additional types of interfaces, see Types of Interfaces later in this chapter.

Once interfaces are present in TNSR, they can be configured to perform routing and other related tasks.

8.1 Locate Interfaces

The next step is to decide the purpose for which TNSR will use each interface.

First, look at the list of interfaces:

tnsr# show interface
Interface: GigabitEthernet0/14/1
[...]
Interface: GigabitEthernet0/14/2
[...]
Interface: local0
[...]

In the above shortened output, there are two viable interfaces, GigabitEthernet0/14/1 and
GigabitEthernet0/14/2. These can be used for any purpose, so map them as needed for the design of
the network for which TNSR will be routing.

The example configuration for this network is:

Table 1: Example Configuration
Interface Function IP Address Gateway
GigabitEthernet0/14/1 WAN 203.0.113.2/24 203.0.113.1
GigabitEthernet0/14/2 LAN 10.2.0.1/24 n/a

Connect the interfaces on the router hardware to the appropriate networks at layer 1 and layer 2, for example by
plugging the WAN into an Internet circuit and the LAN into a local switch. If TNSR is plugged into a managed
switch, ensure that its ports are configured for the appropriate VLANs.

8.2 Configure Interfaces

With the configuration data in hand, it is now possible to configure TNSR interfaces for basic IP level connectivity.

From within the TNSR CLI (Entering the TNSR CLI), enter configuration mode and setup the interfaces using this
example as a guide:

45

Product Manual, TNSR v19.02

tnsr# configure terminal
tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# description WAN
tnsr(config-interface)# ip address 203.0.113.2/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# interface GigabitEthernet0/14/2
tnsr(config-interface)# description LAN
tnsr(config-interface)# ip address 10.2.0.1/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit
tnsr#

In this sample session, both interfaces were configured with an appropriate description for reference purposes, an IP
address/subnet mask, and then placed into an enabled state.

If other hosts are present and active on the connected interfaces, it will now be possible to ping to/from TNSR to these
networks.

Tip: After making changes, don’t forget to save them to ensure they persist for the next startup by issuing the
configuration copy running startup command from with in config mode. See Saving the Configu-
ration for more information.

8.2.1 DHCP Client Example

The previous example was for a static IP address deployment.

To configure a TNSR interface to obtain its IP address via DHCP as a client, follow this example instead:

tnsr# configure terminal
tnsr(config)# interface GigabitEthernet3/0/0
tnsr(config-interface)# dhcp client ipv4
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit

8.3 Monitoring Interfaces

Each interface has associated counters, which enable traffic volume and error monitoring.

Note: To limit the amount of administrative traffic, VPP only updates these counters every 10 seconds.

There are four commands used to monitor interfaces, show interface, show counters, interface
clear counters, and show packet-counters.

8.3.1 show interface

The show interface command prints important traffic volume and error counters specific to each interface. For
example:

8.3. Monitoring Interfaces 46

Product Manual, TNSR v19.02

tnsr# show interface
Interface: GigabitEthernet0/6/0

Admin status: up
Link up, 1G bit/sec, full duplex
Link MTU: 9216 bytes
MAC address: 00:00:42:0b:86:cf
IPv4 Route Table: ipv4-VRF:0
IPv4 addresses:

1.1.1.1/24
IPv6 Route Table: ipv6-VRF:0
counters:

received: 214541 bytes, 2144 packets, 0 errors
transmitted: 862 bytes, 11 packets, 0 errors
2143 drops, 0 punts, 0 rx miss, 0 rx no buffer

The show interface command also supports filtering of its output using one or more special keywords. When
the list is filtered, its name, description, and administrative status are printed along with the chosen output.

acl Prints the access control lists configured on an interface

counters Prints the interface traffic counters for an interface

ipv4 Prints the IPv4 addresses present on the interface and the IPv4 route table used by the interface.

ipv6 Prints the IPv6 addresses present on the interface and the IPv6 route table used by the interface.

link Prints the link status (e.g. up or down), media type and duplex, and MTU

mac Prints the hardware MAC address, if present

nat Prints the NAT role for an interface (e.g. inside or outside)

These keywords may be used with the entire list of interfaces, for example:

tnsr# show interface ipv4

The filtering may also be applied to a single interface:

tnsr# show interface GigabitEthernet0/6/0 link

Multiple keywords may also be used:

tnsr# show interface ipv4 link

8.3.2 show counters

The show counters command displays detailed information on all available interface counters.

Example output:

tnsr# show counters
Interface: GigabitEthernet0/6/0

admin up link up
counter: value updated cleared elapsed

rx-bytes: 8118 1520970418 1520970410 8
rx-packets: 82 1520970418 1520970410 8

rx-ip4: 82 1520970418 1520970410 8
rx-ip6: 0 1520970418 1520970410 8

rx-error: 0 1520970418 1520970410 8

(continues on next page)

8.3. Monitoring Interfaces 47

Product Manual, TNSR v19.02

(continued from previous page)

rx-miss: 0 1520970418 1520970410 8
rx-no-buffer: 0 1520970418 1520970410 8

tx-bytes: 0 1520970418 1520970410 8
tx-packets: 0 1520970418 1520970410 8

tx-error: 0 1520970418 1520970410 8

drop: 82 1520970418 1520970410 8
punt: 0 1520970418 1520970410 8

The columns have the following meanings:

counter The name of the counter.

value The value, as of the last update, for the named counter.

updated The time that the counters were last updated. This time is represented as a UNIX timestamp,
which is the number of seconds since midnight, January 1st 1970 UTC based on the time setting of
the router.

cleared A UNIX timestamp representing the last time that the counter values were reset.

elapsed The elapsed time, in seconds, since the counters were cleared. This is calculated as (update time
- cleared time).

Counter values take a minimum of 10 seconds to be populated with valid data. During this time, the values in this
table are invalid and the value and updated time will be 0.

The cleared time will not update until the counters are manually cleared. Until this happens, the cleared and elapsed
time are displayed as -.

8.3.3 clear interface counters

The interface clear counters <name> command clears all counters on a given interface. If no specific
interface is given, all interfaces will have their counters cleared:

tnsr# interface clear counters
Counters cleared
tnsr#

8.3. Monitoring Interfaces 48

Product Manual, TNSR v19.02

8.3.4 Available Counters

Table 2: Counter Descriptions
Counter Description
rx-bytes bytes received
rx-packets packets received
rx-ip4 IPv4 packets received
rx-ip6 IPv6 packets received
rx-error receiver errors
rx-miss receiver miss
rx-no-buffer no buffers on receiver
tx-bytes bytes transmitted
tx-packets packets transmitted
tx-error transmitter errors
drop packets dropped
punt packets punted

8.3.5 show packet-counters

The show packet-counters command prints packet statistics and error counters taken from the dataplane. These
counters show counts of packets that have passed through various aspects of processing, such as encryption, along with
various types of packet send/receive errors.

Example output:

tnsr# show packet-counters
Count Node Reason

624 dpdk-crypto-input Crypto ops dequeued
624 dpdk-esp-decrypt-post ESP post pkts
624 dpdk-esp-decrypt ESP pkts received
622 esp-encrypt ESP pkts received
624 ipsec-if-input good packets received
304 ip4-input Multicast RPF check failed
9 ip4-arp ARP requests sent
22 lldp-input lldp packets received on disabled

→˓interfaces
8 ethernet-input no error
2 ethernet-input unknown ethernet type

5821 ethernet-input unknown vlan
16 arp-input ARP request IP4 source address

→˓learned
28 GigabitEthernet0/14/0-output interface is down
8 GigabitEthernet3/0/0-output interface is down

8.4 Types of Interfaces

Regular Interfaces Typically these are hardware interfaces on the host, or virtualized by the hypervisor
in a virtual machine environment. These are made available to TNSR through VPP, as described in
Setup Interfaces.

VLAN Subinterfaces VLAN interfaces are configured on top of regular interfaces. They send and re-
ceive traffic tagged with 802.1q VLAN identifiers, allowing multiple discrete networks to be used

8.4. Types of Interfaces 49

Product Manual, TNSR v19.02

when connected to a managed switch performing VLAN trunking or tagging.

memif Shared memory packet interfaces (memif) are virtual interfaces which connect between TNSR
and other applications on the same host.

tap Virtual network TAP interfaces which are available for use by host applications.

ipsec Interfaces created and used by IPsec tunnels.

Loopback Local loopback interfaces used for a variety of reasons, including management and routing so
that the address on the interface is always available, no matter the status of a physical interface.

GRE Generic Routing Encapsulation, an unencrypted tunneling interface which can be used to route
traffic to remote hosts over a virtual point-to-point interface connection.

SPAN Switch Port Analyzer, copies packets from one interface to another for traffic analysis.

Bond Bonded interfaces, aggregate links to switches or other devices employing a load balancing or
failover protocol such as LACP.

Bridge Bridges connect interfaces together bidirectionally, linking the networks on bridge members to-
gether into a single bridge domain. The net effect is similar to the members being connected to the
same layer 2 or switch.

VXLAN Interfaces Virtual Extensible LAN (VXLAN) is a similar concept to VLANs, but it encapsu-
lates Layer 2 traffic in UDP, which can be transported across other IP networks. This enables L2
connectivity between physically separated networks in a scalable fashion.

8.4.1 VLAN Subinterfaces

A few pieces of information are necessary to create a VLAN subinterface (“subif”):

• The parent interface which will carry the tagged traffic, e.g. GigabitEthernet3/0/0

• The subinterface ID number, which is a positive integer that uniquely identifies this subif on the parent interface.
It is commonly set to the same value as the VLAN tag

• The VLAN tag used by the subif to tag outgoing traffic, and to use for identifying incoming traffic bound for this
subif. This is an integer in the range 1-4095, inclusive. This VLAN must also be tagged on the corresponding
switch configuration for the port used by the parent interface.

The interface subif <parent> <subinterface id> command creates a new subif object with the
given identifier, as shown here:

tnsr(config)# interface subif TenGigabitEthernet6/0/0 70
tnsr(config-subif)# dot1q 70
tnsr(config-subif)# exact-match
tnsr(config-subif)# exit

In the above example, both the subif id and the 802.1q VLAN tag are the same, 70. Upon commit, this creates a
corresponding subif interface.

The subif interface appears with the parent interface name and the subif id, joined by a .:

tnsr(config)# interface TenGigabitEthernet6/0/0.70
tnsr(config-interface)#

At this point, it behaves identically to regular interface in that it may have an IP address, routing, and so on.

8.4. Types of Interfaces 50

https://docs.fd.io/vpp/17.10/libmemif_doc.html

Product Manual, TNSR v19.02

QinQ Subinterfaces

TNSR also supports multiple levels of VLAN tagged subinterfaces, commonly known as QinQ or 802.1ad. This is
used to transport multiple VLANs inside another VLAN-tagged outer frame. Intermediate equipment only sees the
outer tag, and the receiving end can pop off the outer tag and use the multiple networks inside independently as if
it had a direct layer 2 connection to those networks. In this way, providers can isolate multiple tenants on the same
equipment, allowing each tenant to use whichever VLAN tags they require, or achieve other goals such as using greater
than the default limit of 4096 VLANs.

This example creates a QinQ subinterface with an inner tag of 100 and an outer tag of 200. The subinterface ID
number can be any arbitrary unsigned 32-bit integer, but in this case it makes the purpose more clear to have it match
the outer and inner VLAN tags of the subinterface:

tnsr(config)# subif GigabitEthernet0/b/0 200100
tnsr(config-subif)# inner-dot1q 100
tnsr(config-subif)# outer-dot1q 200
tnsr(config-subif)# exit
tnsr(config)# exit

Note: TNSR can forward packets it receives on a QinQ interface or route packets out a QinQ interface, but the
router-plugin does not currently support QinQ so features such as ping will not work against the subinterface directly.

VLAN Subinterface Options

The previous examples show specific common usages, but there are more options available for subinterfaces. The
options used must match the peer to which the subinterface parent is connected, such as a switch or another TNSR
device.

Note: Where multiple similar options are present, generally this is for compatibility with other equipment that requires
using those specific options. Consult the documentation for the peer device to find out which options it prefers.

default Default subinterface, will match any traffic that does not match another subinterface on the same
parent interface.

untagged This subinterface will match frames without any VLAN tags.

exact-match Specifies whether to exactly match the VLAN ID and the number of defined VLAN IDs.
When this is not set, frames with more VLAN tags will also be matched. Layer 3/routed interfaces
must use exact-match, it is optional for unrouted/L2 interfaces.

dot1q (<vlan-id>|any) The VLAN tag to match for this subinterface.

inner-dot1q (<vlan-id>|any) An inner 802.1q VLAN tag for use with QinQ

outer-dot1ad (<vlan-id>|any) An outer 802.1ad VLAN tag for use with QinQ

outer-dot1q (<vlan-id>|any) An outer 802.1q VLAN tag for use with QinQ

vlan <vlan-id> VLAN ID for tag rewriting

vlan tag-rewrite disable Disable tag rewriting for this subinterface

vlan tag-rewrite pop-1 Remove one level of VLAN tags from packets on this subinterface.

vlan tag-rewrite pop-2 Remove two level of VLAN tags from packets on this subinterface.

8.4. Types of Interfaces 51

Product Manual, TNSR v19.02

vlan tag-rewrite push-1 (dot1ad|dot1q) <tag 1> Add a new layer of VLAN tagging to frames on this
subinterface using the provided VLAN tag.

vlan tag-rewrite push-2 (dot1ad|dot1q) <tag 1> <tag 2> Add two new layers of VLAN tagging to
frames on this subinterface using the provided VLAN tags.

vlan tag-rewrite translate-1-1 (dot1ad|dot1q) <tag 1> Replace one layer of VLAN tags with the a dif-
ferent VLAN ID.

vlan tag-rewrite translate-1-2 (dot1ad|dot1q) <tag 1> <tag 2> Replace one layer of VLAN tags with
two layers of tagging using the provided VLAN IDs.

vlan tag-rewrite translate-2-1 (dot1ad|dot1q) <tag 1> Replace two layers of VLAN tags with one
layer of tagging using the provided VLAN ID.

vlan tag-rewrite translate-2-2 (dot1ad|dot1q) <tag 1> <tag 2> Replace two layers of VLAN tags with
two different layers of tagging using the provided VLAN IDs.

8.4.2 Shared Memory Packet Interfaces (memif)

A Shared Memory Packet Interface (memif) has two components: A socket and an interface. A memif also requires a
role, either master or slave. In most TNSR applications, it will be the master and the other endpoint will be a
slave. A single socket may only be associated with one role type.

The interface memif socket command requires an identifier number and a filename, both of which must be
unique to this socket. For example, to create a socket with an ID of 23, using a socket file of /tmp/memif23.sock,
run this command:

tnsr(config)# interface memif socket id 23 filename /tmp/memif23.sock

Next, the interface memif interface command creates a memif object. This command requires its own
identifier, and it must be tied to the socket using the same ID from the previous command:

tnsr(config)# interface memif interface 100
tnsr(config-memif)# socket-id 23
tnsr(config-memif)# role master
tnsr(config-memif)# exit

At this point, an interface is available in TNSR. The name of this interface is composed of the socket ID and the
interface ID: interface memif<socket id>/<interface id>. In this example with a socket ID of 23
and an interface ID of 100, the full interface name is memif23/100.

For a list of all current memif entries, along with their names and configuration, use the show interface memif
command:

tnsr# show interface memif

Socket Id Filename
---------- --
0 /run/vpp/memif.sock
23 /tmp/memif23.sock

memif id: 100
Memif name: memif23/100
Interface: memif23/100
Role: master
Mode: ethernet
MAC address: 02:fe:8c:e5:ce:06

(continues on next page)

8.4. Types of Interfaces 52

https://docs.fd.io/vpp/17.10/libmemif_doc.html

Product Manual, TNSR v19.02

(continued from previous page)

Socket id: 23
Ring size: 0
Buffer size: 0
Admin up: false
Link up: false

8.4.3 Tap Interfaces

Virtual network tap interfaces give daemons and clients in the host operating system access to send and receive network
traffic through TNSR to other networks. A tap interface can carry layer 2 and layer 3 frames between the host OS and
TNSR, and be a bridge member.

The interface tap <name> command creates a tap object with the given name. This name is also used to create
the tap interface in the host OS. For example, if a tap object was created with interface tap mytap, then the
interface in the host OS is named mytap.

A tap interface appears in TNSR using the tap prefix followed by the chosen identifier number. For example, with an
identifier number of 1, the TNSR interface will be tap1. The instance identifier is required.

Creating tap Interfaces

Using the above example values, these commands will create a tap object and interface instance:

tnsr(config)# interface tap mytap
tnsr(config-tap)# instance 1

At this point, the interfaces exist but they contain no configuration:

In TNSR:

tnsr# show int tap1
Interface: tap1

Admin status: down
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 02:fe:77:d9:be:1e
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0

In the host OS:

$ ip address show mytap
300: mytap: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN
→˓group
default qlen 1000

link/ether 42:5a:f0:6f:d9:77 brd ff:ff:ff:ff:ff:ff
inet6 fe80::405a:f0ff:fe6f:d977/64 scope link

valid_lft forever preferred_lft forever

tap Interface Addresses

Configuring addresses for the interfaces depends on the location of the interface.

For the interface visible in TNSR, configure it in the same manner as other TNSR interfaces:

8.4. Types of Interfaces 53

Product Manual, TNSR v19.02

tnsr# configure
tnsr(config)# int tap1
tnsr(config-interface)# ip address 10.2.99.2/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit
tnsr#

The MAC address of the tap interface may also be set on the tap object:

tnsr# configure
tnsr(config)# interface tap mytap
tnsr(config-tap)# mac-address 02:fe:77:d9:be:ae
tnsr(config-tap)# exit
tnsr(config)# exit
tnsr#

The address for the host OS interface is configured by the host command under the tap object instance:

tnsr# configure
tnsr(config)# interface tap mytap
tnsr(config-tap)# host ipv4 prefix 10.2.99.1/24
tnsr(config-tap)# exit
tnsr(config)# exit
tnsr#

At this point, the interfaces will show the configured addresses:

In TNSR:

tnsr# show int tap1
Interface: tap1

Admin status: up
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 02:fe:77:d9:be:ae
IPv4 Route Table: ipv4-VRF:0
IPv4 addresses:

10.2.99.2/24
IPv6 Route Table: ipv6-VRF:0

In the host OS:

$ ip address show mytap
308: mytap: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN
→˓group
default qlen 1000

link/ether 02:fe:77:d9:be:ae brd ff:ff:ff:ff:ff:ff
inet 10.2.99.1/24 scope global mytap

valid_lft forever preferred_lft forever
inet6 fe80::02fe:77d9:beae/64 scope link

valid_lft forever preferred_lft forever

The host <family> prefix <address> syntax works similarly for IPv6 with an appropriate address.

8.4. Types of Interfaces 54

Product Manual, TNSR v19.02

Additional tap Configuration

Configure the tap as part of a host bridge:

tnsr(config-tap)# host bridge <bridge-name>

Note: A tap object cannot have both and IP address and a bridge name set.

Configure a gateway for the host tap interface:

tnsr(config-tap)# host (ipv4|ipv6) gateway <ipv4-addr>

Configure a namespace inside which the tap will be created on the host:

tnsr(config-tap)# host name-space <netns>

Configure the transmit and receive ring buffer sizes:

tnsr(config-tap)# rx-ring-size <size>
tnsr(config-tap)# tx-ring-size <size>

Note: Default ring size is 256. The value must be a power of 2 and must be less than or equal to 32768.

8.4.4 Loopback Interfaces

Before a loopback interface can be configured, it must be created by the interface loopback command. The
loopback must be given a unique name and a positive numeric instance identifier:

tnsr(config)# interface loopback mgmtloop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit

This example creates a new loopback object named mgmtloop with an instance identifier of 1. Upon commit, the
new interface will be available for use by TNSR. The interface will be designated loop<instance id>, in this
case, loop1:

tnsr(config)# interface loop1
tnsr(config-interface)# ip address 10.25.254.1/24
tnsr(config-interface)# exit

8.4.5 GRE Interfaces

A Generic Routing Encapsulation (GRE) interface enables direct routing to a peer that does not need to be directly
connected, similar to a VPN tunnel, but without encryption. GRE is frequently combined with an encrypted transport
to enable routing or other features not possible with the encrypted transport on its own. GRE interfaces can be
combined with dynamic routing protocols such as BGP, or use static routing.

To create a GRE object, TNSR requires an object name, positive integer instance ID, source IP address, and destination
IP address:

8.4. Types of Interfaces 55

Product Manual, TNSR v19.02

tnsr(config)# gre test1
tnsr(config-gre)# instance 1
tnsr(config-gre)# source 203.0.113.2
tnsr(config-gre)# destination 203.0.113.25
tnsr(config-gre)# exit

The above example creates a new GRE object named test1, with an instance id of 1, and the source and destination
addresses shown. Upon commit, the new GRE interface will be available for use by TNSR. The name of the GRE
interface is gre<instance id>, which in this case results in gre1. The GRE interface can then be configured
similar to other interfaces (Configure Interfaces):

tnsr(config)# interface gre1
tnsr(config-interface)# ip address 10.2.123.1/30
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit

Additional GRE Parameters

In GRE confguration mode, TNSR also supports optional parameters for the route table and tunnel type.

Route Table

This option controls which route table is used by the GRE object, for traffic utilizing the GRE interface:

tnsr(config)# gre <object name>
tnsr(config-gre)# encapsulation route-table <table name>

The default behavior is to use the default routing table, ipv4-VRF:0 which is equivalent to issuing this command:

tnsr(config)# gre test1
tnsr(config-gre)# encapsulation route-table ipv4-VRF:0

Tunnel Type

TNSR supports multiple GRE tunnel types as well, including:

l3 Layer 3 encapsulation, the default type of GRE tunnel, which can carry layer 3 IP traffic and above.

erspan Encapsulated Remote Switched Port Analyzer (ERSPAN). This requires a session ID number
after the type name.

teb Transparent Ethernet Bridging (TEB)

This command sets the type of tunnel:

tnsr(config)# gre <object name>
tnsr(config-gre)# tunnel-type <type> [parameters]

To configure an L3 tunnel, omit the tunnel-type command entirely or enter:

tnsr(config)# gre test1
tnsr(config-gre)# tunnel-type l3

8.4. Types of Interfaces 56

Product Manual, TNSR v19.02

To configure an ERSPAN tunnel with a session identifier of 1:

tnsr(config)# gre test1
tnsr(config-gre)# tunnel-type erspan 1

To confgigure a TEB tunnel:

tnsr(config)# gre test1
tnsr(config-gre)# tunnel-type teb

GRE List

To view a list of current GRE objects, use show gre:

tnsr# show gre

Name Instance Type Source IP Dest IP Encap Rt Session Id
----- -------- ---- ----------- ------------ ---------- ----------
test1 1 L3 203.0.113.2 203.0.113.25 ipv4-VRF:0 0

This command prints a list of all GRE objects and a summary of their configuration.

Examples

For an example ERSPAN configuration, see GRE ERSPAN Example Use Case

8.4.6 Switch Port Analyzer (SPAN) Interfaces

A SPAN interface ties two interfaces together such that packets from one interface (the source) are directly copied
to another (the destination). This feature is also known as a “mirror port” on some platforms. SPAN ports are com-
monly used with IDS/IPS, monitoring systems, and traffic logging/statistical systems. The target interface is typically
monitored by a traffic analyzer, such as snort, that receives and processes the packets.

A SPAN port mirrors traffic to another interface which is typically a local receiver. To send SPAN packets to a remote
destination, see GRE ERSPAN Example Use Case which can carry mirrored packets across GRE.

SPAN instances are configured from config mode using the span <source interface> command. Upon
entering that command, TNSR enters config-span mode, as in the following example:

tnsr(config)# span GigabitEthernet0/14/0
tnsr(config-span)# onto memif1/1 hw both
tnsr(config-span)# exit

A SPAN instance may have one or more destinations, configured with the onto <destination interface>
<layer> <state> command from within config-span mode. The parameters to the onto command are:

destination interface The interface which will receive copies of packets from the source interface. The
destination interface can be any interface available to TNSR.

layer Sets the layer above which packet information is forwarded to the destination. Can be one of the
following choices:

hw Mirror hardware layer packets.

l2 Mirror Layer 2 packets.

8.4. Types of Interfaces 57

Product Manual, TNSR v19.02

state Can be one of the following choices:

rx Enables receive packets

tx Enables transmit packets

both Enables both transmit and receive packets

disabled Disables both transmit and receive

8.4.7 Bonding Interfaces

TNSR supports bonding multiple interfaces together for link aggregation and/or redundancy. Several bonding methods
are supported, including Link Aggregation Control Protocol (LACP, 802.3ad). These types of interfaces may also be
called LAG or LAGG on other platforms and switches.

A bond instance has two main components on TNSR: The bond itself, and the interfaces which are a member of the
bond. Beyond that, the device to which the bonded interfaces connect, typically a switch, must also support the same
bonding protocol and it must also have ports with an appropriately matching configuration.

Bond Example

This example sets up a basic LACP bond between two interfaces. The first step is to create the bond instance:

tnsr(config)# interface bond 0
tnsr(config-bond)# load-balance l2
tnsr(config-bond)# mode lacp
tnsr(config-bond)# mac-address 00:08:a2:09:95:99
tnsr(config-bond)# exit

Next, decided which TNSR interfaces will be members of the bond, and configure them to be a part of the bond
instance. In this case, the example uses GigabitEthernet0/14/2 and GigabitEthernet0/14/3:

tnsr(config)# int GigabitEthernet0/14/2
tnsr(config-interface)# bond 0
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# int GigabitEthernet0/14/3
tnsr(config-interface)# bond 0
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit

With that complete, TNSR will now have a new interface, BondEthernet0:

Interface: BondEthernet0
Admin status: down
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 00:08:a2:09:95:99
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0
Slave interfaces:

GigabitEthernet0/14/2
GigabitEthernet0/14/3

counters:
received: 0 bytes, 0 packets, 0 errors

(continues on next page)

8.4. Types of Interfaces 58

Product Manual, TNSR v19.02

(continued from previous page)

transmitted: 0 bytes, 0 packets, 0 errors
0 drops, 0 punts, 0 rx miss, 0 rx no buffer

Looking at the interfaces that are members of the bond, the BondEthernet0 membership is also reflected there:

Interface: GigabitEthernet0/14/2
Admin status: up
Link up, unknown, full duplex
Link MTU: 9206 bytes
MAC address: 00:08:a2:09:95:99
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0
Bond interface: BondEthernet0
counters:

received: 52575 bytes, 163 packets, 0 errors
transmitted: 992 bytes, 8 packets, 19 errors
31 drops, 0 punts, 0 rx miss, 0 rx no buffer

Interface: GigabitEthernet0/14/3
Admin status: up
Link up, unknown, full duplex
Link MTU: 9206 bytes
MAC address: 00:08:a2:09:95:99
IPv4 Route Table: ipv4-VRF:0
IPv6 Route Table: ipv6-VRF:0
Bond interface: BondEthernet0
counters:

received: 4006 bytes, 37 packets, 0 errors
transmitted: 620 bytes, 5 packets, 13 errors
20 drops, 0 punts, 0 rx miss, 0 rx no buffer

A configuration can now be applied to BondEthernet0:

tnsr(config)# interface BondEthernet0
tnsr(config-interface)# ip address 10.2.3.1/24
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# exit

Finally, look at the completed interface configuration:

tnsr# show interface BondEthernet0

Interface: BondEthernet0
Admin status: up
Link up, unknown, unknown duplex
Link MTU: 9216 bytes
MAC address: 00:08:a2:09:95:99
IPv4 Route Table: ipv4-VRF:0
IPv4 addresses:

10.2.3.1/24
IPv6 Route Table: ipv6-VRF:0
Slave interfaces:

GigabitEthernet0/14/2
GigabitEthernet0/14/3

counters:
received: 0 bytes, 0 packets, 0 errors

(continues on next page)

8.4. Types of Interfaces 59

Product Manual, TNSR v19.02

(continued from previous page)

transmitted: 806 bytes, 9 packets, 0 errors
2366 drops, 0 punts, 0 rx miss, 9 rx no buffer

For information on the LACP state, use show interface lacp:

tnsr# show interface lacp
Interface name: GigabitEthernet0/14/2

Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Interface name: GigabitEthernet0/14/3
Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Bond Settings

The interface bond <instance> command in config mode enters config-bond mode. An instance
number, such as 0, must be manually specified to create a new bond interface.

config-bond mode contains the following options:

load-balance (l2|l23|l34) Configures the load balancing hash for the bonded interface. This setting deter-
mines how traffic will be balanced between ports. Traffic matching a single source and destination
pair for the configured hash value will flow over a single link. Using higher level hashing will
balance loads more evenly in the majority of cases, depending on the environment, but requires
additional resources to handle.

This load-balance configuration is only available in lacp and xor modes.

This should be set to match the switch configuration for the ports.

l2 Layer 2 (MAC address) hashing only. Any traffic to/from a specific pair of MAC ad-
dresses will flow over a single link. This method is the most common, and may be the
only method supported by the other end of the bonded link.

Note: If the bonded interface only transmits traffic to a single peer, such as an up-
stream gateway, then all traffic will flow over a single link. The bond still has redun-
dancy, but does not take advantage of load balancing.

l23 Layer 2 (MAC address) and Layer 3 (IP address) hashing. For non-IP traffic, acts the
same as l2.

l34 Layer 3 (IP address) and Layer 4 (Port, when available) hashing. If no port information
is present (or for fragments), acts the same as l23, and for non-IP traffic, acts the same
as l2.

mode (round-robin|active-backup|xor|broadcast|lacp)

round-robin Load balances packets across all bonded interfaces by sending a packet out
each interface sequentially. This does not require any cooperation from the peer, but

8.4. Types of Interfaces 60

Product Manual, TNSR v19.02

can potentially lead to packets arriving at the peer out of order. This can only influence
outgoing traffic, the behavior of return traffic is up to the peer.

active-backup Provides only redundancy. Uses a single interface of the bond, and will
switch to another if the first interface fails. The switch can only see the MAC address
of the active port.

xor Provides hashed load balancing of packet transmission. The transmit behavior is con-
trolled by the load-balance option discussed previously. This mode is a step up
from round-robin, but the behavior of return traffic is still up to the peer.

broadcast Provides only link redundancy by transmitting all packets on all links.

lacp Provides dynamic load balancing and redundancy using Link Aggregation Control
Protocol (LACP, 802.3ad). In this mode, TNSR will negotiate an LACP link with
an appropriately-configured switch, and monitors the links. This method is the most
flexible and reliable, but requires active cooperation from a switch or suitable peer.
The load balancing behavior can be controlled with the load-balance command
discussed previously.

mac-address <mac-address> Optionally specifies a manually-configured MAC address to be used by
all members of the bond, except in active-backup mode in which case it is only used by the
active link.

Additionally, from within config-interface on an Ethernet interface, the following commands are available:

bond <instance> [long-timeout] [passive]

instance The instance ID of the bond to which this interface will belong.

long-timeout Uses a 90-second timeout instead of the default timeout of 3 seconds when
monitoring bonding peers, such as with LACP.

passive This interface will be a member of the bond but will not initiate LACP negotia-
tions.

Bond Status

To view the bond configuration, use show interface bond. This will show the configured bond parameters and
other information that does not appear on the interface output:

tnsr# show interface bond
Interface name: BondEthernet0

Mode: lacp
Load balance: l2
Active slaves: 2
Slaves: 2
Slave interfaces:

GigabitEthernet0/14/2
GigabitEthernet0/14/3

To view the bonding status of all interfaces, use show interface bonding:

tnsr# show interface bonding

Interface: BondEthernet0
Admin status: up
Slave interfaces:

GigabitEthernet0/14/2

(continues on next page)

8.4. Types of Interfaces 61

Product Manual, TNSR v19.02

(continued from previous page)

GigabitEthernet0/14/3

Interface: GigabitEthernet0/14/0
Description: Uplink
Admin status: up

Interface: GigabitEthernet0/14/1
Admin status: down

Interface: GigabitEthernet0/14/2
Admin status: up
Bond interface: BondEthernet0

Interface: GigabitEthernet0/14/3
Admin status: up
Bond interface: BondEthernet0

Interface: GigabitEthernet3/0/0
Description: Local Network
Admin status: up

To view the LACP status, use show interface lacp [interface name]:

tnsr# show interface lacp
Interface name: GigabitEthernet0/14/2

Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

Interface name: GigabitEthernet0/14/3
Bond name: BondEthernet0
RX-state: CURRENT
TX-state: TRANSMIT
MUX-state: COLLECTING_DISTRIBUTING
PTX-state: PERIODIC_TX

8.4.8 Bridge Interfaces

Bridges connect multiple interfaces together bidirectionally, linking the networks on bridge members together into a
single bridge domain. The net effect is similar to the members being connected to the same layer 2 or switch.

This is commonly used to connect interfaces across different types of links, such as Ethernet to VXLAN. Another
common use is to enable filtering between two segments of the same network. It could also be used to allow individual
ports on TNSR to act in a manner similar to a switch, but unless filtering is required between the ports, this use case is
not generally desirable.

Warning: Bridges connect together multiple layer 2 networks into a single larger network, thus it is easy to
unintentionally create a layer 2 loop if two bridge members are already connected to the same layer 2. For example,
the same switch and VLAN.

There are two components to a bridge: The bridge itself, and the interfaces which are members of the bridge.

8.4. Types of Interfaces 62

Product Manual, TNSR v19.02

Bridge Settings

A bridge is created by the interface bridge domain <bdi> command, available in config mode. This
command enters config-bridge mode where the following options are available:

arp entry ip <ip-addr> mac <mac-addr> Configures a static ARP entry on the bridge. Entries present
will be used directly, rather than having TNSR perform an ARP request flooded on all bridge ports
to locate the target. Additionally, when a bridge is not set to learn MACs, these entries must be
created manually to allow devices to communicate across the bridge.

arp term Boolean value that when present enables ARP termination on this bridge. When enabled,
TNSR will terminate and respond to ARP requests on the bridge. Disabled by default.

flood Boolean value that when present enables Layer 2 flooding. Enabled by default. When TNSR cannot
locate the interface where a request should be directed on the bridge, it is flooded to all ports.

forward Boolean value that when present enables Layer 2 unicast forwarding. Enabled by default. Al-
lows unicast traffic to be forwarded across the bridge.

learn When present, enables Layer 2 learning on the bridge. Enabled by default.

mac-age <minutes> When set, enables MAC aging on the bridge using the specified aging time.

uu-flood When present, enables Layer 2 unknown unicast flooding. Enabled by default.

Bridge Interface Settings

To add an interface to a bridge as a member, the following settings are available from within config-interface
mode:

interface bridge domain <domain-id> [bvi] [shg <n>]

domain id Bridge Domain ID, corresponding to the ID given when creating the bridge interface previ-
ously.

bvi Boolean value that when present indicates that this is a Bridged Virtual Interface (BVI). A bridge con-
nects multiple interfaces together but it does not connect them to TNSR. A BVI interface, typically
a loopback, allows TNSR to participate in the bridge for routing and other purposes.

An L3 packet routed to the BVI will have L2 encapsulation added and then is handed off to the
bridge domain. Once on the bridge domain, the packet may be flooded to all bridge member ports
or sent directly if the destination is known or static. A packet arriving from the bridge domain to a
BVI will be routed as usual.

Note: A bridge domain may only contain one BVI member.

shg <n> A Split Horizon Group identifier, used with VXLAN interfaces. This number must be non-zero
and the same number must be used on each VXLAN tunnel added to a bridge domain. This prevents
packets from looping back across VXLAN interfaces which are meshed between peers.

Bridge Example

This example will setup a bridge between GigabitEthernet3/0/0 and GigabitEthernet0/14/1, joining
them into one network. Further, a loopback interface is used to allow TNSR to act as a gateway for clients on these
bridged interfaces.

First, create the bridge with the desired set of options:

8.4. Types of Interfaces 63

Product Manual, TNSR v19.02

tnsr(config)# interface bridge domain 10
tnsr(config-bridge)# flood
tnsr(config-bridge)# uu-flood
tnsr(config-bridge)# forward
tnsr(config-bridge)# learn
tnsr(config-bridge)# exit

Next, add both interfaces to the bridge:

tnsr(config)# int GigabitEthernet3/0/0
tnsr(config-interface)# bridge domain 10
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# int GigabitEthernet0/14/1
tnsr(config-interface)# bridge domain 10
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)# interface loopback bridgeloop
tnsr(config-loopback)# instance 1
tnsr(config-loopback)# exit
tnsr(config)# interface loop1
tnsr(config-interface)# ip address 10.25.254.1/24
tnsr(config-interface)# bridge domain 10 bvi
tnsr(config-interface)# enable
tnsr(config-interface)# exit

Bridge Status

To view the status of bridges, use the show interface bridge domain [<id>] command:

tnsr(config)# show interface bridge domain 10
Bridge Domain Id: 10

flood: true
uu-flood: true
forward: true
learn: true
arp-term: false
mac-age: 0
BVI IF: loop1
Domain Interface Members

IF: GigabitEthernet0/14/1 SHG: 0
IF: GigabitEthernet3/0/0 SHG: 0
IF: local0 SHG: 0
IF: loop1 SHG: 0

ARP Table Entries

If the id value is omitted, TNSR will print the status of all bridges.

8.4.9 VXLAN Interfaces

Virtual Extensible LAN, or VXLAN, interfaces can be used to encapsulate Layer 2 frames inside UDP, carrying traffic
for multiple L2 networks across Layer 3 connections such as between routed areas of a datacenter, leased lines, or
VPNs.

8.4. Types of Interfaces 64

Product Manual, TNSR v19.02

VXLAN tunnels are commonly used to bypass limitations of traditional VLANs on multi-tenant networks and other
areas that require large scale L2 connectivity without direct connections.

There are two main components to a VXLAN tunnel: The VXLAN tunnel itself, and the bridge domain used to
terminate the tunneled traffic to another local interface.

VXLAN Settings

A new VXLAN tunnel is created with the vxlan <tunnel-name> command in config mode, which then enters
config-vxlan mode.

Given the instance identifier configured on the VXLAN tunnel, a new interface will be available in TNSR named
vxlan_tunnel<id>. For example, with instance 0 the interface is named vxlan_tunnel0.

In config-vxlan mode, the following commands are available:

destination <ip-addr> Destination IP address for the far side of the tunnel. This can be a multicast
address, but if it is, then the multicast interface must also be defined.

encapsulation route-table <rt-table-name> Routing table used for VXLAN encapsulation.

instance <id> An instance identifier, typically numbered starting at 0.

multicast interface <if-name> Interface used for multicast. Required if the destination address is
a multicast address.

source <ip-addr> Source IP address on TNSR used to send VXLAN tunnel traffic.

vni <u24> VXLAN Network Identifier

Note: The source IP address, destination IP address and encapsulation route table must all be of the
same address family, either IPv4 or IPv6.

VXLAN-Related Settings

In addition to the VXLAN settings, there are related settings in bridges and interfaces which are used with VXLAN
tunnels.

In config-bridge mode, the arp term command to enable ARP termination is needed for bridges used with
VXLAN tunnels.

In config-interface mode, when adding an interface to a bridge, the shg (Split Horizon Group) parameter is
required for VXLAN tunnels. This number must be non-zero and the same number must be used on each VXLAN
tunnel added to a bridge domain. This prevents packets from looping back across VXLAN interfaces which are meshed
between peers.

VXLAN Example

First, create the bridge with the desired set of options:

tnsr(config)# interface bridge domain 10
tnsr(config-bridge)# arp term
tnsr(config-bridge)# flood
tnsr(config-bridge)# uu-flood
tnsr(config-bridge)# forward

(continues on next page)

8.4. Types of Interfaces 65

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-bridge)# learn
tnsr(config-bridge)# exit

Add host interface to bridge domain:

tnsr(config)# int GigabitEthernet3/0/0
tnsr(config-interface)# bridge domain 10 shg 1
tnsr(config-interface)# exit

Create the VXLAN tunnel:

tnsr(config)# vxlan xmpl
tnsr(config-vxlan)# instance 0
tnsr(config-vxlan)# vni 10
tnsr(config-vxlan)# source 203.0.110.2
tnsr(config-vxlan)# destination 203.0.110.25
tnsr(config-vxlan)# exit

Add the VXLAN tunnel to bridge domain:

tnsr(config)# int vxlan_tunnel0
tnsr(config-interface)# bridge domain 10 shg 1
tnsr(config-interface)# exit

VXLAN Status

To view the status of VXLAN tunnels, use the show vxlan command:

tnsr# show vxlan
Name Instance Source IP Dest IP Encap Rt Decap Node IF Name Mcast IF
→˓VNI
---- -------- ----------- ------------ ---------- ---------- ------------- -------- --
→˓-
xmpl 0 203.0.110.2 203.0.110.25 ipv4-VRF:0 1 vxlan_tunnel0 10

8.4. Types of Interfaces 66

CHAPTER

NINE

ROUTING BASICS

A route is how TNSR decides where to deliver a packet. Each route is comprised of several components, including:

Route Table A discrete collection of routes to be consulted by TNSR or its services.

Destination The network/prefix to which clients or TNSR services will send packets.

Next Hop Address The neighboring router which can accept traffic for the destination network.

Next Hop Interface The interface through which TNSR can reach the neighboring router

9.1 Route Tables

TNSR is able to use multiple discrete route tables but these tables do not offer complete VRF-style isolation. When
routing packets, TNSR consults the route tables present on the interface the packet enters (ingress) which match the
address family of the packet (IPv4 or IPv6).

If an interface is not configured for a specific route table, TNSR uses the default table. For IPv4, the default routing
table is ipv4-VRF:0. For IPv6, the default is ipv6-VRF:0. Custom routing tables may be given arbitrary names.

Warning: VRF is in the name of the default route tables, but TNSR does not offer full virtual routing and
forwarding (VRF) features at this time.

Identical routes can have different destination paths in separate route tables, but identical networks cannot be directly
connected to multiple interfaces.

9.2 Viewing Routes

To view the contents of all route tables:

tnsr# show route

To view the contents of a single route table:

tnsr# show route table <table name>

For example, to view the default IPv4 route table only, use:

tnsr# show route table ipv4-VRF:0

67

Product Manual, TNSR v19.02

9.3 Managing Routes

Routes are entered into TNSR using the route command in configuration mode. When managing routes, the address
family and table name must be specified in order to esablish the routing context. From there, individual routes can be
managed:

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-rt-table-v4)# route 10.2.10.0/24
tnsr(config-rt4-next-hop)# next-hop 0 via 10.2.0.2 GigabitEthernet0/14/2

Breaking down the example above, first the route table is specified. Within that context a destination network route is
given. The destination network establishes a sub-context for a specific route. From there, the next hop configuration
is entered.

Note: When entering a next hop for a route, both the IP address of the destination router and the interface must be
given.

To specify more than one route, exit out of the next-hop context so that TNSR is in the correct context for the route
table itself, then enter an additional destination and next-hop.

9.4 Default Route

In TNSR, the default route, sometimes called a default gateway, is the gateway of last resort. Meaning, traffic that is
not local and does not have any other route specified will be sent using that route. There is no default keyword in
TNSR; The special network 0.0.0.0/0 is used instead.

In this example, the gateway from Example Configuration is added using the WAN interface:

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-rt-table-v4)# route 0.0.0.0/0
tnsr(config-rt4-next-hop)# next-hop 0 via 203.0.113.1 GigabitEthernet0/14/1
tnsr(config-rt4-next-hop)# exit
tnsr(config-rt-table-v4)# exit
tnsr(config)#

9.3. Managing Routes 68

CHAPTER

TEN

ACCESS LISTS

Access Lists can be used to control ingress or egress traffic or to match hosts, networks and other contexts. An ACL
contains a set of rules that defines source and destination hosts or networks to match, along with other aspects of traffic
such as protocol and port number. Access Lists have an implicit final deny action. Any traffic not matched with an
explicit permit rule will be dropped. Access Lists assume “any” for a value unless otherwise specified.

Access Lists can be stateful (reflect), or work without state tracking (permit).

Access Lists must be defined first and then applied to an interface along with a specific direction.

10.1 Standard ACLs

A standard ACL works with IPv4 or IPv6 traffic at layer 3. The name of an ACL is arbitrary so it may be named in a
way that makes its purpose obvious.

ACLs consist of one or more rules, defined by a sequence number that determines the order in which the rules are
applied. A common practice is to start numbering at a value higher than 0 or 1, and to leave gaps in the sequence so
that rules may be added later. For example, the first rule could be 10, followed by 20.

Each rule can have an action, define a source, destination, protocol, and other attributes.

Action The action of a rule determines how it governs packets that match.

deny The deny action will drop a packet which matches this rule.

permit The permit action will pass a single packet matching the rule. Since this action
is per-packet and stateless, a separate ACL may also be required to pass traffic in the
opposite direction.

reflect The reflect action permits a packet and uses a stateful packet processing path.
The session is tracked, and return traffic is automatically permitted in the opposite
direction.

Source/Destination The source and destination define matching criteria for a rule based on where
a packet came from or where it is going. The source and destination may be IPv4 (ip, ipv4) or
IPv6 (ipv6), and may specify an IPv4 or IPv6 address, a port number for TCP and UDP, or
both. If both source and destination are set, they must use the same address family, either
IPv4 or IPv6.

Protocol The protocol option restricts the rule to match one specific protocol, currently this may be
one of: icmp, tcp, udp. If no protocol is specified, then the rule will match any protocol.

TCP Flags For rules matching TCP packets, tcp flagsmay also be given to further restrict the match.
A value and mask must both be specified, which defines the flags to look for out of a possible
set of flags. These flags are specified numerically using the standard values for the flags: URG=32,
ACK=16, PSH=8, RST=4, SYN=2, FIN=1. Add the values together to reach the desired value.

69

Product Manual, TNSR v19.02

For example, with stateful filtering a common way to detect the start of a TCP session is to look
for the TCP SYN flag with a mask of SYN+ACK. That way it will match only when SYN is set
and ACK is not set. Using the values from the previous paragraph yields: tcp flags value 2
mask 18

ICMP Code/Type For rules matching ICMP packets, the icmp type and icmp code may also be
used to restrict matches. The type and code are entered numerically in the range of 0-255. For a list
of possible type and code combinations, see the IANA ICMP Parameters list.

The following example ACL will block only SSH (tcp port 22) to 203.0.113.2 and permit all other traffic:

tnsr(config)# acl blockssh
tnsr(config-acl)# rule 10
tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# destination ip address 203.0.113.2/32
tnsr(config-acl-rule)# destination ip port 22
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 20
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# exit
tnsr(config-acl)# exit
tnsr(config)# int GigabitEthernet0/14/1
tnsr(config-interface)# access-list input acl blockssh sequence 10
tnsr(config-interface)# exit
tnsr(config)#

Deconstructing the above example, the ACL behaves as follows:

• The name of the ACL is blockssh

• The first rule is 10. This leaves some room before it in case other rules should be matched before this rule in
the future.

• Rule 10 will deny traffic matching:

– A destination of a single IP address, 203.0.113.2

– A destination of a single TCP port, 22 (ssh)

– A source of any is implied since it is not specified

• The second rule is 20. The gap between 10 and 20 leaves room for future expansion of rules between the two
existing rules.

• Rule 20 will permit all other traffic, since there is no source or destination given.

The ACL is then applied to GigabitEthernet0/14/1 in the inbound direction.

10.2 MACIP ACLs

MACIP ACLs and layer 3 ACLs work similarly, but MACIP ACLs can also match traffic at layer 2 using MAC
addresses. MACIP ACLs may only be applied in the input direction.

10.3 Viewing ACL and MACIP Information

The show acl command prints a list of all defined ACLs and their actions:

10.2. MACIP ACLs 70

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Product Manual, TNSR v19.02

tnsr# show acl

Access Control List: blockssh
IPv Seq Action Source Dest Proto SP/T DP/C Flag Mask

---- --- ------ ---------- -------------- ----- -------- ----- ---- ----
ipv4 10 deny 0.0.0.0/0 203.0.113.2/32 tcp 0-65535 22-22 0x00 0x00
ipv4 20 permit 0.0.0.0/0 0.0.0.0/0 0

The show macip command works the same way for MACIP entries.

10.4 ACL and NAT Interaction

When NAT is active, ACL rules are always processed before NAT on interfaces where NAT is applied, in any direction.

The remainder of the section refers to the following example static NAT rule:

nat static mapping tcp local 10.2.0.129 22 external 203.0.113.2 222

In this example, that rule is applied on the external-facing interface containing 203.0.113.2.

10.4.1 Inbound ACL Rules

ACL Rules set to be processed in the inbound direction on an interface (access-list input acl <name>
sequence <seq>) will match on the external address and/or port in a static NAT rule. In the above example,
this means an inbound ACL would match on a destination IP address of 203.0.113.2 and/or a destination port of
222.

10.4.2 Outbound ACL Rules

ACL Rules set to be processed in the outbound direction on an interface (access-list output acl <name>
sequence <seq>) will match on the local address and/or port in a static NAT rule. In the above example, this
means an outbound ACL would match on a source IP address of 10.2.0.129 and/or a source port of 22.

10.4. ACL and NAT Interaction 71

CHAPTER

ELEVEN

BORDER GATEWAY PROTOCOL

Border Gateway Protocol (BGP) is a dynamic routing protocol used between network hosts. BGP routes between
autonomous systems, connecting to defined neighbors to exchange routing information.

BGP can be used for exterior routing (ebgp) or interior routing (ibgp), routing across Internet circuits, private links, or
segments of local networks.

The BGP service in TNSR is handled by FRR.

11.1 Required Information

Before starting, take the time to gather all of the information required to form a BGP adjacency to a neighbor. At a
minimum, TNSR will need to know these items:

Local AS Number The autonomous system (AS) number for TNSR. This is typically assigned by an
upstream source, an RIR, or mutually agreed upon by internal neighbors.

Local Router ID Typically the highest numbered local address on the firewall. This is also frequently
set as the internal or LAN side IP address of a router. It does not matter what this ID is, so long as it
is given in IPv4 address notation and does not conflict with any neighbors.

Local Network(s) The list of networks that are advertised over BGP as belonging to the Local AS. For
external BGP, this is typically the IP address block allocated by the RIR. For internal BGP, this may
be a list of local networks or a summarized block.

Neighbor AS Number The autonomous system number of the neighbor.

Neighbor IP Address The IP address of the neighboring router.

The example in this section uses the following values:

Table 1: Example BGP Configuration
Item Value
Local AS Number 65002
Local Router ID 10.2.0.1
Local Network(s) 10.2.0.0/16
Neighbor AS Number 65005
Neighbor IP Address 203.0.113.14

Warning: If NAT is active on the same interface acting as a BGP peer, then NAT forwarding must also be enabled.
See NAT Forwarding.

72

https://frrouting.org/

Product Manual, TNSR v19.02

11.2 Enabling BGP

The BGP service has a master enable/disable toggle that must be set before BGP will operate. Enable BGP using the
enable command in config-route-dynamic-bgp mode:

tnsr(config)# route dynamic bgp
tnsr(config-route-dynamic-bgp)# bgp enable

The BGP service is managed as described in Service Control.

Warning: After starting or restarting TNSR, restart the BGP service from within the TNSR configuration mode
CLI to ensure that the routes from BGP neighbors are fully populated throughout TNSR:

tnsr(config)# service bgp restart

11.3 Example BGP Configuration

The following example configures a BGP adjacency to a neighbor using the settings from Example BGP Configuration:

tnsr(config)# route dynamic bgp
tnsr(config-route-dynamic-bgp)# server 65002
tnsr(config-bgp)# router-id 10.2.0.1
tnsr(config-bgp)# neighbor 203.0.113.14
tnsr(config-bgp-nbr)# remote-as 65005
tnsr(config-bgp-nbr)# enable
tnsr(config-bgp-nbr)# exit
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-af)# network 10.2.0.0/16
tnsr(config-bgp-af)# exit
tnsr(config-bgp)# exit
tnsr(config-route-dynamic-bgp)# enable
tnsr(config-route-dynamic-bgp)# exit
tnsr(config)# service bgp restart

The next few sections break down and explain each part of this example.

11.3.1 Router Statement

tnsr(config)# route dynamic bgp
tnsr(config-route-dynamic-bgp)# server 65002

This statement enters BGP Server mode and sets the autonomous system number for this router to 65002.

tnsr(config-bgp)# router-id 10.2.0.1

BGP mode offers a new subset of commands, including setting the router-id as shown here. In this example the
internal IP address of TNSR, 10.2.0.1, is set as the router ID.

BGP mode also can define the neighbors and configure the behavior of BGP for different address families, among
other possibilities.

11.2. Enabling BGP 73

Product Manual, TNSR v19.02

11.3.2 Neighbor Configuration

tnsr(config-bgp)# neighbor 203.0.113.14
tnsr(config-bgp-nbr)# remote-as 65005
tnsr(config-bgp-nbr)# enable
tnsr(config-bgp-nbr)# exit

The neighbor statement can take either an IP address to setup a single neighbor, as the example shows for 203.
0.113.14, or it can take a name which configures a peer group. The command changes to BGP neighbor mode,
indicated by the bgp-nbr prefix in the prompt.

Peer groups work nearly identical to neighbors, and they define options that are common to multiple neighbors. To
configure a neighbor as a member of a peer group, append peer-group <group name> to the neighbor
statement.

Within BGP neighbor mode, the most important directive is remote-as to set the AS number of the neighbor. In
this case, the AS number of the neighbor is 65005. The majority of other neighbor configuration is handled by the
neighbor definition for a specific address family.

The default state of a neighbor is disabled down. To enable the neighbor, enter the enable command in BGP neighbor
mode.

11.3.3 Address Family Configuration

tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-af)# network 10.2.0.0/16
tnsr(config-bgp-af)# exit

The TNSR BGP implementation is capable of handling routing information for IPv4 and IPv6 independently, among
other network layer protocols. The address-family command defines BGP behavior for each specific supported
case. The most common address families are ipv4 unicast and ipv6 unicast. The command changes to
BGP address family mode, bgp-af, which contains settings specific to each address family.

In this example for the ipv4 unicast address family, BGP is instructed to announce a route for the 10.2.0.0/
16 network prefix. Neighbors will receive this route once they form an adjacency to this router.

11.4 Advanced Configuration

The BGP functionality in TNSR is capable of advanced configurations far beyond those detailed in this section. There
are numerous commands to fine-tune BGP behavior, to handle routes, route maps, prefix lists, timer adjustments, etc.
As TNSR uses FRR, most FRR configuration commands for BGP are mirrored in TNSR.

For a full command reference, see Commands.

11.5 BGP Information

TNSR supports several commands to display information about the BGP daemon configuration and its status.

11.5.1 Configuration Information

To view the BGP configuration:

11.4. Advanced Configuration 74

Product Manual, TNSR v19.02

tnsr# show route dynamic bgp config [<as-number>]

To view the routing daemon manager (Zebra) configuration:

tnsr# show route dynamic manager

To view other individual sections of the configuration:

tnsr# show route dynamic access-list [<access-list-name>]
tnsr# show route dynamic bgp as-path [<as-path-name>]
tnsr# show route dynamic bgp community-list [<community-list-name>]
tnsr# show route dynamic prefix-list [<prefix-list-name>]
tnsr# show route dynamic route-map [<route-map-name>]

11.5.2 Status Information

For a brief summary of BGP status information:

tnsr# show route dynamic bgp summary

For lists configured BGP Neighbors and their status details:

tnsr# show route dynamic bgp neighbors [[<peer>] [advertised-routes|dampened-routes|
flap-statistics|prefix-counts|received|received-routes|routes]]

For information about a specific BGP peer group:

tnsr# show route dynamic bgp peer-group <peer-group-name>

For a list of valid BGP next hops:

tnsr# show route dynamic bgp nexthop [detail]

For details about an address or prefix in the BGP routing table:

tnsr# show route dynamic bgp network <IP Address|Prefix>

11.5.3 BGP Active Session Control

The clear command can be used to reset active BGP sessions. This command is available from within
config-route-dynamic-bgp mode. The general form of the command is:

tnsr(config)# route dynamic bgp
tnsr(config-route-dynamic-bgp)# clear (*|<peer>|<asn>) [soft]

The first parameter controls what will be cleared, and values may be completed automatically with tab:

* Clears all open BGP sessions

<peer> Clears all sessions to a specific peer IP address or peer group name

<asn> Clears all sessions to a specific AS number

The second parameter, soft is optional and controls whether or not the command will trigger a soft reconfiguration.

11.5. BGP Information 75

Product Manual, TNSR v19.02

11.5.4 Additional Information

Additional BGP status information can be obtained by using the vtysh program outside of TNSR.

The vtysh program must be run as root:

sudo vtysh

The vtysh interface offers numerous commands. Of particular interest for BGP status are the following:

show bgp summary A brief summary of BGP status information.

show bgp neighbors Lists configured BGP Neighbors and their status details.

show ip bgp A list of routes and paths for networks involved in BGP.

show ip route The IP routing table managed by the FRR Zebra daemon, which marks the origin of routes
to see which entries were obtained via BGP.

11.6 Working with Large BGP Tables

When working with a large set of routes, roughly exceeding 30,000 route table entries, TNSR may require additional
memory to be allocated for the VPP dataplane Forwarding Information Bases (FIB). Smaller routing tables do not
require special configuration.

This memory allocation can be performed in configuration mode using one of the following commands:

For IPv4:

tnsr# configure
tnsr(config)# dataplane ip heap-size <size>

For IPv6:

tnsr# configure
tnsr(config)# dataplane ip6 heap-size <size>

The format of the size is <number>[KMG], for example: 512M or 1G for 512 Megabytes or 1 Gigabyte, respectively.

The VPP dataplane service requires a restart to enable this configuration. Restart VPP from the TNSR configuration
mode CLI using the following command:

tnsr# configure
tnsr(config)# service dataplane restart

11.6. Working with Large BGP Tables 76

CHAPTER

TWELVE

IPSEC

IPsec provides a standards-based VPN implementation compatible with other IPsec implementations. The IPsec sub-
system in TNSR is handled by strongSwan.

Currently, TNSR supports routed IPsec, allowing BGP or static routes to send traffic through IPsec.

12.1 IPsec Cryptographic Acceleration

TNSR will automatically configure software cryptographic acceleration for VPP if an IPsec tunnel is defined in the
configuration. To enable this configuration, the VPP service must be restarted manually so it can enable the feature
and allocate additional memory.

Note: The cryptographic accelerator setting applies to all tunnels, so the restart is only required after the first IPsec
tunnel configured by TNSR. The restart is not required for additional tunnels or when changing IPsec settings.

Restart the VPP dataplane from the TNSR basic mode CLI using the following command:

tnsr# config
tnsr(config)# service dataplane restart

If the TNSR configuration contains no IPsec tunnels, TNSR will not require the memory resources associated with
cryptographic acceleration and TNSR will not require a restart of the VPP dataplane service.

12.2 Required Information

Before attempting to configure an IPsec tunnel, several pieces of information are required in order for both sides to
build a tunnel. Typically the administrators of both tunnel endpoints will negotiate and agree upon the values to use
for an IPsec tunnel.

At a minimum, these pieces of information should be known to both endpoints before attempting to configure a tunnel:

Local Address The IP address on TNSR which will be used to send and accept IPsec traffic from the
peer.

Local IKE Identity The IKE identifier for TNSR, typically an IP address and the same as Local Ad-
dress.

Local Network(s) A list of local networks which will communicate through the IPsec tunnel to hosts on
Remote Network(s). This is not entered into the configuration on TNSR for routed IPsec, but will
be needed by the peer.

77

https://strongswan.org/

Product Manual, TNSR v19.02

Remote Address The IP address of the IPsec peer.

Remote IKE Identity The identifier for the IPsec peer, typically the same as Remote Address.

Remote Network(s) A list of networks at the peer location with which hosts in the Local Network(s)
will communicate. If using static routing, routes must be manually added for these networks using
the Remote IPsec Address and ipsec0 interface. If BGP is used with IPsec, this will be handled
automatically.

IKE Version Either 1 for IKEv1 or 2 for IKEv2. IKEv2 is stronger and more capable, but not all IPsec
equipment can properly handle IKEv2.

IKE Lifetime The maximum amount of time that an IKE session can stay alive until it is renegotiated.

IKE Encryption The encryption algorithm used to encrypt IKE messages.

IKE Integrity The integrity algorithm used to authenticate IKE messages

IKE DH/MODP Group Diffie-Hellman group for key establishment, given in bits.

IKE Authentication The type of authentication to use to verify the peer’s identity.

Pre-Shared Key When using Pre-Shared Key for IKE Authentication, this key is used on both sides to
authenticate the peer.

SA Lifetime The amount of time that a child security association can be active before it is rekeyed.

SA Encryption The encryption algorithm used to encrypt tunneled traffic.

SA Integrity The integrity algorithm used to authenticate tunneled traffic.

SA DH/MODP Group Diffie-Hellman group for security associations, in bits.

Local IPsec Address The local IP address for the ipsec0 interface, used for routing traffic to/from
IPsec peers.

Remote IPsec Address The remote IP address for the peer on ipsec0, used as a gateway for routing,
or a BGP neighbor.

Table 1: Example IPsec Configuration
Item Value
Local Address 203.0.113.2
Local IKE Identity 203.0.113.2
Local Network(s) 10.2.0.0/16
Remote Address 203.0.113.25
Remote IKE Identity 203.0.113.25
Remote Network(s) 10.25.0.0/16
IKE Version 1
IKE Lifetime 28800
IKE Encryption AES-128
IKE Integrity SHA1
IKE DH/MODP Group 2048 (14)
IKE Authentication Pre-Shared Key
Pre-Shared Key mysupersecretkey
SA Lifetime 3600
SA Encryption AES-128
SA Integrity SHA1
SA DH/MODP Group 2048 (14)
Local IPsec Address 172.32.0.1/30
Remote IPsec Address 172.32.0.2

12.2. Required Information 78

Product Manual, TNSR v19.02

Warning: If NAT is active on the same interface acting as an IPsec endpoint, then NAT forwarding must also be
enabled. See NAT Forwarding.

12.3 IPsec Example

This configuration session implements the tunnel described by the settings in Example IPsec Configuration:

tnsr(config)# ipsec tunnel 0
tnsr(config-ipsec-tun)# local-address 203.0.113.2
tnsr(config-ipsec-tun)# remote-address 203.0.113.25
tnsr(config-ipsec-tun)# crypto config-type ike
tnsr(config-ipsec-tun)# crypto ike
tnsr(config-ipsec-crypto-ike)# version 1
tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr(config-ike-proposal)# encryption aes128
tnsr(config-ike-proposal)# integrity sha1
tnsr(config-ike-proposal)# group modp2048
tnsr(config-ike-proposal)# exit
tnsr(config-ipsec-crypto-ike)# identity local
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.2
tnsr(config-ike-identity)# exit
tnsr(config-ipsec-crypto-ike)# identity remote
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.25
tnsr(config-ike-identity)# exit
tnsr(config-ipsec-crypto-ike)# authentication local
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey
tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit
tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey
tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit
tnsr(config-ipsec-crypto-ike)# child 1
tnsr(config-ike-child)# lifetime 3600
tnsr(config-ike-child)# proposal 1
tnsr(config-ike-child-proposal)# encryption aes128
tnsr(config-ike-child-proposal)# integrity sha1
tnsr(config-ike-child-proposal)# group modp2048
tnsr(config-ike-child-proposal)# exit
tnsr(config-ike-child)# exit
tnsr(config-ipsec-crypto-ike)# exit
tnsr(config-ipsec-tun)# exit
tnsr(config)# interface ipsec0
tnsr(config-interface)# ip address 172.32.0.1/30
tnsr(config-interface)# exit
tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-rt-table-v4)# route 10.25.0.0/16

(continues on next page)

12.3. IPsec Example 79

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-rt4-next-hop)# next-hop 0 via 172.32.0.2 ipsec0
tnsr(config-rt4-next-hop)# exit
tnsr(config-rt-table-v4)# exit
tnsr(config)# exit

The next sections break down this example and explain it in detail.

12.3.1 IPsec Endpoints

tnsr(config)# ipsec tunnel 0
tnsr(config-ipsec-tun)# local-address 203.0.113.2
tnsr(config-ipsec-tun)# remote-address 203.0.113.25

The ipsec tunnel <n> command changes to IPsec tunnel mode, denoted by ipsec-tun in the prompt. The
identifier number for tunnel entries starts at 0 and increments by one. To determine the next tunnel number for a new
entry, run ipsec tunnel ? and TNSR will print the existing tunnel ID numbers as well as the next one available.

To start configuring the IPsec tunnel, first define the endpoints. The local-address command defines the IP
address used by TNSR for this IPsec tunnel. The remote-address defines the opposing router.

12.3.2 Internet Key Exchange (IKE)

tnsr(config-ipsec-tun)# crypto config-type ike

Most IPsec tunnels, such as this example, utilize IKE to dynamically handle key exchange when both parties are
negotiating a security association. This is specified by the crypto config-type command above. Though static
keys are also supported by TNSR, it is much less common.

tnsr(config-ipsec-tun)# crypto ike
tnsr(config-ipsec-crypto-ike)# version 1
tnsr(config-ipsec-crypto-ike)# lifetime 28800

The crypto ike command enters IKE mode to configure IPsec IKE behavior, which is the bulk of the remaining
work for most IPsec tunnels.

The version <x> command in IKE mode instructs TNSR to use either IKEv1 or IKEv2. IKEv1 is more common
and more widely supported, but IKEv2 is more secure.

The lifetime <x> command sets the maximum time for this IKE session to be valid.

IKE Proposal

tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr(config-ike-proposal)# encryption aes128
tnsr(config-ike-proposal)# integrity sha1
tnsr(config-ike-proposal)# group modp2048
tnsr(config-ike-proposal)# exit

IKE Proposals instruct TNSR how the key exchange will be encrypted and authenticated. TNSR supports a vari-
ety of encryption algorithms, integrity / authentication hash algorithms, and Diffie-Hellman (DH) group
specifications. These choices must be coordinated between both endpoints.

To see a list of supported choices for each option, follow the initial command with a ?, such as encryption ?.

12.3. IPsec Example 80

Product Manual, TNSR v19.02

Tip: Some vendor IPsec implementations refer to IKE/ISAKMP as “Phase 1”, which may help when attempting to
map values supplied by a peer to their corresponding values in TNSR.

Encryption Algorithms

TNSR supports many common, secure encryption algorithms. Some older, insecure, algorithms are not supported
such as 3DES.

Algorithms based on AES are the most common, and are widely supported by other VPN implementations.

AES-GCM, or AES Galois/Counter Mode is an efficient and fast authenticated encryption algorithm, which means it
provides data privacy as well as integrity validation, without the need for a separate integrity algorithm.

Additionally, AES-based algorithms can be accelerated by AES-NI in most cases.

A full list of encryption algorithms supported by TNSR :

tnsr(config-ike-proposal)# encryption ?
<cr>
aes128 128 bit AES-CBC
aes128ccm12 128 bit AES-CCM with 12 byte ICV
aes128ccm16 128 bit AES-CCM with 16 byte ICV
aes128ccm8 128 bit AES-CCM with 8 byte ICV
aes128ctr 128 bit AES-Counter
aes128gcm12 128 bit AES-GCM with 12 byte ICV
aes128gcm16 128 bit AES-GCM with 16 byte ICV
aes128gcm8 128 AES-GCM with 8 byte ICV
aes192 192 bit AES-CBC
aes192ccm12 192 bit AES-CCM with 12 byte ICV
aes192ccm16 192 bit AES-CCM with 16 byte ICV
aes192ccm8 192 bit AES-CCM with 8 byte ICV
aes192ctr 192 bit AES-Counter
aes192gcm12 192 bit AES-GCM with 12 byte ICV
aes192gcm16 192 bit AES-GCM with 16 byte ICV
aes192gcm8 192 bit AES-GCM with 8 byte ICV
aes256 256 bit AES-CBC
aes256ccm12 256 bit AES-CCM with 12 byte ICV
aes256ccm16 256 bit AES-CCM with 16 byte ICV
aes256ccm8 256 bit AES-CCM with 8 byte ICV
aes256ctr 256 bit AES-Counter
aes256gcm12 256 bit AES-GCM with 12 byte ICV
aes256gcm16 256 bit AES-GCM with 16 byte ICV
aes256gcm8 256 bit AES-GCM with 8 byte ICV
camellia128 128 bit Camellia
camellia128ccm12 128 bit Camellia-CCM with 12 byte ICV
camellia128ccm16 128 bit Camellia-CCM with 16 byte ICV
camellia128ccm8 128 bit Camellia-CCM with 8 byte ICV
camellia128ctr 128 bit Camellia-Counter
camellia192 192 bit Camellia
camellia192ccm12 192 bit Camellia-CCM with 12 byte ICV
camellia192ccm16 192 bit Camellia-CCM with 16 byte ICV
camellia192ccm8 192 bit Camellia-CCM with 8 byte ICV
camellia192ctr 192 bit Camellia-Counter
camellia256 256 bit Camellia
camellia256ccm12 256 bit Camellia-CCM with 12 byte ICV
camellia256ccm16 256 bit Camellia-CCM with 16 byte ICV

(continues on next page)

12.3. IPsec Example 81

https://en.wikipedia.org/wiki/Galois/Counter_Mode

Product Manual, TNSR v19.02

(continued from previous page)

camellia256ccm8 256 bit Camellia-CCM with 8 byte ICV
camellia256ctr 256 bit Camellia-Counter
chacha20poly1305 256 bit ChaCha20/Poly1305 with 16 byte ICV

Integrity Algorithms

Integrity algorithms provide authentication of messages, ensuring that packets are authentic and were not altered by a
third party before arriving.

When an authenticated encryption algorithm type such as AES-GCM is used, then for IKE/ISAKMP this option
defines the Pseudo-Random Function (PRF) instead. In these cases aesxcbc is likely the most appropriate choice
as it is solely a PRF, it can be accelerated by AES-NI, and it is more widely supported than its improved successor
aescmac.

Note: When using an authenticated encryption algorithm like AES-GCM with a child Security Association (SA) as
opposed to IKE/ISAKMP, an integrity option should not be configured, as it is redundant and reduces performance.

A full list of integrity algorithms supported by TNSR:

tnsr(config-ike-proposal)# integrity ?
<cr>
aescmac AES-CMAC 96
aesxcbc AES-XCBC 96
md5 MD5 96
sha1 SHA1 96
sha256 SHA2 256 bit blocks, 128 bits output
sha384 SHA2 384 bit blocks, 192 bits output
sha512 SHA2 512 bit blocks, 256 bits output

Diffie-Hellman Group

Diffie-Hellman (DH) exchanges allow two parties to establish a shared secret across an untrusted connection. DH
choices can be referenced in several different ways depending on vendor implementations. Some reference a DH
group by number, others by size. When referencing by group number, generally speaking higher group numbers are
more secure.

In most cases, modp2048 (Group 14) is the lowest choice considered to provide sufficient security in a modern
computing environment.

A full list of DH Groups supported by TNSR:

tnsr(config-ike-proposal)# group ?
<cr>
ecp256 Group 19 (256 bit ECP)
ecp384 Group 20 (384 bit ECP)
ecp521 Group 21 (521 bit ECP)
modp1024 Group 2 (1024 bit modulus)
modp1024s160 Group 22 (1024 bit modulus, 160 bit POS)
modp1536 Group 5 (1536 bit modulus)
modp2048 Group 14 (2048 bit modulus)
modp2048s224 Group 23 (2048 bit modulus, 224 bit POS)
modp2048s256 Group 24 (2048 bit modulus, 256 bit POS)

(continues on next page)

12.3. IPsec Example 82

Product Manual, TNSR v19.02

(continued from previous page)

modp3072 Group 15 (3072 bit modulus)
modp4096 Group 16 (4096 bit modulus)
modp6144 Group 17 (6144 bit modulus)
modp768 Group 1 (768 bit modulus)
modp8192 Group 18 (8192 bit modulus)

Warning: TNSR supports modp768 (Group 1) and modp1024 (Group 2) for compatibility purposes but they
are considered broken by the Logjam Attack and should be avoided.

TNSR also supports modp1024s160 (Group 22), modp2048s224 (Group 23), and modp2048s256 (Group
24) for compatibility but they should also be avoided as they have a questionable source of primes.

IKE Identity

In IKE, each party must be sure that it is communicating with the correct peer. One aspect of this validation is the
identity. Each router will tell the other its own local identity and then validate it against the stored remote identity.
If they do not match, the peer is rejected.

tnsr(config-ipsec-crypto-ike)# identity local
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.2
tnsr(config-ike-identity)# exit

When configuring the identity, both the local and remote are required by IKE. First, specify the local identity with
identity local. This switches TNSR to IKE identity mode. In this mode, the identity type and a valid corre-
sponding value for that type.must be set.

TNSR supports several identity types, to see a full list, enter type ? from IKE identity mode.

The identity type and value must both be supplied to the administrator of the other router so they can properly identify
this endpoint.

tnsr(config-ipsec-crypto-ike)# identity remote
tnsr(config-ike-identity)# type address
tnsr(config-ike-identity)# value 203.0.113.25
tnsr(config-ike-identity)# exit

The remote identity is configured in the same manner as the local identity, but using the type and value supplied by
the administrator of the remote endpoint.

IKE Authentication

After verifying the identity, TNSR will attempt to authenticate the peer using the secret from its configuration in one
or two round passes. In most common configurations there is only a single authentication round, however in IKEv2
a tunnel may have two rounds of unique authentication.

tnsr(config-ipsec-crypto-ike)# authentication local
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey
tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit

12.3. IPsec Example 83

https://weakdh.org/
https://eprint.iacr.org/2016/961

Product Manual, TNSR v19.02

The authentication local command defines the parameters used to authenticate outbound traffic. Once en-
tered, that command switches to IKE Authentication mode (ike-auth).

This example only has one single round of authentication, a pre-shared key of mysupersecretkey. Thus, the
type is set to psk and then the psk is set to the secret value.

Warning: Do not transmit the pre-shared key over an insecure channel such as plain text e-mail!

Note: Currently the only authentication type supported by TNSR is Pre-Shared Key.

tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr(config-ike-auth)# round 1
tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# psk mysupersecretkey
tnsr(config-ike-auth-round)# exit
tnsr(config-ike-auth)# exit

The remote authentication setup is typically identical to the local, configuration, as it is in this example. This set of
parameters is used to authenticate inbound traffic from the peer.

12.3.3 Security Associations

After establishing a secure channel, the two endpoints can negotiate an IPsec security association (IPsec SA) as a
child entry. Multiple children can be configured as needed, though with routed IPsec only one is necessary.

tnsr(config-ipsec-crypto-ike)# child 1
tnsr(config-ike-child)# lifetime 3600

This example only has a single child, thus child 1. The child command enters IKE Child mode (ike-child).

The lifetime <x> command determines how long, in seconds, this child IPsec SA can live before it must be
rekeyed. Most commonly this is set for an hour, or 3600 seconds.

tnsr(config-ike-child)# proposal 1
tnsr(config-ike-child-proposal)# encryption aes128
tnsr(config-ike-child-proposal)# integrity sha1
tnsr(config-ike-child-proposal)# group modp2048
tnsr(config-ike-child-proposal)# exit
tnsr(config-ike-child)# exit
tnsr(config-ipsec-crypto-ike)# exit
tnsr(config-ipsec-tun)# exit

Each child may have one or more proposal entries which define acceptable encryption, integrity, and DH Group
(Perfect Forward Security, PFS) parameters to encrypt and validate the IPsec SA traffic. These work the same here as
they do for IKE/ISAKMP as described in IKE Proposal.

Tip: Some vendor IPsec implementations refer to IPsec security association child entries as “Phase 2”, which may
help when attempting to map values supplied by a peer to their corresponding values in TNSR.

This completes the configuration for the IPsec tunnel, at this point after exiting back to basic mode the tunnel will
attempt to establish a connection to the peer.

12.3. IPsec Example 84

Product Manual, TNSR v19.02

12.3.4 Configuring the IPsec Interface

TNSR supports routed IPsec via the ipsecX interface. The number of the ipsec interface corresponds to the
index number of the tunnel set previously. For example ipsec tunnel 0 is ipsec0, and ipsec tunnel 2 is
ipsec2.

These IPsec interfaces are used to configure routed IPsec connectivity and they behave like most other interfaces. For
example, they can have access lists defined to filter traffic.

tnsr(config)# interface ipsec0
tnsr(config-interface)# ip address 172.32.0.1/30
tnsr(config-interface)# exit

In this example, the ipsec0 interface is configured with an IP address and the peer will have its own IP address in the
same subnet. This allows the two endpoints to communicate directly over the IPsec interface and also gives the peer
an address through which traffic for other subnets may be routed. When configured in this way, it acts like a directly
connected point-to-point link to the peer.

12.3.5 IPsec Routes

The IPsec interface allows the peers to talk directly, but in most cases with IPsec there is more interesting traffic to
handle. For example, a larger subnet on the LAN side of each peer that must communicate securely.

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-rt-table-v4)# route 10.25.0.0/16
tnsr(config-rt4-next-hop)# next-hop 0 via 172.32.0.2 ipsec0
tnsr(config-rt4-next-hop)# exit
tnsr(config-rt-table-v4)# exit
tnsr(config)# exit

In this example, a route is added to the main IPv4 routing table for a subnet located behind the peer. Any traffic trying
to reach a host inside the 10.25.0.0/16 subnet will be routed through the ipsec0 interface using the peer’s
address in that subnet (172.32.0.2) as the next hop.

12.4 IPsec Status Information

To view status information about active IPsec tunnels, use the show ipsec tunnel command. That command
prints status output for all IPsec tunnels, but it also supports printing tunnel information individually by providing the
tunnel ID:

tnsr# show ipsec tunnel 0
IPsec Tunnel: 0

IKE SA: ipsec0 ID: 13 Version: IKEv1
Local: 203.0.113.2 Remote: 203.0.113.25
Status: ESTABLISHED Up: 372s Reauth: 25275s
Child SA: child0 ID: 7

Status: INSTALLED Up: 372s Rekey: 2523s Expire: 3228s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets

Child SA: child0 ID: 8
Status: INSTALLED Up: 372s Rekey: 2813s Expire: 3228s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets

Child SA: child0 ID: 9
(continues on next page)

12.4. IPsec Status Information 85

Product Manual, TNSR v19.02

(continued from previous page)

Status: INSTALLED Up: 372s Rekey: 2583s Expire: 3228s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets

This command supports several additional parameters to increase or decrease the amount of information displayed.

Adding the verbose keyword also shows detailed information about the encryption parameters:

tnsr# show ipsec tunnel 0 verbose
IPsec Tunnel: 0

IKE SA: ipsec0 ID: 13 Version: IKEv1
Local: 203.0.113.2 Remote: 203.0.113.25
Status: ESTABLISHED Up: 479s Reauth: 25168s
Local ID: 203.0.113.2 Remote ID: 203.0.113.25
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96
PRF: PRF_HMAC_SHA1 DH: MODP_2048
SPI Init: 1880997989256787091 Resp: 1437908875259838715
Initiator: yes
Child SA: child0 ID: 7

Status: INSTALLED Up: 479s Rekey: 2416s Expire: 3121s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96 PFS: MODP_2048
SPI in: 3540263882 out: 974161796

Child SA: child0 ID: 8
Status: INSTALLED Up: 479s Rekey: 2706s Expire: 3121s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96 PFS: MODP_2048
SPI in: 2432966668 out: 1361993947

Child SA: child0 ID: 9
Status: INSTALLED Up: 479s Rekey: 2476s Expire: 3121s
Received: 0 bytes, 0 packets
Transmitted: 0 bytes, 0 packets
Cipher: AES_CBC 128 MAC: HMAC_SHA1_96 PFS: MODP_2048
SPI in: 2318058408 out: 1979056986

Specifying the ike or child parameter filters the output, and these also support verbose output.

12.4.1 Command Examples

show ipsec tunnel Display a short summary of all IPsec tunnels.

show ipsec tunnel n Display a short summary of a specific IPsec tunnel n.

show ipsec tunnel [n] verbose Display a verbose list of all IPsec tunnels, optionally limited to a single
tunnel n. The output shows detailed information such as active encryption, hashing, DH groups,
identifiers, and more.

show ipsec tunnel [n] ike [verbose] Display only IKE parameters of all tunnels. Optionally limited to a
single tunnel n and/or expanded details with verbose.

show ipsec tunnel [n] child [verbose] Display only IPsec child Security Association parameters of all
tunnels. Optionally limited to a single tunnel n and/or expanded details with verbose

12.4. IPsec Status Information 86

CHAPTER

THIRTEEN

NETWORK ADDRESS TRANSLATION

Network Address Translation, or NAT, involves changing properties of a packet as it passes through a router. Typically
this is done to mask or alter the source or destination to manipulate how such packets are processed by other hosts.

The most common examples are:

• Source NAT, also known as Outbound NAT, which translates the source address and port of a packet to mask its
origin.

• Destination NAT, commonly referred to as Static NAT or Port Forwards which translate the destination address
and port of a packet to redirect the packet to a different target host behind the router.

TNSR applies NAT based on the configured mode and the presence of directives that set inside (internal/local) and
outside (external/remote) interfaces.

An inside interface is a local interface where traffic enters and it will have its source hidden by NAT. An outside
interface is an interface where that translation will occur as a packet exits TNSR. An example of this is shown in
Outbound NAT .

Note: NAT is processed after ACL rules. For more information, see ACL and NAT Interaction.

13.1 Dataplane NAT Modes

The dataplane has several NAT modes that may be used. This mode is configured via the dataplane nat mode
<mode> command from config mode.

The following modes are available:

simple Simple NAT mode. Holds less information for each session, but only works with
outbound NAT and static mappings.

endpoint-dependent Endpoint-dependent NAT mode. The default mode. Uses more
information to track each session, which also enables additional features such as
out-to-in-only and twice-nat.

deterministic Deterministic NAT (CGN) mode. Used for large-scale deployments with a fo-
cus on performance at a cost of using much more memory.

After changing the NAT mode, the dataplane must be restarted with service dataplane restart.

Note: There must be at least one inside and outside interface for NAT to function, see Network Address
Translation and Outbound NAT for more details.

87

Product Manual, TNSR v19.02

13.1.1 Simple NAT

Simple NAT is the most basic NAT mode. It tracks sessions in a hash table using four items:

• Source IP address

• Source port

• Protocol

• FIB table index

Simple NAT has a couple basic options that may be adjusted using the dataplane nat mode-options
simple <option> command:

out2in-dpo Enables out-to-in DPO

static-mapping-only Static mapping only, disables dynamic translation of connections.

13.1.2 Endpoint-dependent NAT

Endpoint-dependent NAT mode is the default NAT mode on TNSR. Endpoint-dependent NAT mode tracks more
information about each connection. As suggested by the name, the key difference is in tracking the destination of the
connection:

• Source IP address

• Source port

• Target IP address

• Target port

• Protocol

• FIB table index

Some NAT features require this extra information, notably out-to-in-only and twice-nat.

13.1.3 Deterministic NAT

Deterministic NAT mode, also known as Carrier-Grade NAT (CGN) mode, is geared for maximum performance at a
large scale. This performance comes at a price, however, in that it consumes greater amounts of memory to achieve its
goals.

For more information on Deterministic NAT, see Deterministic NAT .

13.2 NAT Options

The NAT options described here control TNSR NAT behavior independent of the chosen mode.

13.2.1 NAT Forwarding

When NAT is active, it will affect traffic to and from services on TNSR, such as IPsec and BGP. When NAT is
enabled, by default TNSR will drop traffic that doesn’t match an existing NAT session or static NAT rule. To change
this behavior, enable NAT forwarding mode:

13.2. NAT Options 88

Product Manual, TNSR v19.02

tnsr(config)# nat global-options nat44 forwarding true

If NAT is active and there are no services present on TNSR which need to communicate using an interface involved
with NAT, then it is more secure and efficient to disable forwarding:

tnsr(config)# nat global-options nat44 forwarding false

13.3 NAT Pool Addresses

Before TNSR can perform any type of NAT, an inside and outside interface must be set and the outside/external
addresses (e.g. WAN-side) must be listed in a NAT pool. These pools are added from configure mode (Configuration
Mode) in the TNSR CLI (Entering the TNSR CLI).

For a single external address, define a NAT pool like so:

tnsr(config)# nat pool addresses 203.0.113.2

For multiple addresses, use a range:

tnsr(config)# nat pool addresses 203.0.113.2 - 203.0.113.5

TNSR also supports using an interface to automatically determine the pool addresses:

tnsr(config)# nat pool interface GigabitEthernet0/14/1

For Outbound NAT this is typically the interface set as ip nat outside.

13.4 Outbound NAT

Outbound NAT, sometimes referred to as Source NAT, Overload NAT or Port Address Translation (PAT), changes the
source address and port of packets exiting a given interface. This is most commonly performed in order to hide the
origin of a packet, allowing multiple IPv4 hosts inside a network to share one, or a limited number of, external or
outside addresses on a router.

In TNSR, this type of NAT is configured by marking the LAN or internal interface as inside and the WAN or
external interface as outside, for example:

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit
tnsr(config)# interface GigabitEthernet0/14/2
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit
tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)#

Traffic originating on the inside interface and exiting the outside interface will have its source address changed to
match that of the outside interface.

13.3. NAT Pool Addresses 89

Product Manual, TNSR v19.02

Warning: The address of the outside interface must exist as a part of a NAT pool (NAT Pool Addresses) or connec-
tivity from the inside interface will not function with NAT configured. Use either an address pool as shown above,
or nat pool interface <name> where <name> is the same interface that contains ip nat outside.

Warning: When activating ip nat outside, services on TNSR may fail to accept or initiate traffic on
that interface depending on the NAT mode. For services on TNSR to function in combination with ip nat
outside, endpoint-dependent NAT mode must be enabled. In TNSR 18.11 and later, this is the default mode.

The following commands set TNSR to endpoint-dependent NAT mode:

tnsr(config)# dataplane nat mode endpoint-dependent
tnsr(config)# service dataplane restart

Additionally, NAT forwarding must be enabled for this traffic to be accepted by TNSR. See NAT Forwarding for
details.

13.5 Static NAT

Static NAT entries alter traffic, redirecting it to a static host on an internal network, or mapping it to a static address
on the way out:

tnsr(config)# nat pool addresses <external address>
tnsr(config)# nat static mapping (icmp|tcp|udp) local <local address> [local port]
→˓external (external address|external interface) [external port] [twice-nat] [out-to-
→˓in-only] [route-table <rt-tbl-name>]

There are two common use cases for static NAT in practice: Port Forwarding and 1:1 NAT.

Warning: Remember to add the address of the outside interface as a part of a NAT pool (NAT Pool Addresses) or
the static NAT entry will fail to commit.

Warning: The out-to-in-only and twice-nat features require endpoint-dependent NAT mode.
In TNSR 18.11 and later, this is the default mode.

The following commands set TNSR to endpoint-dependent NAT mode:

tnsr(config)# dataplane nat mode endpoint-dependent
tnsr(config)# service dataplane restart

13.5.1 Port Forwards

Port forwards redirect a port on an external NAT pool address to a port on a local host. A port forward is accomplished
by specifying ports in the static NAT command:

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# nat static mapping tcp local 10.2.0.5 22 external 203.0.113.2 222

13.5. Static NAT 90

Product Manual, TNSR v19.02

In the above example, a TCP connection to port 222 on 203.0.113.2 will be forwarded to port 22 on 10.2.0.5. The
source address remains the same.

13.5.2 1:1 NAT

1:1 NAT, also called One-to-One NAT or in some cases “Network Address Translation”, maps all ports of an external
address for a given protocol to an an internal address. This mapping works for inbound and outbound packets. To
create a 1:1 mapping, make a static NAT entry which does not specify any ports:

tnsr(config)# nat pool addresses 203.0.113.3
tnsr(config)# nat static mapping tcp local 10.2.0.5 external 203.0.113.3

13.5.3 Twice NAT

Twice NAT changes both the source and destination address of inbound connection packets. This works similar to a
static NAT port forward, but requires an additional NAT address specification.

First, add the internal address for source translation:

tnsr(config)# nat pool addresses 10.2.0.2 twice-nat

Next, add the external address to which the client originally connects:

tnsr(config)# nat pool addresses 203.0.113.2

Finally, add the static mapping which sets up the destination translation:

tnsr(config)# nat static mapping tcp local 10.2.0.5 22 external 203.0.113.2 222 twice-
→˓nat

In the above example, a TCP connection to port 222 on 203.0.113.2 will be forwarded to port 22 on 10.2.0.5. When
the packet leaves TNSR, the source is translated so the connection appears to originate from 10.2.0.2 using a random
source port.

Warning: This feature requires endpoint-dependent NAT mode. In TNSR 18.11 and later, this is the default
mode.

The following commands set TNSR to endpoint-dependent NAT mode:

tnsr(config)# dataplane nat mode endpoint-dependent
tnsr(config)# service dataplane restart

13.6 NAT Reassembly

If a packet is fragmented before it arrives on a TNSR interface, only the initial fragment packet contains header
information needed to properly apply NAT. Later fragments lack these details, which prevents TNSR NAT from seeing
port data. This can lead to fragments being mishandled because TNSR has no way to determine what it should do to
these fragments. NAT reassembly works around this problem by holding fragments and reassembling entire packets
for inspection, allowing TNSR to properly act upon the full packet.

13.6. NAT Reassembly 91

Product Manual, TNSR v19.02

13.6.1 Commands

To enter NAT reassembly mode:

tnsr# configure
tnsr(config)# nat reassembly (ipv4|ipv6)
tnsr(nat_reassembly)#

The following commands are available within NAT reassembly mode:

concurrent-reassemblies <max-reassemblies> Configures the maximum number of packets held for
reassembly at any time. Default 1024.

disable Disables NAT reassembly

enable Enables NAT reassembly

fragments <max-fragments> Maximum number of fragments to reassemble. Default 5.

timeout <seconds> Number of seconds to wait for additional fragments to arrive for reassembly. Default
2 seconds.

To exit NAT reassembly mode:

tnsr(nat_reassembly)# exit
tnsr(config)#

13.7 Dual-Stack Lite

Dual-Stack Lite, also knows as DS-Lite, is mechanism which facilitates large scale IPv4 NAT by encapsulating IPv4
packets inside IPv6 packets for delivery to a Carrier-Grade NAT (CGN) endpoint. This allows providers to provision
end users with only a routed IPv6 address, and any IPv4 traffic is carried through IPv6 to a CGN device. Once the IPv6
packet reaches the CGN device, the IPv4 packet is extracted, has NAT applied, and is forwarded. The CGN device
will apply NAT using one of its routable IPv4 addresses, shared between DS-Lite users.

By using encapsulation, DS-Lite avoids multiple layers of NAT between the customer and the Internet. An end-user
network which connects to a DS-Lite provider should not perform any IPv4-IPv4 NAT on the traffic before it reaches
a router configured for DS-Lite.

DS-Lite is considered an IPv6 transition mechanism as it allows providers to reduce their dependence on scarce IPv4
routable addresses, while still giving clients full access to IPv4 and IPv6 resources. It also removes the need to use
potentially conflicting IPv4 private address space for IPv4 routing inside a provider network.

There are two endpoints to DS-Lite connections:

• DS-Lite Basic Bridging BroadBand (B4) element on the customer end

• DS-Lite Address Family Transition Router (AFTR) element at the provider end

From a customer perspective, their side is before (B4) DS-Lite and the ISP side is after (AFTR) DS-Lite.

TNSR can operate in either capacity: As a CPE DS-Lite B4 client endpoint, or as an AFTR endpoint providing DS-Lite
connectivity and IPv4 NAT to clients.

13.7.1 Acting as a B4 Endpoint

For a customer premise equipment (CPE) role which connects to an ISP offering DS-Lite service, the following steps
are required:

13.7. Dual-Stack Lite 92

Product Manual, TNSR v19.02

First, configure IPv6 connectivity to the ISP.

Next, configure the local IPv6 address TNSR will use for its DS-Lite B4 endpoint. For example, this might be the
IPv6 WAN interface address:

tnsr(config)# dslite b4 endpoint <ip6-address>

Finally, configure the remote IPv6 DS-Lite AFTR endpoint address given by the ISP:

tnsr(config)# dslite aftr endpoint <ip6-address>

13.7.2 Acting as an AFTR Endpoint

For a provider role as a DS-Lite AFTR endpoint serving customers, the following steps are required:

First, configure IPv6 and IPv4 connectivity such that this TNSR instance has both IPv6 and IPv4 connectivity to the
Internet.

Next, configure the local AFTR IPv6 address TNSR will use to receive DS-Lite encapsulated packets from customer
equipment:

tnsr(config)# dslite aftr endpoint <ip6-address>

Next, configure one or more routable (“public”) IPv4 addresses for the DS-Lite NAT pool. These addresses are used
by TNSR to apply NAT to outgoing IPv4 traffic which arrived via DS-Lite:

tnsr(config)# dslite pool address <ipv4-addr-first> [- <ipv4-addr-last>]

IPv4 packets arriving through DS-Lite from a customer will be removed from the encapsulation, have NAT applied,
and then be forwarded upstream (e.g. to the Internet). Reply packets will come back, and then go back through NAT
and DS-Lite to reach customers.

13.7.3 DS-Lite Status

To view active DS-Lite sessions, use the following command:

tnsr# show dslite

13.8 Deterministic NAT

Deterministic NAT mode, also known as Carrier-Grade NAT (CGN) mode, is geared for maximum performance at a
large scale. This performance comes at a price, however, in that it consumes greater amounts of memory to achieve its
goals.

To switch the NAT mode used by TNSR, see Dataplane NAT Modes.

Deterministic NAT pre-allocates 1000 external ports per inside address, which can increase memory requirements
significantly. Each single session requires approximately 15 Bytes of memory.

Deterministic NAT enforces maximum numbers of NAT sessions per user, and only works for TCP, UDP, and ICMP
protocols.

Deterministic NAT requires a mapping, configured as follows:

13.8. Deterministic NAT 93

Product Manual, TNSR v19.02

tnsr(config)# nat deterministic mapping inside <inside-prefix> outside <outside-
→˓prefix>

In this command, the parameters to replace are:

inside <inside-prefix> The internal subnet containing local users, for example, 198.18.0.0/15.

outside <outside-prefix> The external subnet to which these users will be mapped using deterministic
NAT. For example, 203.0.113.128/25.

Configured mappings may be viewed as follows:

tnsr(config)# show nat deterministic-mappings
Deterministic Mappings

Inside Outside Ratio Ports Sessions
------------- ---------------- --------- --------- ---------
198.14.0.0/15 203.0.113.128/25 1024 63 0

NAT Reassembly Parameters

13.9 NAT Examples

The examples in this section describe and demonstrate use cases and packet flows for typical scenarios involving NAT.

13.9.1 AWS NAT Examples

When using TNSR with AWS, it is relatively easy to unintentionally create an asymmetric routing situation. AWS
knows about your local networks and will happily egress traffic with NAT for them, when other networking setups
would otherwise drop or fail to hand off the traffic.

The examples in this section covers what would happen with a TNSR setup in AWS with two instances: An internal
LAN instance with a local “client” system making an outbound request, and an external WAN instance that is intended
to handle public-facing traffic. TNSR sits between the WAN and LAN instance to route traffic. In AWS, the VPC
routing table is configured such that the LAN instance uses TNSR for its default gateway. The expected flow is that
traffic flows from clients, through TNSR, to the Internet and back the same path.

This table lists the networks and addresses used by these examples.

Item Value
AWS Networks 192.0.2.0/24 (LAN), 198.18.5.0/24 (WAN), 203.0.113.0/24 (External)
AWS Gateways 192.0.2.1 (LAN), 198.18.5.1 (WAN), 203.0.113.1 (External)
TNSR LAN 192.0.2.2/24
TNSR WAN 198.18.5.2
TNSR GW 198.18.5.1 (AWS Gateway)
LAN Client 192.0.2.5/24
LAN Client GW 192.0.2.2 (TNSR LAN)
Server 198.51.100.19/24
Server GW 198.51.100.1

13.9. NAT Examples 94

Product Manual, TNSR v19.02

AWS Example without NAT

In this example, TNSR is not configured to perform NAT. This example steps through each portion of a packet and its
reply, and then discusses the problems at the end.

Fig. 1: AWS example packet flow without NAT

First, the client initiates a connection using a packet which arrives on the TNSR LAN interface

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 192.0.2.2

TNSR performs a FIB lookup. The destination IP address is not within the the subnets configured on the TNSR
instance interfaces, so it matches the default route

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 Default

TNSR forwards the packet out its WAN interface to its default gateway on the WAN. TNSR is not configured for NAT,
thus it does not perform any translation.

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 198.18.5.1

13.9. NAT Examples 95

Product Manual, TNSR v19.02

The packet reaches the AWS internet gateway connected to the VPC. Its source IP address is still the private IP address
of the LAN instance.

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 198.18.5.1

The AWS internet gateway performs NAT. It recognizes the source IP address as belonging to the LAN instance and
rewrites it to the public IP address of the LAN instance.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 Default

The AWS internet gateway forwards the packet to the internet.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 203.0.113.1

The destination host sends a reply to the public IP address of the LAN instance. It arrives at the AWS internet gateway.

Proto Source Destination Via
TCP 198.51.100.19:443 203.0.113.50:40250 198.51.100.1

The AWS internet gateway performs NAT. It recognizes the destination IP address as belonging to LAN instance and
rewrites it to the private IP address of the LAN instance.

Proto Source Destination Via
TCP 198.51.100.19:443 192.0.2.5:1025 Direct L2 LAN

The AWS internet gateway knows how to reach the private IP address of the LAN instance directly, so it forwards the
reply packet directly to the LAN instance, skipping the TNSR instance.

Proto Source Destination Via
TCP 198.51.100.19:443 192.0.2.5:1025 Direct L2 LAN

The packet arrives at the client.

The return path skipped TNSR, so TNSR is only seeing half the packets for the connection. At best this means
the asymmetric routing will bypass any filtering or inspection of the replies (IDS/IPS), and at worst it could mean
subsequent packets would be dropped instead of passing through TNSR.

AWS Example with NAT

In this example, TNSR has NAT configured such that its LAN is defined as an inside interface and its WAN is an
outside interface. See Outbound NAT for details. Packets leaving the WAN will be translated such that they leave
with a source address set to the TNSR WAN interface IP address.

First, the client initiates a connection using a packet which arrives on the TNSR LAN interface

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 192.0.2.2

13.9. NAT Examples 96

Product Manual, TNSR v19.02

Fig. 2: AWS example packet flow with NAT

13.9. NAT Examples 97

Product Manual, TNSR v19.02

TNSR performs a FIB lookup. The destination IP address is not within the the subnets configured on the TNSR
instance interfaces, so it matches the default route

Proto Source Destination Via
TCP 192.0.2.5:1025 198.51.100.19:443 Default

TNSR applies NAT and forwards the packet out its WAN interface to its default gateway on the WAN subnet.

Proto Source Destination Via
TCP 198.18.5.2:34567 198.51.100.19:443 198.18.5.1

The packet reaches the AWS internet gateway connected to the VPC. Its source IP address is the private IP address of
the TNSR WAN instance.

Proto Source Destination Via
TCP 198.18.5.2:34567 198.51.100.19:443 198.18.5.1

The AWS internet gateway performs NAT. It recognizes the source IP address as belonging to the WAN instance and
rewrites it to the public IP address of the WAN instance.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 Default

The AWS internet gateway forwards the packet to the internet.

Proto Source Destination Via
TCP 203.0.113.50:40250 198.51.100.19:443 203.0.113.1

The destination host sends a reply to the public IP address of the WAN instance. It arrives at the AWS internet gateway.

Proto Source Destination Via
TCP 198.51.100.19:443 203.0.113.50:40250 198.51.100.1

The AWS internet gateway performs NAT. It recognizes the destination IP address as belonging to WAN instance and
rewrites it to the private IP address of the WAN instance. The AWS internet gateway knows how to reach the private
IP address of the WAN instance directly, so it forwards the reply packet directly to the WAN instance.

Proto Source Destination Via
TCP 198.51.100.19:443 198.18.5.2:34567 Direct L2 WAN

The packet arrives at the TNSR WAN, which performs NAT. It recognizes the source and destination as matching an
existing NAT state belonging to the LAN client and rewrites the destination address to the LAN client. TNSR knows
how to reach the client LAN IP address directly, so it forwards the reply packet.

Proto Source Destination Via
TCP 198.51.100.19:443 192.0.2.5:1025 Direct L2 LAN

The packet arrives back at the client.

In this case, the NAT performed on TNSR ensured that the AWS gateway delivered the reply back to TNSR instead of
handing it off directly. This allowed the packet and its reply to use the same path outbound and inbound.

13.9. NAT Examples 98

CHAPTER

FOURTEEN

MAP (MAPPING OF ADDRESS AND PORT)

MAP is short for Mapping of Address and Port. It is a carrier-grade IPv6 transition mechanism capable of efficiently
transporting high volumes of IPv4 traffic across IPv6 networks.

MAP is only available in TNSR Enterprise.

There are two MAP implementations in TNSR Enterprise: MAP-T which uses translation and MAP-E which uses
encapsulation.

With MAP, IPv4 requests are forwarded from an end user Customer Edge (CE) device through an IPv6 Border Relay
(BR) router which processes and forwards the requests to IPv4 destinations. Customer IPv6 requests can can proceed
directly to IPv6 destinations without going through the BR, which lowers the burden on the BR.

MAP is stateless, thus capable of handling large scale traffic volume without additional overhead for tracking indi-
vidual connections. Each CE device receives a public IPv4 address but may only use a specific port range on that
address. In this way, multiple users may share a public address without an additional layer of NAT. Since this rela-
tionship is predetermined, the ports are also available bidirectionally, which is not possible with other solutions such
as Carrier-Grade NAT/NAT444.

MAP-T and MAP-E require port information to operate, thus fragments must be reassembled at the BR before for-
warding. This is due to the fact that protocol and port information are only present in the first packet. Intelligent
caching & forwarding may be employed for handling fragments.

TNSR can currently act as a BR, providing service to CE clients.

14.1 MAP Configuration

MAP configurations consist of MAP domains, MAP rules, and interface configuration.

14.1.1 MAP Domains

A MAP domain encompasses a set of addresses, translation parameters, and MAP rules. Groups of CE devices belong
to specific MAP domains.

A MAP domain is created in config mode using the nat nat64 map <domain name> command from within
config mode. That command enters config-map mode.

This mode, config-map, contains a number of MAP options specific to a MAP domain:

description A short text description noting the name or purpose of this MAP domain.

port-set <length|offset> A port set is, as the name implies, a set of ports. This is typically divided up into
multiple sets of ports, the exact size and ranges of which are calculated using the port set length and
offset, discussed next. With MAP, users are overloaded onto a single IP address, with different port

99

Product Manual, TNSR v19.02

sets on a single IP address being allocated to multiple users. In this way, users can share individual
IP addresses but only have access to specific ranges of ports.

port-set length <psid-length> Determines the number of port sets to allocate inside the
available 16-bit port range (1-65536). A larger port set length allows for more users
to share an address, but allocates them each a smaller number of ports. For example,
a port set length of 8 uses 8 bits to define the port set, leaving the remaining 8 bits for
use by each customer, or 256 ports each.

port-set offset <psid-offset> Determines the position of the port set identifier inside the
available bits which represent the port. An offset of 0 means the identifier is first, and
the ports per user will be contiguous. Placing the offset in the middle of the available
space will allow users to utilize multiple ranges that are not contiguous, but each user
will have slightly less ports available. For example, with a port set length of 8, but an
offset of 2, each user can utilize only 192 ports instead of 256, since it is split into three
ranges of 64 ports each. The offset cannot be larger than the port set length subtracted
from the total available bits (16).

There are minor security benefits when using multiple non-contiguous port ranges
since it is more difficult for an attacker to guess which ports belong to a given cus-
tomer, but the loss of port capacity may outweigh this benefit in most environments.

embedded-address bit-length <ea-width> The Embedded Address Bits value is the sum of the bits
needed for the IPv4 prefix and the port set length. For example, if the IPv4 prefix is a /24, that
requires 8 bits to embed and allows 256 addresses for users. A port set length of 8 allows for 256
port sets. With a port set offset of 0, this yields a maximum of 65,536 users sharing 256 IPv4
addresses, each of which can use 256 ports.

Note: To utilize MAP rules, this value must be 0.

ipv4 prefix <ip4-prefix> The IPv4 Prefix is available pool of IPv4 addresses which can be utilized by
MAP clients. The size of this prefix must be represented in the Embedded Address Bits. For exam-
ple, a /24 prefix network requires 8 bits to uniquely identify an address.

ipv6 prefix <ip6-prefix> The IPv6 prefix contains the range of possible addresses assigned to clients.
The end-user network must be at least a 64 prefix, leaving 64 bits to represent both this prefix and
the embedded address bits. The smallest possible IPv6 prefix will be 128 bits less the sum of the
end user network and embedded address bits. For example, with an embedded address length of 16,
48 bits remain for the IPv6 prefix. Shorter prefixes (e.g. 44) allow for additional IPv6 subnets to be
assigned to clients.

ipv6 source <ip6-src> The IPv6 source address on the router used as the MAP domain BR address and
Tunnel source. This address should exist on the interface used for mapping. For MAP-T, this must
have a prefix length of either /64 or /96. For MAP-E, this is a single address (/128) and not a
prefix.

mtu <mtu-val> The Maximum Transmission Unit (MTU) is the largest packet which can traverse the
link without fragmentation. This must be set appropriately due to the importance of MAP fragment
handling, as required information to calculate targets is only in the first packet and not additional
fragments.

14.1.2 MAP Rules

MAP rules exist inside a MAP domain and are configured from within config-map mode. MAP rules map specific
port sets to specific MAP CE end user addresses. These are 1:1 manual mappings and take the place of automatic
calculation, and as such to use MAP rules, the embedded-address bit-length must be 0.

14.1. MAP Configuration 100

Product Manual, TNSR v19.02

A map rule takes the following form:

rule port-set <psid> ipv6-destination <ip6-destination>

The components of a rule are:

port-set <psid> The port set ID (PSID) to match for this rule.

ipv6-destination <ip6-destination> The MAP CE IPv6 address to associate with this specific
port set ID.

14.1.3 MAP Interface Configuration

TNSR must be told which interface is used with MAP, and how that interface will operate.

Within config-interface mode (Configure Interfaces), there are two possible settings for MAP:

map <enable|disable> Enables or disables MAP for this interface.

map translate When present and MAP is enabled, the interface operates in translate mode (MAP-T).
When not set, encapsulation is used instead (MAP-E).

14.1.4 View MAP Configuration

The MAP configuration can be viewed with the show map [<map-domain-name>] command. Without a given
domain name, information is printed for all MAP domains, plus the MAP parameters.

tnsr# show map cpoc

Name IP4 Prefix IP6 Prefix IP6 Src Pref EA Bits PSID Off PSID Len
→˓MTU
---- -------------- ------------- ------------------------ ------- -------- -------- -
→˓---
cpoc 192.168.1.0/24 2001:db8::/32 1234:5678:90ab:cdef::/64 16 6 4
→˓1280

tnsr# show map
MAP Parameters

Fragment: outer
Fragment ignore-df: false
ICMP source address: 0.0.0.0
ICMP6 unreachable msgs: disabled
Pre-resolve IPv4 next hop: 0.0.0.0
Pre-resolve IPv6 next hop: ::
IPv4 reassembly lifetime: 100
IPv4 reassembly pool size: 1024
IPv4 reassembly buffers: 2048
IPv4 reassembly HT ratio: 1.00
IPv6 reassembly lifetime: 100
IPv6 reassembly pool size: 1024
IPv6 reassembly buffers: 2048
IPv6 reassembly HT ratio: 1.00
Security check enabled: true
Security check fragments enabled: false
Traffic-class copy: enabled

(continues on next page)

14.1. MAP Configuration 101

Product Manual, TNSR v19.02

(continued from previous page)

Traffic-class value: 0

Name IP4 Prefix IP6 Prefix IP6 Src Pref EA Bits PSID Off PSID Len
→˓MTU
---- -------------- ------------- ------------------------ ------- -------- -------- -
→˓---
cpoc 192.168.1.0/24 2001:db8::/32 1234:5678:90ab:cdef::/64 16 6 4
→˓1280

14.2 MAP Parameters

MAP Parameters control the behavior of MAP-T and MAP-E. These parameters are configured by the nat nat64
map parameters command from within config mode, which enters config-map-param mode where the
individual values are set.

From within config-map-param mode, the following commands are available:

fragment ignore-df Allows TNSR to perform IPv4 fragmentation even when packets contain the do-
not-fragment (DF) bit. This improves performance by moving the burden of fragmentation to the
endpoint rather than the MAP relay.

fragment (inner|outer) Controls whether TNSR will fragment the inner (encapsulated or translated)
packets or the outer (tunnel) packets.

icmp source-address <ipv4-address> Sets the IPv4 address used by TNSR to send relayed ICMP error
messages.

icmp6 unreachable-msgs (enable|disable) When enabled, TNSR will generate ICMPv6 unreachable
messages when a packet fails to match a MAP domain or fails a security check.

pre-resolve (ipv4|ipv6) next-hop <ip46-address> Manually configures the next hop for IPv4 or IPv6
routing of MAP traffic, which bypasses a routing table lookup. This increases performance, but
means that the next hop cannot be determined dynamically or by routing protocol.

reassembly (ipv4|ipv6) buffers <bufs> The maximum number of cached fragment buffers. Setting a
limit can improve resilience to DoS/resource exhaustion attacks.

reassembly (ipv4|ipv6) ht-ratio <ratio> The fragment hash table multiplier, expressed as a ratio such as
1:18. This ratio, multiplied by pool-size, determines the number of buckets in the hash table.

reassembly (ipv4|ipv6) lifetime <lf> The life time, in milliseconds, of a reassembly attempt. Longer
times allow for more accurate reassembly at the expense of consuming more resources and poten-
tially exhausting available fragment resources.

reassembly (ipv4|ipv6) pool-size <ps> The fragment pool size, in bytes. This controls how many sets
of fragments can be allocated.

security-check (enable|disable) Enables or disables validation of decapsulated IPv4 addresses against
the external IPv6 address on single packets or the first fragment of a packet. Disabling the check
increases performance but potentially allows IPv4 address spoofing.

security-check fragments (enable|disable) Extends the previous security check to all fragments instead
of only inspecting the first packet.

tcp mss <mss-value> Sets the MSS value for MAP traffic, typically the MTU less 40 bytes.

traffic-class tc <tc-val> Sets the Class/TOS field of outer IPv6 packets to the specified value.

14.2. MAP Parameters 102

Product Manual, TNSR v19.02

traffic-class copy (enable|disable) When enabled, copies the class/TOS field from the inner IPv4 packet
header to the outer IPv6 header. This is enabled by default, but disabling can slightly improve
performance.

14.2.1 View MAP Parameters

The current value of MAP parameters can be displayed by the show map command:

tnsr# show map
MAP Parameters

Fragment: outer
Fragment ignore-df: false
ICMP source address: 0.0.0.0
ICMP6 unreachable msgs: disabled
Pre-resolve IPv4 next hop: 0.0.0.0
Pre-resolve IPv6 next hop: ::
IPv4 reassembly lifetime: 100
IPv4 reassembly pool size: 1024
IPv4 reassembly buffers: 2048
IPv4 reassembly HT ratio: 1.00
IPv6 reassembly lifetime: 100
IPv6 reassembly pool size: 1024
IPv6 reassembly buffers: 2048
IPv6 reassembly HT ratio: 1.00
Security check enabled: true
Security check fragments enabled: false
Traffic-class copy: enabled
Traffic-class value: 0

Name IP4 Prefix IP6 Prefix IP6 Src Pref EA Bits PSID Off PSID Len
→˓MTU
---- -------------- ------------- ------------------------ ------- -------- -------- -
→˓---
cpoc 192.168.1.0/24 2001:db8::/32 1234:5678:90ab:cdef::/64 16 6 4
→˓1280

14.2. MAP Parameters 103

Product Manual, TNSR v19.02

14.3 MAP Example

14.3.1 Environment

MAP Border Relay
Item Value
MAP Domain Name cpoc
IPv6 Prefix 2001:db8::/32
IPv6 Source Prefix 1234:5678:90ab:cdef::/64
IPv4 Prefix 192.168.1.0/24
Port Set Length 8
Port Set Offset 0
Embedded Address Bits 16
MTU 1300
Interface GigabitEthernet0/14/0
IPv6 Address fd01:2::1/64
IPv4 Address 203.0.113.2/24

14.3.2 TNSR Border Relay Configuration

This shows an example Border Relay (BR) configuration in TNSR to provide service to MAP-T Customer Edge (CE)
clients. This example assumes some configuration details are already in place, such as the IPv4 prefix already being
routed to the BR from upstream, and default routes configured in TNSR for upstream gateways.

First, configure the interface connected to the upstream network. There could be separate interfaces for reaching the
Internet and for reaching the CE network, but this example uses a single interface.

tnsr(config)# interface GigabitEthernet0/14/0
tnsr(config-interface)# ip address 203.0.113.2/24
tnsr(config-interface)# ipv6 address fd01:2::1/64
tnsr(config-interface)# exit

Next, configure the MAP domain:

tnsr(config)# nat nat64 map cpoc
tnsr(config-map)# ipv4 prefix 192.168.1.0/24
tnsr(config-map)# ipv6 prefix 2001:db8::/32
tnsr(config-map)# ipv6 source 1234:5678:90ab:cdef::/64
tnsr(config-map)# embedded-address bit-length 16
tnsr(config-map)# port-set length 4
tnsr(config-map)# port-set offset 6
tnsr(config-map)# mtu 1280
tnsr(config-map)# exit

Then add a static route:

tnsr(config)# route ipv6 table ipv6-VRF:0
tnsr(config-route-table-v6)# route 2001:db8::/32
tnsr(config-rttbl6-next-hop)# next-hop 0 via fd01:2::2 GigabitEthernet0/14/0
tnsr(config-rttbl6-next-hop)# exit
tnsr(config-route-table-v6)# exit

Lastly, enable MAP and MAP-T translation for the interface:

14.3. MAP Example 104

Product Manual, TNSR v19.02

tnsr(config)# interface GigabitEthernet0/14/0
tnsr(config-interface)# map translate
tnsr(config-interface)# map enable
tnsr(config-interface)# exit

See also:

For information on configuring other operating systems to act as a CE, consult their documentation or check the links
in Additional MAP Reading and Tools for additional information.

14.4 MAP Types

14.4.1 MAP-T (Translation)

With MAP-T, translations are made using mapping rules that can calculate addresses and ports based on information
embedded an in IPv6 address, along with several known parameters.

MAP-T clients determine where to send translated IPv4 traffic using the Default Mapping Rule (DMR) IPv6 /64 prefix.

14.4.2 MAP-E (Encapsulation)

MAP-E is similar to MAP-T, but instead of translating IPv4 traffic and encoding information in the address, the IPv4
requests are encapsulated in IPv6 between the CE and BR as described in RFC 2473.

MAP-E clients send all IPv4 encapsulated traffic to the BR IPv6 address.

14.4.3 Additional MAP Reading and Tools

MAP is a complex topic and much of it is outside the scope of TNSR documentation. There are a number of additional
resources that have information on MAP along with examples for other operating systems and example environments.

We recommend the following links as starting points for MAP information.

• CableLabs MAP Technical Report CL-TR-MAP-V01-160630

• Charter MAP-T deployment presentation MAP-T NANOG Video / MAP-T NANOG Slides

• Cisco MAP Simulation Tool

• MAP-E RFC 7597

• MAP-T RFC 7599

14.4. MAP Types 105

https://tools.ietf.org/html/rfc2473
https://community.cablelabs.com/wiki/plugins/servlet/cablelabs/alfresco/download?id=9280e9b7-773e-4e11-ae84-68b09e32baf0
https://www.youtube.com/watch?v=ZmfYHCpfr_w
https://pc.nanog.org/static/published/meetings/NANOG71/1452/20171004_Gottlieb_Mapping_Of_Address_v1.pdf
http://6lab.cisco.com/map/MAP.php
https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc7599

CHAPTER

FIFTEEN

DYNAMIC HOST CONFIGURATION PROTOCOL

The Dynamic Host Configuration Protocol (DHCP) service on TNSR provides automatic addressing to clients on an
interface. Typically, this service uses a local, internal interface such as one connected to a LAN or DMZ.

15.1 DHCP Configuration

The main IPv4 DHCP configuration mode, entered with dhcp4 server, defines global options for IPv4 DHCP that
affect the general behavior of DHCP as well as options that cover all subnets and pools.

To enter IPv4 DHCP configuration mode, enter:

tnsr# configure
tnsr(config)# dhcp4 server
tnsr(config-kea-dhcp4)#

From this mode, there are a variety of possibilities, including:

subnet Subnet configuration, see Subnet Configuration.

description Description of the DHCP server

option A DHCP Option declaration, see DHCP Options.

decline-probation-period <n> Decline lease probation period, in seconds.

echo-client-id <boolean> Controls whether or not the DHCP server sends the client-id back to the client
in its responses.

interface listen The interface upon which the DHCP daemon will listen.

interface socket Controls whether the DHCP daemon uses raw or UDP sockets.

lease filename <path> Lease database file

lease lfc-interval <n> Lease file cleanup frequency, in seconds.

lease persist <boolean> Whether or not the lease database will persist.

logging <x> Controls which DHCP daemon logger names will create log entries, or * for all.

match-client-id <boolean> When true, DHCP will attempt to match clients first based on client ID and
then by MAC address if the client ID doesn’t produce a match. When false, it prefers the MAC
address.

next-server <IP Address> Specifies a TFTP server to be used by a client.

rebind-timer <n> Sets the period, in seconds, at which a client must rebind its address.

renew-timer <n> Sets the period, in seconds, at which a client must renew its lease.

106

Product Manual, TNSR v19.02

valid-lifetime <n> The period of time, in seconds, for which a lease will be valid.

Some of these values may be set here globally, and again inside subnets or pools. In each case, the more specific value
will be used. For example, if an option is defined in a pool, that would be used in place of a global or subnet definition;
A subnet option will be favored over a global option. In this way, the global space may define defaults and then these
defaults can be changed if needed for certain areas.

15.1.1 DHCP Options

DHCP Options provide information to clients beyond the basic address assignment. These options give clients other
aspects of the network configuration, tell clients how they should behave on the network, and give them information
about services available on the network. Common examples are a default gateway, DNS Servers, Network Time
Protocol servers, network booting behavior, and dozens of other possibilities.

See also:

For a list of Standard IPv4 DHCP options, see Standard IPv4 DHCP Options. This list also includes the type of data
expected and whether or not they take multiple values.

The general form of an option is:

tnsr(config-kea-dhcp4)# option <name>
tnsr(config-kea-dhcp4-opt)# data <comma-separated values>
tnsr(config-kea-dhcp4-opt)# exit

This example defines a global domain name for all clients in all subnets:

tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcp4-opt)# exit

This example defines a default gateway for a specific subnet:

tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 10.2.0.1
tnsr(config-kea-subnet4-opt)# exit

To see a list of option names, enter:

tnsr(config-kea-dhcp4)# option ?

When defining options the data can take different forms. The DHCP daemon uses comma-separated value (CSV)
format by default and it will automatically convert the text representation of a value to the expected data in the daemon.

Inside the option configuration mode, the following choices are available:

always-send <boolean> Controls whether the DHCP server will always send this option in a response,
or only when requested by a client. The default behavior varies by option and is documented in
Standard IPv4 DHCP Options

csv-format <boolean> Toggles between either CSV formatted data or raw binary data. This defaults to
true unless an option does not have a default definition. In nearly all cases this option should be
left at the default.

data <data> Arbitrary option data. Do not enclose in quotes. To see option data types and expected
formats, see Standard IPv4 DHCP Options

space <name> Option space in which this entry exists, defaults to dhcp4.

15.1. DHCP Configuration 107

Product Manual, TNSR v19.02

Standard IPv4 DHCP Options

This list contains information about the standard IPv4 DHCP options, sourced from the Kea Administrator Manual
section on DHCP Options.

For a list of the Types and their possible values, see DHCP Option Types.

Name Code Type Array Always Return
time-offset 2 int32 false false
routers 3 ipv4-address true true
time-servers 4 ipv4-address true false
name-servers 5 ipv4-address true false
domain-name-servers 6 ipv4-address true true
log-servers 7 ipv4-address true false
cookie-servers 8 ipv4-address true false
lpr-servers 9 ipv4-address true false
impress-servers 10 ipv4-address true false
resource-location-servers 11 ipv4-address true false
boot-size 13 uint16 false false
merit-dump 14 string false false
domain-name 15 fqdn false true
swap-server 16 ipv4-address false false
root-path 17 string false false
extensions-path 18 string false false
ip-forwarding 19 boolean false false
non-local-source-routing 20 boolean false false
policy-filter 21 ipv4-address true false
max-dgram-reassembly 22 uint16 false false
default-ip-ttl 23 uint8 false false
path-mtu-aging-timeout 24 uint32 false false
path-mtu-plateau-table 25 uint16 true false
interface-mtu 26 uint16 false false
all-subnets-local 27 boolean false false
broadcast-address 28 ipv4-address false false
perform-mask-discovery 29 boolean false false
mask-supplier 30 boolean false false
router-discovery 31 boolean false false
router-solicitation-address 32 ipv4-address false false
static-routes 33 ipv4-address true false
trailer-encapsulation 34 boolean false false
arp-cache-timeout 35 uint32 false false
ieee802-3-encapsulation 36 boolean false false
default-tcp-ttl 37 uint8 false false
tcp-keepalive-interval 38 uint32 false false
tcp-keepalive-garbage 39 boolean false false
nis-domain 40 string false false
nis-servers 41 ipv4-address true false
ntp-servers 42 ipv4-address true false
vendor-encapsulated-options 43 empty false false
netbios-name-servers 44 ipv4-address true false
netbios-dd-server 45 ipv4-address true false
netbios-node-type 46 uint8 false false

Continued on next page

15.1. DHCP Configuration 108

https://ftp.isc.org/isc/kea/1.0.0-beta2/doc/kea-guide.html#dhcp4-std-options-list
https://ftp.isc.org/isc/kea/1.0.0-beta2/doc/kea-guide.html#dhcp4-std-options-list

Product Manual, TNSR v19.02

Table 1 – continued from previous page
Name Code Type Array Always Return
netbios-scope 47 string false false
font-servers 48 ipv4-address true false
x-display-manager 49 ipv4-address true false
dhcp-option-overload 52 uint8 false false
dhcp-message 56 string false false
dhcp-max-message-size 57 uint16 false false
vendor-class-identifier 60 binary false false
nwip-domain-name 62 string false false
nwip-suboptions 63 binary false false
tftp-server-name 66 string false false
boot-file-name 67 string false false
user-class 77 binary false false
client-system 93 uint16 true false
client-ndi 94 record (uint8, uint8, uint8) false false
uuid-guid 97 record (uint8, binary) false false
subnet-selection 118 ipv4-address false false
domain-search 119 binary false false
vivco-suboptions 124 binary false false
vivso-suboptions 125 binary false false

DHCP Option Types

binary An arbitrary string of bytes, specified as a set of hexadecimal digits.

boolean Boolean value with allowed values true or false.

empty No value, data is carried in suboptions.

fqdn Fully qualified domain name (e.g. www.example.com).

ipv4-address IPv4 address in dotted-decimal notation (e.g. 192.0.2.1).

ipv6-address IPv6 address in compressed colon notation (e.g. 2001:db8::1).

record Structured data of other types (except record and empty).

string Any arbitrary text.

int32 32 bit signed integer with values between -2147483648 and 2147483647.

uint8 8 bit unsigned integer with values between 0 and 255.

uint16 16 bit unsigned integer with values between 0 and 65535.

uint32 32 bit unsigned integer with values between 0 and 4294967295.

15.1.2 Subnet Configuration

A subnet defines a network in which the DHCP server will provide addresses to clients, for example:

tnsr(config-kea-dhcp4)# subnet 10.2.0.0/24
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2

From within the subnet4 configuration mode, the following commands can be used:

id <id> Sets an optional unique identifier for this subnet.

15.1. DHCP Configuration 109

Product Manual, TNSR v19.02

interface <name> Required. The interface on which the subnet is located.

option Defines an option specific to this subnet (DHCP Options).

pool Defines a pool of addresses to serve inside this subnet. (Address Pool Configuration).

reservation <ipv4-address> Defines a host reservation to tie a client MAC address to a static IP address
assignment.

At a minimum, the subnet itself must contain an interface definition and a pool.

15.1.3 Address Pool Configuration

A pool controls which addresses inside the subnet can be used by clients, for example:

tnsr(config-kea-subnet4)# pool 10.2.0.128-10.2.0.191
tnsr(config-kea-subnet4-pool)#

A pool may be defined as an address range (inclusive) as shown above, or as a prefix, such as 10.2.0.128/26.

Options can be defined inside a pool that only apply to clients receiving addresses from that pool.

15.1.4 Host Reservations

A reservation sets up a static IP address reservation for a client inside a subnet. For example:

tnsr(config-kea-subnet4)# reservation 10.2.0.20
tnsr(config-kea-subnet4-reservation)#

This reservation ensures that a client always obtains the same IP address, and can also provide the client with DHCP
options that differ from the main subnet configuration.

Reservations are defined from within config-kea-subnet4 mode, and take the form of reservation
<ipv4-address>. That command then enters config-kea-subnet4-reservation mode, which contains
the following options:

hostname <hostname> The hostname for this client.

mac-address <mac-address> Mandatory. The MAC address of the client, used to uniquely identify the
client and assign this reserved IP address. The same MAC address cannot be used in more than one
reservation on a single subnet.

option <dhcp4-option> DHCP options specific to this client. See DHCP Options for details on config-
uring DHCP options.

At a minimum, a reservation entry requires the ipv4-address which defines the reservation itself, and a
mac-address to identify the client.

Warning: While it is possible to define a reservation inside a pool, this can lead to address conflicts in certain
cases, such as when a different client already holds a lease for the new reservation.

The best practice is to keep reservations outside of the dynamic assignment pool.

Host reservation example:

15.1. DHCP Configuration 110

Product Manual, TNSR v19.02

tnsr(config-kea-subnet4)# reservation 10.2.0.20
tnsr(config-kea-subnet4-reservation)# mac-address 00:0c:29:4c:b3:9b
tnsr(config-kea-subnet4-reservation)# hostname mint-desktop
tnsr(config-kea-subnet4-reservation)# exit
tnsr(config-kea-subnet4)#

15.2 DHCP Service Control and Status

15.2.1 Enable the DHCP Service

Enable the DHCP4 server:

tnsr(config)# dhcp4 enable
tnsr(config)#

15.2.2 Disable the DHCP Service

Similar to the DHCP enable command, disable the DHCP4 service from configuration mode:

tnsr(config)# dhcp4 disable
tnsr(config)#

15.2.3 Check the DHCP Service Status

Check the status of the DHCP services from configuration mode:

tnsr(config)# service dhcp status
DHCPv4 server: active
DHCPv6 server: inactive
DHCP DDNS: inactive
Control Agent: inactive
Kea DHCPv4 configuration file: /etc/kea/kea-dhcp4.conf
Kea DHCPv6 configuration file: /etc/kea/kea-dhcp6.conf
Kea DHCP DDNS configuration file: /etc/kea/kea-dhcp-ddns.conf
Kea Control Agent configuration file: /etc/kea/kea-ctrl-agent.conf
keactrl configuration file: /etc/kea/keactrl.conf

15.2.4 View the DHCP Configuration

View the current Kea DHCP Daemon and Control TNSR Configuration:

tnsr# show kea

View the current Kea DHCP Daemon TNSR Configuration:

tnsr# show kea dhcp4

View the current Kea DHCP daemon configuration file:

15.2. DHCP Service Control and Status 111

Product Manual, TNSR v19.02

tnsr# show kea dhcp4 config-file

View the current Kea Control TNSR Configuration:

tnsr# show kea keactrl

View the current Kea Control Configuration file:

tnsr# show kea keactrl config-file

15.3 DHCP Service Example

Configure the DHCP IPv4 Service from configuration mode (Configuration Mode). This example uses the interface
and subnet from Example Configuration:

tnsr(config)# dhcp4 server
tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet0/14/2
tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcp4-opt)# exit
tnsr(config-kea-dhcp4)# subnet 10.2.0.0/24
tnsr(config-kea-subnet4)# pool 10.2.0.128-10.2.0.191
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 8.8.8.8, 8.8.4.4
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 10.2.0.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# exit
tnsr(config-kea-dhcp4)# exit
tnsr(config)# dhcp4 enable
tnsr(config)#

The above example configures example.com as the domain name supplied to all clients. For the specific subnet
in the example, the TNSR IP address inside the subnet is supplied by DHCP as the default gateway for clients, and
DHCP will instruct clients to use 8.8.8.8 and 8.8.4.4 for DNS servers.

Note: The subnet definition requires an interface.

15.3. DHCP Service Example 112

CHAPTER

SIXTEEN

DNS RESOLVER

TNSR uses the Unbound Domain Name System Resolver to handle DNS resolution and client queries.

Unbound is a recursive caching DNS resolver. Unbound can validate DNS data integrity with DNSSEC, and supports
query privacy using DNS over TLS.

By default Unbound will act as a DNS resolver, directly contacting root DNS servers and other authoritative DNS
servers in search of answers to queries. Unbound can also act as a DNS Forwarder, sending all DNS queries to specific
upstream servers.

16.1 DNS Resolver Configuration

Unbound can be configured with a wide array of optional parameters to fine-tune its behavior. Due to the large number
of options, this documentation is split into several parts, with related options listed together.

These options are all found in config-unbound mode, which is entered by the command unbound server
from configuration mode (Configuration Mode).

enable/disable These commands enable or disable options that do not require additional parameters, they
can only be turned on or off. The specific options are discussed in other areas of this chapter such as
Security Tuning and Cache & Performance Tuning.

verbosity <n> Sets the verbosity of the logs, from 0 (no logs) through 5 (high). Default value is 1. Each
level provides the information from the lower levels plus additional data.

• Level 1: Operational Information

• Level 2: Additional details

• Level 3: Per-query logs with query level information

• Level 4: Algorithm level information

• Level 5: Client identification for cache misses

interface <x.x.x.x> [port <n>] Configures an interface that Unbound will use for binding, and an op-
tional port specification. In most cases there should be an interface definition for a TNSR IP address
in each local network, plus a definition for localhost (127.0.0.1 as shown in Resolver Mode
Example). The port number defaults to 53 and should not be changed in most use cases.

port <n> Sets the default port which Unbound will use to listen for client queries. Defaults to 53.

enable/disable ip4 Tells Unbound to use, or not use, IPv4 for answering or performing queries. Default
is enabled. Unless TNSR has no IPv4 connectivity, this should be left enabled.

113

https://nlnetlabs.nl/projects/unbound/about/

Product Manual, TNSR v19.02

enable/disable ip6 Tells Unbound to use, or not use, IPv6 for answering or performing queries. Default
is enabled. Unless there is a situation where TNSR is configured with IPv6 addresses but lacks
working connectivity to upstream networks via IPv6, this should remain enabled.

enable/disable udp Tells Unbound to use, or not use, UDP for answering or performing queries. Default
is enabled. In nearly all cases, DNS requires UDP to function, except special cases such as a pure
DNS over TLS environment. Thus, this should nearly always be left enabled.

enable/disable tcp Tells Unbound to use, or not use, TCP for answering or performing queries. Default
is enabled. TCP is generally required for functional DNS, especially for queries with large answers.
DNS over TLS also requires TCP. Unless a use case specifically calls for UDP DNS only, this should
remain enabled.

access-control Configures access control list entries for Unbound. See Access Control Lists.

forward-zone Enters config-unbound-fwd-zone mode. See Forward Zones.

16.1.1 Access Control Lists

Access Control Lists in Unbound determine which clients can and cannot perform queries against the DNS Resolver
as well as aspects of client behavior.

The default behavior is to allow access from TNSR itself (localhost), but refuse queries from other clients.

Example:

tnsr(config)# unbound server
tnsr(config-unbound)# access-control 10.2.0.0/24 allow

The general form of the command is:

tnsr(config-unbound)# access-control <IPv4 or IPv6 Network Prefix> <action>

The IPv4 or IPv6 Network Prefix is a network specification, such as 10.2.0.0/24 or 2001:db8::/64. For a
single address, use /32 for IPv4 or /128 for IPv6.

The Action types are:

allow Allow access to recursive and local data queries for clients in the specified network.

allow_snoop Allow access to recursive and local data queries for clients in the specified network, addi-
tionally this allows access to cache snooping. Cache snooping is a technique to use nonrecursive
queries to examine the contents of the cache for debugging or identifying malicious data.

allow_setrd Allow access for clients and ignores the “recursion desired” (RD) bit in the query. All
queries from these clients are treated as recursive. This violates RFC 1034 but can be useful in edge
cases where queries for specific zones are forwarded to resolvers that do not allow recursion for
queries to these stub zones.

refuse Stops queries from clients in the specified network, but sends a DNS response code REFUSED
error. This is the default behavior for networks other than localhost, since it is friendly and protocol-
safe response behavior.

refuse_non_local Similar to refuse but allows queries for authoritative local data. Recursive queries
are refused.

deny Drops and does not respond to queries from clients in the specified network. In most cases a
refuse action is preferable since DNS is not designed to handle a non-response. A lack of response
may cause clients to send additional unwanted queries.

16.1. DNS Resolver Configuration 114

Product Manual, TNSR v19.02

deny_non_local Allows queries for authoritative local-data only, all other queries are dropped without a
response.

16.1.2 Forward Zones

In Unbound, a Forward Zone controls how queries are handled on a per-zone basis. This can be used to send queries
for a specific domain or zone to a specific DNS server, or it can be used to setup forwarding mode sending all queries
to one or more upstream recursive DNS servers.

Forward Zone Examples

Example to override the default resolver behavior and forward all queries to an upstream DNS server:

tnsr(config)# unbound server
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4

This forwards the root zone (.) and all zones underneath to the specified servers, in this case, 8.8.8.8 and 8.8.4.
4.

Example to send queries for one specific domain to an alternate server:

tnsr(config)# unbound server
tnsr(config-unbound)# forward-zone example.com
tnsr(config-unbound-fwd-zone)# nameserver address 192.0.2.5

This example sends all queries for example.com and subdomains underneath example.com to the server at 192.
0.2.5. This is useful for sending queries for internal domains to a local authoritative DNS server, or an internal DNS
server reachable through a VPN.

Forward Zone Configuration

To enter config-unbound-fwd-zonemode, start from config-unboundmode and use the forward-zone
<zone-name> command. The <zone-name> takes the form of the domain part of a fully qualified domain name
(FQDN), but may also be . to denote the root zone.

nameserver address <ip-address> [port <port>] [auth-name <name>] Specifies a DNS server for
this zone by IP address. Optionally, a port number may be given (default 53). auth-name sets the
FQDN of the DNS server for use in validating certificates with DNS over TLS.

nameserver host <host-name> Specifies a DNS server for this zone by FQDN. This hostname will be
resolved before use.

enable/disable forward-first When enabled, if a query fails to the forwarding DNS servers it will be
retried using resolver mode through the root DNS servers. By default this behavior is disabled.

enable/disable forward-tls-upstream When enabled, queries to the DNS servers in this zone are sent
using DNS over TLS, typically on port 853. This mode provides query privacy by encrypting
communication between Unbound and upstream DNS servers in the zone. Default is disabled as this
feature is not yet widely supported by other platforms.

Multiple DNS server address or host entries may be given for a forward zone. These servers are not queried sequen-
tially and are not necessarily queried simultaneously. Unbound tracks the availability and performance of each DNS
server in the zone and will attempt to use the most optimal server for a query.

16.1. DNS Resolver Configuration 115

Product Manual, TNSR v19.02

16.1.3 Local Zones

Unbound can host local zone data to complement, control, or replace upstream DNS data. This feature is commonly
used to supply local clients with host record responses that do not exist in upstream DNS servers, or to supply local
clients with a different response, akin to a DNS view.

Local Zone Example

This basic example configures a local zone for example.com and two hostnames inside. If a client queries TNSR
for these host records, it will respond with the answers configured in the local zone. If a client requests records for a
host under example.com not listed in this local zone, then the query is resolved as usual though the usual resolver
or forwarding server mechanisms.

tnsr(config)# unbound server
tnsr(config-unbound)# local-zone example.com
tnsr(config-unbound-local-zone)# type transparent
tnsr(config-unbound-local-zone)# hostname server.example.com
tnsr(config-unbound-local-host)# address 192.0.2.5
tnsr(config-unbound-local-host)# exit
tnsr(config-unbound-local-zone)# hostname db.example.com
tnsr(config-unbound-local-host)# address 192.0.2.6
tnsr(config-unbound-local-host)# exit

Local Zone Configuration

Local zones are configured in config-unbound mode (DNS Resolver Configuration) using the local-zone
<zone-name> command. This defines a new local zone and enters config-unbound-local-zone mode.

Within config-unbound-local-zone mode, the following commands are available:

description <descr> A short text description of the zone

type <type> The type for this local zone, which can be one of:

transparent Gives local data, and resolves normally for other names. If the query matches
a defined host but not the record type, the client is sent a NOERROR, NODATA response.
This is the most common type and most likely the best choice for most scenarios.

typetransparent Similar to transparent, but will forward requests for records that match
by name but not by type.

deny Serve local data, drop queries otherwise.

inform Like transparent, but logs the client IP address.

inform_deny Drops queries and logs the client IP address.

no_default Normally resolve AS112 zones.

redirect Serves zone data for any subdomain in the zone.

refuse Serve local data, else reply with REFUSED error.

static Serve local data, else NXDOMAIN or NODATA answer.

hostname <fqdn> Defines a new hostname within the zone, and enters
config-unbound-local-host mode. A local zone may contain multiple hostname
entries.

16.1. DNS Resolver Configuration 116

Product Manual, TNSR v19.02

Note: Include the domain name when creating a hostname entry.

Inside config-unbound-local-host mode, the following commands are available:

description <descr> A short text description of this host

address <ip-address> The IPv4 or IPv6 address to associate with this hostname for for-
ward and reverse (PTR) lookups.

16.1.4 Security Tuning

Unbound can be tuned to provide stronger (or weaker) security and privacy, depending on the needs of the network
and features supported by clients and upstream servers.

enable caps-for-id Experimental support for draft dns-0x20. This feature combats potentially spoofed
replies by randomly flipping the 0x20 bit of ASCII letters, which switches characters between upper
and lower case. The answer is checked to ensure the case in the response matches the request exactly.
This is disabled by default since it is experimental, but is safe to enable unless the upstream server
does not copy the query question to the response identically. Most if not all servers follow this
convention, but it is unknown if this behavior is truly universal.

enable harden dnssec-stripped Require DNSSEC for trust-anchored zones. If the DNSSEC data is
absent, the zone is marked as bogus. If disabled and no DNSSEC data is received in the response,
the zone is marked insecure. Default behavior is enabled. If disabled, there is a risk of a forced
downgrade attack on the response that disables security on the zone.

enable harden glue Trust glue only if the server is authorized. Default is enabled.

enable hide identity When enabled, queries are refused for id.server and hostname.bind, which
prevents clients from obtaining the server identity. Default behavior is disabled.

enable hide version When enabled, queries are refused for version.server and version.bind,
preventing clients from determining the version of Unbound. Default behavior is disabled.

thread unwanted-reply-threshold <threshold> When set, Unbound tracks the total number of un-
wanted replies in each thread. If the threshold is reached, Unbound will take defensive action and
logs a warning. This helps prevent cache poisoning by clearing the RRSet and message caches
when triggered. By default this behavior is disabled. If this behavior is desired, a starting value of
10000000 (10 million) is best. Change the value in steps of 5-10 million as needed.

jostle timeout <t> Timeout in milliseconds, used when the server is very busy. This timeout should be
approximately the same as the time it takes for a query to reach an upstream server and receive a
response (round trip time). If a large number of queries are received by Unbound, than half the
active queries are allowed to complete and the other half are replaced by new queries. This helps
reduce the effectiveness of a denial of service attack by allowing the server to ignore slow queries
when under load. The default value is 200 msec.

16.1.5 Cache & Performance Tuning

port outgoing range <n> Sets the number of source ports Unbound may use per thread to connect when
making outbound queries to upstream servers. A larger number of ports provides protection against
spoofing. Default value varies by platform. A large number of ports yields better performance but it
also consumes more host resources.

edns reassembly size <s> Number to advertise as the EDNS reassembly buffer size, in bytes. This value
is sent in queries and must not be set larger than the default message buffer size, 65552. The

16.1. DNS Resolver Configuration 117

https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00

Product Manual, TNSR v19.02

default value is 4096, which is recommended by RFC. May be set lower to alleviate problems with
fragmentation resulting in timeouts. If the default value is too large, try 1472, or 512 in extreme
cases. Avoid setting that low as it will cause many queries to fall back to TCP which can negatively
impact performance.

host cache num-hosts <num> Number of hosts to hold in the cache, defaults to 10000. Larger caches
can result in increased performance but consume more host resources.

host cache slabs <s> Number of slabs in the host cache. Larger numbers help prevent lock contention
by threads when performing cache operations. The value is a power of 2, between 0..10

host cache ttl <t> The amount of time, in seconds, that entries in the host cache are kept. Default value
is 900 seconds.

enable key prefetch When enabled, Unbound will start fetching DNSKEYS when it sees a DS record
instead of waiting until later in the process. Prefetching keys will consume more CPU, but reduces
latency. The default is disabled.

key cache slabs <s> Number of slabs in the key cache. Larger numbers help prevent lock contention by
threads when performing key cache operations. The value is a power of 2, between 0..10. Setting
to a number close to the number of CPUs/cores in the host is best.

enable message prefetch Prefetch message cache items before they expire to keep entries in the cache
updated. When enabled, Unbound will consume approximately 10% more throughput and CPU time
but it will keep popular items primed in the cache for better client performance. Disabled by default.

message cache size <s> Size of the message cache, in bytes. The message cache stores DNS meta-
information such as message formats. Default value is 4 MB.

message cache slabs <s> Number of slabs in the message cache. Larger numbers help prevent lock
contention by threads when performing message cache operations. The value is a power of 2,
between 0..10. Setting to a number close to the number of CPUs/cores in the host is best.

rrset cache size <s> Size of the RRset cache, in bytes. The RRset cache stores resource records. Default
value is 4 MB.

rrset cache slabs <s> Number of slabs in the RRset cache. Larger numbers help prevent lock contention
by threads when performing RRset cache operations. The value is a power of 2, between 0..10.
Setting to a number close to the number of CPUs/cores in the host is best.

rrset-message cache ttl maximum <max> Maximum time that values in the RRset and message caches
are kept in the cache, specified in seconds. The default value is 86400 (1 day). When set lower,
Unbound will be forced to query for data more often, but it will also ignore very large TTLs in DNS
responses.

rrset-message cache ttl minimum <max> Minimum time that values in the RRset and message caches
are kept in the cache, specified in seconds. The default value is 0, which honors the TTL specified
in the DNS response. Higher values may ignore the TTL set by the response, which means a record
may be out of sync with the source, but it also prevents queries from being repeated frequently when
a very low TTL is set by the domain.

socket receive-buffer size <s> SO_RCVBUF socket receive buffer size for incoming queries on the lis-
tening port(s). Larger values result in less drops during spikes in activity. The default is 0which uses
the system default value. Cannot be set higher than the maximum value for the operating system,
such as the one shown in the net.core.rmem_max sysctl OID.

tcp buffers incoming <n> Number of incoming TCP buffers that Unbound will allocate per thread.
Larger values can handle higher loads, but will consume more resources. The default value is 10. A
value of 0 will disable acceptance of TCP queries.

16.1. DNS Resolver Configuration 118

Product Manual, TNSR v19.02

tcp buffers outgoing <n> Number of outgoing TCP buffers that Unbound will allocate per thread.
Larger values can handle higher loads, but will consume more resources. The default value is 10. A
value of 0 will disable TCP queries to authoritative DNS servers.

thread num-queries <n> Number of queries serviced by each thread simultaneously. If more queries
arrive and there is no room to answer them, the new queries will be dropped, unless older/slower
queries can be dropped by using the jostle timeout. Default varies by platform but is typically
512 or 1024.

thread num-threads <n> Number of threads created by Unbound for serving clients. Defaults to one
thread per CPU/core. To disable threading, set to 1.

enable serve-expired When enabled, Unbound will immediately serve answers to clients using expired
cache entries if they exist. Unbound still performs the query and will update the cache with the
result. This can result in faster, but potentially incorrect, answers for client queries. Default is
disabled.

16.2 DNS Resolver Service Control and Status

16.2.1 Enable the DNS Resolver

Enable the DNS Resolver:

tnsr(config)# unbound enable
tnsr(config)#

16.2.2 Disable the DNS Resolver

Similar to the enable command, disable the DNS Resolver from configuration mode:

tnsr(config)# unbound disable
tnsr(config)#

16.2.3 Check the DNS Resolver Status

Check the status of the DNS Resolver from configuration mode:

tnsr(config)# service unbound status

* unbound.service - Unbound recursive Domain Name Server
Loaded: loaded (/usr/lib/systemd/system/unbound.service; disabled; vendor preset:

→˓disabled)
Active: active (running) since Wed 2018-08-22 15:26:05 EDT; 55min ago
Process: 26675 ExecStartPre=/usr/sbin/unbound-anchor -a /var/lib/unbound/root.key -

→˓c /etc/unbound/icannbundle.pem (code=exited, status=0/SUCCESS)
Process: 26673 ExecStartPre=/usr/sbin/unbound-checkconf (code=exited, status=0/

→˓SUCCESS)
Main PID: 26679 (unbound)
CGroup: /system.slice/unbound.service

26679 /usr/sbin/unbound -d

Aug 22 15:26:05 tnsr.example.com systemd[1]: Starting Unbound recursive Domain Name
→˓Server...

(continues on next page)

16.2. DNS Resolver Service Control and Status 119

Product Manual, TNSR v19.02

(continued from previous page)

Aug 22 15:26:05 tnsr.example.com unbound-checkconf[26673]: unbound-checkconf: no
→˓errors in /etc/unbound/unbound.conf
Aug 22 15:26:05 tnsr.example.com systemd[1]: Started Unbound recursive Domain Name
→˓Server.
Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] notice: init module 0:
→˓subnet
Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] notice: init module 1:
→˓validator
Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] notice: init module 2:
→˓iterator
Aug 22 15:26:05 tnsr.example.com unbound[26679]: [26679:0] info: start of service
→˓(unbound 1.6.6).

16.2.4 View the DNS Resolver Configuration

View the current Unbound DNS Resolver daemon configuration file:

tnsr# show unbound config-file

16.3 DNS Resolver Examples

Configure the DNS Resolver Service from configuration mode (Configuration Mode). These examples use the inter-
face and subnet from Example Configuration.

16.3.1 Resolver Mode Example

For Resolver mode, the configuration requires only a few basic options:

tnsr# configure
tnsr(config)# unbound server
tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 10.2.0.1
tnsr(config-unbound)# access-control 10.2.0.0/24 allow
tnsr(config-unbound)# exit
tnsr(config)# unbound enable

This example enables the Unbound DNS Resolver and configures it to listen on localhost as well as 10.2.0.1
(GigabitEthernet0/14/2, labeled LAN in the example). The example also allows clients inside that subnet,
10.2.0.0/24, to perform DNS queries and receive responses.

16.3.2 Forwarding Mode Example

For Forwarding mode, use the configuration above plus these additional commands:

tnsr# configure
tnsr(config)# unbound server
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4

(continues on next page)

16.3. DNS Resolver Examples 120

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-unbound-fwd-zone)# exit
tnsr(config-unbound)# exit

This example builds on the previous example but instead of working in resolver mode, it will send all DNS queries to
the upstream DNS servers 8.8.8.8 and 8.8.4.4.

16.3. DNS Resolver Examples 121

CHAPTER

SEVENTEEN

NETWORK TIME PROTOCOL

The Network Time Protocol (NTP) service on TNSR synchronizes the host clock with reference sources, typically
remote servers. It also acts as an NTP server for clients.

17.1 NTP Configuration

The NTP daemon has a variety of options to fine-tune its timekeeping behavior.

interface sequence <seq> <action> <address> Interface binding options. The default behavior when
no interface configuration entries are present is to bind to all available addresses on the host.

seq The sequence number controls the order of the interface definitions in the NTP daemon
configuration.

action The action taken for NTP traffic on this interface, it can be one of:

drop Bind the daemon to this interface, but drop NTP traffic.

ignore Do not bind the daemon to this interface.

listen Bind the daemon to this interface and use it for NTP traffic.

address The address or interface to bind. This may be:

prefix An IPv4/IPv6 prefix, which will bind to only that specific address.

interface An interface name, which will bind to every address on that interface.

all Bind to all interfaces and addresses on TNSR.

server <address|host> <server> Defines an NTP peer with which the daemon will attempt to synchro-
nize the clock. This command enters config-ntp-server mode. The server may be specified
as:

address <IPv4/IPv6 Address> An IPv4 or IPv6 address specifying a single NTP server.

host <fqdn> A fully qualified domain name, which will be resolved using DNS.

Within config-ntp-server mode, additional commands are available that control how NTP
interacts with the specified server:

iburst Use 8 packets on unreachable servers, which results in faster synchronization at
startup and when a peer is recovering.

maxpoll <poll> Maximum polling interval for NTP messages. This is specified as a power
of 2, in seconds. May be between 7 and 17, defaults to 10 (1024 seconds).

noselect Instructs NTP to not use the server for synchronization, but it will still connect
and display statistics from the server.

122

Product Manual, TNSR v19.02

prefer When set, NTP will prefer this server if it and multiple other servers are all viable
candidates of equal quality.

operational-mode server This entry is a single server. When the server is specified as an
FQDN, if the DNS response contains multiple entries then only one is selected. Can
also be used with IPv4/IPv6 addresses directly, rather than FQDN entries.

operational-mode pool This entry is a pool of servers. Only compatible with FQDN
hosts. NTP will expect multiple records in the DNS response and will use all of these
entries as distinct servers. This is a reliable way to configure multiple NTP peers with
minimal configuration.

tinker panic <n> Sets the NTP panic threshold, in seconds. This is a sanity check which will cause NTP
to fail if the difference between the local and remote clocks is too great. Commonly set to 0 to
disable this check so that NTP will still synchronize when its clock is off by a large factor. The
default value is 1000.

tos orphan <n> Configures the stratum of orphan mode servers from 1 to 16. When all UTC reference
peers below this stratum are unreachable, clients in the same subnet may use each other as references
as a last resort.

driftfile <file> Full path to the filename used by the NTP daemon to store clock drift information to
improve accuracy over time. This file and its directory must be writable by the ntp user or group.

statsdir <file> Full path to statistics directory used by the NTP daemon. This directory must be writable
by the ntp user or group.

<enable|disable> monitor Enables or disables the monitoring facility used to poll the NTP daemon
for information about peers and other statistics. This is enabled by default, and is also enabled
if limited is present in any restrict entries. This is required for show ntp <x> commands
which display peer information to function.

17.1.1 NTP Restrictions

NTP restrictions control how NTP treats traffic from peers. The NTP Service Example at the start of this section
contains a good set of restrictions to use as a starting point.

These restrictions are configured using the restrict command from within config-ntp mode.

restrict <default|source|host|prefix> This command enters config-ntp-restrict mode.

The restriction is placed upon an address specified as:

default The default restriction for any host.

source Default restrictions for associated hosts.

host An address specified as an FQDN to be resolved using DNS.

prefix An IPv4 or IPv6 network specification.

In config-ntp-restrict mode, the following settings control what hosts matching this re-
striction can do:

kod Sends a Kiss of Death packet to misbehaving clients. Only works when paired with
the limited option.

limited Enforce rate limits on clients. This does not apply to queries from ntpq/ntpdc
or the show ntp <x> commands.

nomodify Allows clients to query read only server state information, but does not allow
them to make changes.

17.1. NTP Configuration 123

Product Manual, TNSR v19.02

nopeer Deny unauthorized associations. When using a server entry in pool mode, this
should be present in the default restriction but not in the source restriction.

noquery Deny ntpq/ntpdc/show ntp <x> queries for NTP daemon information.
Does not affect NTP acting as a time server.

noserve Disables time service. Still allows ntpq/ntpdc/show ntp <x> queries

notrap Decline mode 6 trap service to clients.

17.1.2 NTP Logging

The NTP Logging configuration controls which type of events are logged by the NTP daemon using syslog, and the
verboseness of the logs. By default, the NTP daemon will log all synchronization messages.

The logging configuration is set using the logconfig command from within config-ntp mode.

logconfig sequence <seq> <action> <class> <type>

seq Specifies the sequence for log entries so that the order of parameters may be controlled
by the configuration.

action Specifies the action for this log entry, as one of:

set Set the mask for the log entry. Typically this would be used for the first entry
to control which message class+type is logged as the base set of log entries.

add Add log entries matching this specification to the specified total set of logs.

delete Do not log entries matching this specification in the total set of logs.

class Specifies the message class, which can be one of:

all All message classes

clock Messages about local clock events and information.

peer Messages about peers.

sync Messages about the synchronization state.

sys Messages about system events and status.

type Specifies the type of messages to log for each class:

all All types of messages.

events Event messages.

info Informational messages.

statistics Statistical information.

status Status changes.

17.2 NTP Service Control and Status

17.2.1 Enable the NTP Service

Enable the NTP server:

17.2. NTP Service Control and Status 124

Product Manual, TNSR v19.02

tnsr(config)# ntp enable
tnsr(config)#

17.2.2 Disable the NTP Service

Similar to the NTP enable command, disable the NTP service from configuration mode:

tnsr(config)# ntp disable
tnsr(config)#

17.2.3 Check the NTP Service Status

Check the status of the NTP services from configuration mode:

tnsr(config)# service ntp status

* ntpd.service - Network Time Service
Loaded: loaded (/usr/lib/systemd/system/ntpd.service; disabled; vendor preset:

→˓disabled)
Active: active (running) since Thu 2018-11-15 07:05:57 EST; 2 weeks 5 days ago

Main PID: 1744 (ntpd)
CGroup: /system.slice/ntpd.service

1744 /usr/sbin/ntpd -u ntp:ntp -g

Dec 04 11:38:44 ntpd[1744]: Listen normally on 21 mytap 10.2.99.1 UDP 123
Dec 04 11:38:44 ntpd[1744]: Listen normally on 22 vpp5 fe80::208:a2ff:fe09:95b5 UDP
→˓123
Dec 04 11:38:44 ntpd[1744]: Listen normally on 23 vpp1 fe80::208:a2ff:fe09:95b1 UDP
→˓123
Dec 04 11:38:44 ntpd[1744]: Listen normally on 24 vpp1 fe80::5 UDP 123
Dec 04 11:38:44 ntpd[1744]: Listen normally on 25 vpp5 fe80::15 UDP 123
Dec 04 11:38:44 ntpd[1744]: Listen normally on 26 mytap fe80::c41e:7bff:fea5:462a UDP
→˓123
Dec 04 11:38:44 ntpd[1744]: new interface(s) found: waking up resolver

17.2.4 View NTP Peers

The NTP peer list shows the peers known to the NTP daemon, along with information about their network availability
and quality. For more information on peer associations, see View NTP Associations.

tnsr(config)# show ntp peers
Id Host Ref ID Stratum Reach Poll Delay Offset Jitter
----- --------------- -------------- ------- ----- ---- ------- ------ ------
17417 5.9.80.113 192.53.103.103 2 0xff 512 134.456 -1.936 3.904
17418 95.216.39.155 131.188.3.223 2 0xff 512 151.370 -1.582 4.883
17419 145.239.118.233 85.199.214.98 2 0xec 512 126.181 4.112 21.541
17420 178.128.4.44 204.123.2.5 2 0xff 512 80.998 2.906 4.140

17.2.5 View NTP Associations

The NTP peer associations list shows how the NTP daemon is using each peer, along with its status. These peers are
listed by ID. For more information on each peer, see View NTP Peers.

17.2. NTP Service Control and Status 125

Product Manual, TNSR v19.02

tnsr(config)# show ntp associations
Id Status Persistent Auth En Authentic Reachable Broadcast Selection Event
→˓Count
----- ------ ---------- ------- --------- --------- --------- --------- ---------- ---
→˓--
17417 0x931a true false false true false outlier sys_peer 1
17418 0x941a true false false true false candidate sys_peer 1
17419 0x941a true false false true false candidate sys_peer 1
17420 0x961a true false false true false sys.peer sys_peer 1

17.2.6 View NTP Daemon Configuration File

View the current NTP Daemon configuration file, generated by the settings in TNSR:

tnsr# show ntp config-file
#
NTP config autogenerated
#

tinker panic 0

tos orphan 12

logconfig =syncall +clockall

restrict ::/0 kod limited nomodify nopeer notrap
restrict default kod limited nomodify nopeer notrap
restrict source kod limited nomodify notrap

pool pool.ntp.org maxpoll 9

17.3 NTP Service Example

Configure the NTP Service from configuration mode (Configuration Mode). This example uses pool.ntp.org in
pool mode so that multiple DNS results are used as reference servers.

tnsr(config)# ntp server
tnsr(config-ntp)# tos orphan 12
tnsr(config-ntp)# tinker panic 0
tnsr(config-ntp)# logconfig sequence 1 set sync all
tnsr(config-ntp)# logconfig sequence 2 add clock all
tnsr(config-ntp)# restrict default
tnsr(config-ntp-restrict)# kod
tnsr(config-ntp-restrict)# limited
tnsr(config-ntp-restrict)# nomodify
tnsr(config-ntp-restrict)# nopeer
tnsr(config-ntp-restrict)# notrap
tnsr(config-ntp-restrict)# exit
tnsr(config-ntp)# restrict source
tnsr(config-ntp-restrict)# kod
tnsr(config-ntp-restrict)# limited
tnsr(config-ntp-restrict)# nomodify
tnsr(config-ntp-restrict)# notrap

(continues on next page)

17.3. NTP Service Example 126

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-ntp-restrict)# exit
tnsr(config-ntp)# server host pool.ntp.org
tnsr(config-ntp-server)# operational-mode pool
tnsr(config-ntp-server)# maxpoll 9
tnsr(config-ntp-server)# exit
tnsr(config-ntp)# exit
tnsr(config)# ntp enable
tnsr(config)#

17.4 NTP Best Practices

Use a minimum of three servers, either as three separate server entries or a pool containing three or more servers. This
is to ensure that if the clock on any one server becomes skewed, the remaining two sources can be used to determine
that the skewed server is no longer viable. Otherwise NTP would have to guess which one is accurate and which is
skewed.

There are a large number of public NTP servers available under pool.ntp.org. The pool.ntp.org DNS
entry will return a number of randomized servers in each DNS query response. These can be used individually or as
pools. The easiest way is to use the pool operational mode, which uses all returned servers as if they were specified
individually.

When using entries as individual server entries, these responses can be subdivided into mutually exclusive pools of
peers to avoid overlap. For example, if a configuration specifies pool.ntp.org multiple times for server entries,
the same IP address could accidentally be selected twice. In this case, use 0.pool.ntp.org, 1.pool.ntp.org,
2.pool.ntp.org, and so on. When queried in this way, the responses will be unique for each number.

Furthermore, there are also pools available for regional and other divisions. For example, to only receive responses for
servers in the United States, use us.pool.ntp.org as a pool or <n>.us.pool.ntp.org as servers. For more
information, see https://www.ntppool.org/en/

17.4. NTP Best Practices 127

https://www.ntppool.org/en/

CHAPTER

EIGHTEEN

LINK LAYER DISCOVERY PROTOCOL

The Link Layer Discovery Protocol (LLDP) service provides a method for discovering which routers are connected to
a LAN segment, and offers a way to discover the topology of a network.

18.1 Configuring the LLDP Service

LLDP is configured in two places: One for the router level parameters and one the per-interface parameters.

The router level has three parameters:

System Name The router hostname to advertise via LLDP

Transmit Interval The transmit interval controls the time between LLDP messages in seconds.

Transmit Hold Time The transmit hold time is the multiple of the transmit interval which is used for the
Time-To-Live (TTL) of the LLDP message.

For example, if the transmit interval is 5 and the transmit hold time is 4, then the advertised TTL of the LLDP message
is 20.

Configure the router level parameters in configuration mode (Configuration Mode):

tnsr(config)# lldp system-name MyRouter
tnsr(config)# lldp tx-hold 3
tnsr(config)# lldp tx-interval

These parameters can be changed at any time.

The interface level has additional per-interface parameters:

Port Name The name of the interface, as advertised in LLDP

Management IP Address (IPv4 & IPv6) The IPv4 and/or IPv6 address to advertise as a means to man-
age this router on this interface.

Management OID An object identifier associated with the management IP address

These settings are optional:

tnsr(config)# interface TenGigabitEthernet3/0/0
tnsr(config-interface)# lldp port-name MyPort
tnsr(config-interface)# lldp management ipv4 192.0.2.123
tnsr(config-interface)# lldp management ipv6 2001:db8::1:2:3:4
tnsr(config-interface)# exit
tnsr(config)#

128

Product Manual, TNSR v19.02

Warning: A limitation of the underlying API means that interface values must be configured at the same time
and cannot be changed. This will be fixed in a later release.

18.1. Configuring the LLDP Service 129

CHAPTER

NINETEEN

PUBLIC KEY INFRASTRUCTURE

TNSR supports Public Key Infrastructure (PKI) X.509 certificates for various uses by the router and supporting soft-
ware. PKI uses a pair of keys to encrypt and authenticate data, one public and one private. The private key is known
only to its owner, and the public key can be known by anyone.

PKI works in an asymmetric fashion. A message is encrypted using the public key, and can only be decrypted by the
private key. The private key can also be used to digitally sign a message to prove it originated from the key holder, and
this signature can be validated using the public key. Combined with certificates, this provides a means to identify an
entity and encrypt communications.

A Certificate Authority (CA) independently verifies the identity of the entity making a request for a certificate, and
then signs a request, yielding a certificate. This certificate can then be validated against the certificate of the CA itself
by anyone who has access to that CA certificate. In some cases, this CA may be an intermediate, meaning it is also
signed by another CA above it. All together, this creates a chain of trust starting with the root CA all the way down to
individual certificates. So as long as the CA is trustworthy, any certificate it has signed can be considered trustworthy.

Due to their size and private nature, certificates and keys are stored on the filesystem and not in the XML configuration.
PKI files are stored under the following locations:

• Certificate Authorities: /etc/pki/tls/tnsr/CA/

• Certificates and Signing Requests: /etc/pki/tls/tnsr/certs/

• Private Keys: /etc/pki/tls/tnsr/private/

A key pair, CSR, and certificate associated with each other must all have the same name.

The process for creating a certificate is as follows:

• Create keys for name.

• Create a certificate signing request for name with the attributes to use for the certificate.

• Submit the CSR to a CA, which will sign the CSR and return a certificate.

• Enter or import the certificate contents for name into TNSR.

19.1 Key Management

Warning: Private keys are secret. These keys should never need to leave the firewall, with the exception of
backups. The CA does not need the private key to sign a request.

TNSR can generate RSA key pairs with sizes of 2048, 3072, or 4096 bits. Larger keys are more secure than shorter
keys. RSA Keys smaller than 2048 bits are no longer considered secure in practice, and are thus not allowed.

130

Product Manual, TNSR v19.02

19.1.1 Generate a Key Pair

To generate a new key pair named mycert with a length of 4096 bits:

tnsr# pki private-key mycert generate key-length 4096
-----BEGIN PRIVATE KEY-----
[...]
-----END PRIVATE KEY-----

The key pair is stored in a file at /etc/pki/tls/tnsr/private/<name>.key.

Note: Remember that the private key, CSR, and certificate must all use identical names!

19.1.2 Importing a Key Pair

In addition to generating a key pair on TNSR, a private key may also be imported from an outside source. The key
data can be imported in one of two ways:

• Use pki private-key <name> enter then copy and paste the PEM data

• Copy the PEM format key file to the TNSR host, then use pki private-key <name> import <file>
to import from a file from the current working directory.

Copy and Paste

First, use the enter command:

tnsr# pki private-key mycert enter
Type or paste a PEM-encoded private key.
Include the lines containing 'BEGIN PRIVATE KEY' and 'END PRIVATE KEY'

Next, paste the key data:

-----BEGIN PRIVATE KEY-----
<key data>
-----END PRIVATE KEY-----

Import from File

First, make sure that the copy of the key file is in PEM format.

Next, copy the key file to TNSR and start the CLI from the directory containing this file. The filename extension is
not significant, and may be key, pem, txt, or anything else depending on how the file was originally created.

Next, use the import command:

tnsr# pki private-key mycert import mycert.key

19.1.3 Other Key Operations

To view a list of all current keys known to TNSR:

19.1. Key Management 131

Product Manual, TNSR v19.02

tnsr# pki private-key list
mycert

To view the contents of the private key named mycert in PEM format:

tnsr# pki private-key mycert get
-----BEGIN PRIVATE KEY-----
<key data>
-----END PRIVATE KEY-----

Warning: When making a backup copy of this key, store the backup in a protected, secure location. Include the
armor lines (BEGIN, END) when making a backup copy of the key.

To delete a key pair which is no longer necessary:

tnsr# pki private-key <name> delete

Warning: Do not delete a private key associated with a CSR or Certificate which is still in use!

19.2 Certificate Signing Request Management

A certificate signing request, or CSR, combines the public key along with a list of attributes that uniquely identify an
entity such as a TNSR router. Once created, the CSR is exported and sent to the Certificate Authority (CA). The CA
will sign the request and return a certificate.

19.2.1 Set Certificate Signing Request Attributes

The first step in creating a CSR is to set the attributes which identify this firewall. These attributes will be combined
to form the certificate Subject:

tnsr# pki signing-request set common-name tnsr.example.com
tnsr# pki signing-request set country US
tnsr# pki signing-request set state Texas
tnsr# pki signing-request set city Austin
tnsr# pki signing-request set org Example Co
tnsr# pki signing-request set org-unit IT

The attributes include:

common-name The common name of the entity the certificate will identify, typically the fully qualified
domain name of this host, or a username.

country The country in which the entity is located.

state The state or province in which the entity is located.

city The city in which the entity is located.

org The company name associated with the entity.

org-unit The department or division name inside the company.

19.2. Certificate Signing Request Management 132

Product Manual, TNSR v19.02

Note: At a minimum, a common-name must be set to generate a CSR.

Next, set the required digest algorithm which will be used to create a hash of the certificate data:

tnsr# pki signing-request set digest sha256

This algorithm can be any of the following choices, from weakest to strongest: md5, sha1, sha224, sha256,
sha384, or sha512.

Note: SHA-256 is the recommended minimum strength digest algorithm.

Before generating the CSR, review the configured attributes for the CSR:

tnsr# pki signing-request settings show
Certificate signing request fields:

common-name: tnsr.example.com
country: US
state: Texas
city: Austin
org: Example Co
org-unit: IT
digest: sha256

If any attributes are incorrect, change them using the commands shown previously.

19.2.2 Generate a Certificate Signing Request

If the attributes are all correct, generate the CSR using the same name as the private key created previously. TNSR
will output CSR data to the terminal in PEM format:

tnsr# pki signing-request mycert generate

-----BEGIN CERTIFICATE REQUEST-----
<csr data>
-----END CERTIFICATE REQUEST-----

The CSR data is stored in a file at /etc/pki/tls/tnsr/certs/<name>.csr

Note: Remember that the private key, CSR, and certificate must all use identical names!

The CSR data for existing entries can be displayed in PEM format:

tnsr# pki signing-request mycert get
-----BEGIN CERTIFICATE REQUEST-----
<csr data>
-----END CERTIFICATE REQUEST-----

Copy and paste the CSR data, including the armor lines (BEGIN, END), from the terminal into a local file, and submit
that copy of the CSR to the CA for signing.

19.2. Certificate Signing Request Management 133

Product Manual, TNSR v19.02

Warning: Remember, the private key for the CSR is not required for signing. Do not send the private key to the
CA.

19.2.3 Other CSR Operations

A CSR entry may be deleted once the certificate has been imported to TNSR:

tnsr# pki signing-request <name> delete

To view a list of all CSR entries known to TNSR:

tnsr# pki signing-request list

To reset the CSR attribute contents:

tnsr# pki signing-request settings clear

19.3 Certificate Management

After submitting the certificate signing request to the CA, the CA will sign the request and return a signed copy of the
certificate. Typically this will be sent in PEM format, the same format used for the CSR and private key.

The certificate data can be imported in one of two ways:

• Use pki certificate <name> enter then copy and paste the PEM data

• Copy the PEM format certificate file to the TNSR host, then use pki certificate <name> import
<file> to import from a file from the current working directory.

The certificate data is stored in a file at /etc/pki/tls/tnsr/certs/<name>.crt after entering or importing
the contents.

19.3.1 Copy and Paste

First, use the enter command:

tnsr# pki certificate mycert enter
Type or paste a PEM-encoded certificate.
Include the lines containing 'BEGIN CERTIFICATE' and 'END CERTIFICATE'

Note: Remember that the private key, CSR, and certificate must all use identical names!

Next, paste the certificate data:

-----BEGIN CERTIFICATE-----
<cert data>
-----END CERTIFICATE-----

19.3. Certificate Management 134

Product Manual, TNSR v19.02

19.3.2 Import from File

First, make sure that the copy of the certificate file is in PEM format. The CA may have delivered the certificate in
PEM format, or another format. Convert the certificate to PEM format if it did not come that way.

Next, copy the certificate file to TNSR and start the CLI from the directory containing the certificate file. The filename
extension is not significant, and may be pem, crt, txt, or anything else depending on how the file was delivered
from the CA.

Next, use the import command:

tnsr# pki certificate mycert import mycert.pem

19.3.3 Other Certificate Operations

To view a list of all certificates known to TNSR:

tnsr# pki certificate list

To view the PEM data for a specific certificate known to TNSR:

tnsr# pki certificate <name> get

To delete a certificate:

tnsr# pki certificate <name> delete

19.4 Certificate Authority Management

As mentioned in Public Key Infrastructure, a Certificate Authority (CA) provides a starting point for a chain of trust
between entities using certificates. A CA will sign a certificate showing that it is valid, and as long as an entity trusts
the CA, it knows it can trust certificates signed by that CA.

By creating or importing a CA into TNSR, TNSR can use that CA to validate other certificates or sign new certificate
requests. These certificates can then be used to identify clients connecting to the RESTconf service or other similar
purposes.

A CA can be managed in several ways in TNSR. For example:

• Import a CA generated by another device by copy/paste in the CLI

• Import a CA generated by another device from a file

• Generate a new private key and CSR, then self-sign the CSR and set the CA property. The resulting CA is
automatically available as a TNSR CA.

19.4.1 Import a CA

TNSR can import a CA from the terminal with copy/paste, or from a file. When importing a CA, the key is optional
for validation but required for signing. To import the key, see Key Management. Import the key with the same name
as the CA.

To import a CA from the terminal, use the enter command. In this example, a CA named tnsrca will be imported
from the terminal by TNSR:

19.4. Certificate Authority Management 135

Product Manual, TNSR v19.02

pki ca tnsrca enter
Type or paste a PEM-encoded certificate.
Include the lines containing 'BEGIN CERTIFICATE' and 'END CERTIFICATE'
-----BEGIN CERTIFICATE-----
<cert data>
-----END CERTIFICATE-----
tnsr(config)#

Next, import the private key using the same name:

tnsr(config)# pki private-key tnsrca enter
Type or paste a PEM-encoded private key.
Include the lines containing 'BEGIN PRIVATE KEY' and 'END PRIVATE KEY'
-----BEGIN PRIVATE KEY-----
<key data>
-----END PRIVATE KEY-----

Alternately, import the CA and key from the filesystem:

tnsr(config)# pki ca otherca import otherca.crt
tnsr(config)# pki private-key otherca import otherca.key

19.4.2 Creating a Self-Signed CA

TNSR can also create a self-signed CA instead of importing an external CA. For internal uses, this is generally a good
practice since TNSR does not need to rely on public CA entries to determine trust for its own clients.

First, generate a new private key for the CA:

tnsr(config)# pki private-key selfca generate
-----BEGIN PRIVATE KEY-----
<key data>
-----END PRIVATE KEY-----

Next, create a new CSR for the CA:

tnsr(config)# pki signing-request set common-name selfca
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request selfca generate
-----BEGIN CERTIFICATE REQUEST-----
<csr data>
-----END CERTIFICATE REQUEST-----

Finally, have TNSR self-sign the CSR while setting the CA flag on the resulting certificate:

tnsr(config)# pki signing-request selfca sign self enable-ca true
-----BEGIN CERTIFICATE-----
<cert data>
-----END CERTIFICATE-----

After signing, the newly created CA is ready for immediate use:

tnsr(config)# pki ca list
tnsrca
selfca

19.4. Certificate Authority Management 136

Product Manual, TNSR v19.02

19.4.3 Intermediate CAs

In some cases a CA may rely on another CA. For example, if a root CA signs an intermediate CA and the intermediate
CA signs a certificate, then both the root CA and intermediate CA are required by the validation process.

To show this relationship in TNSR, a CA may be appended to another CA:

tnsr(config)# pki ca <root ca name> append <intermediate ca name>

In the above command, both CA entries must be present in TNSR before using the append command.

19.4.4 Using a CA to sign a CSR

A CA in TNSR with a private key present can also sign a client certificate. The typical use case for this is for RESTconf
clients which must have a certificate recognized by a known CA associated with the RESTconf service.

First, generate a client private key and CSR:

tnsr(config)# pki private-key tnsrclient generate
-----BEGIN PRIVATE KEY-----
<key data>
-----END PRIVATE KEY-----
tnsr(config)# pki signing-request set common-name tnsrclient.example.com
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request tnsrclient generate
-----BEGIN CERTIFICATE REQUEST-----
<csr data>
-----END CERTIFICATE REQUEST-----

Then, sign the certificate:

tnsr(config)# pki signing-request tnsrclient sign ca-name tnsrca days-valid 365
→˓digest sha512 enable-ca false
-----BEGIN CERTIFICATE-----
<cert data>
-----END CERTIFICATE-----

The sign command takes several parameters, each of which has a default safe for use with client certificates in this
context. The above example uses these defaults, but specifies them manually to show how the parameters function.
The available parameters are:

days-valid The number of days the resulting certificate will be valid. The default is 365 days (one year).
When the certificate expires, it must be signed again for a new term. Certificates with a shorter
lifetime are more secure, but longer lifetimes are more convenient.

digest The hash algorithm used to sign the certificate. The default value is sha512.

enable-ca A boolean value which sets the CA flag in the resulting certificate. If a CSR is signed as a CA,
the resulting certificate can then be used to sign other certificates. For end user certificates this is not
necessary or desired, so the default is false.

19.4.5 Other CA Operations

The remaining basic CA operations allow management of CA entries.

To view a list of all CA entries:

19.4. Certificate Authority Management 137

Product Manual, TNSR v19.02

tnsr(config)# pki ca list
tnsrca
selfca

To view the contents of a CA certificate:

tnsr(config)# pki ca tnsrca get
-----BEGIN CERTIFICATE-----
<cert data>
-----END CERTIFICATE-----

To delete a CA entry:

tnsr(config)# pki ca tnsrca delete

19.4. Certificate Authority Management 138

CHAPTER

TWENTY

BIDIRECTIONAL FORWARDING DETECTION

Bidirectional Forwarding Detection (BFD) is used to detect faults between two routers across a link, even if the
physical link does not support failure detection. TNSR uses UDP as a transport for BFD between directly connected
routers (single hop/next hop) as described in RFC 5880 and RFC 5881.

Each BFD session monitors one link. Multiple BFD sessions are necessary to detect faults on multiple links. BFD
sessions must be manually configured between endpoints as there is no method for automated discovery.

BFD supports session authentication using SHA1 and we recommend using authentication when possible to secure
BFD sessions.

When using BFD, both endpoints transmit “Hello” packets back and forth between each other. If these packets are not
received within the expected time frame, the link is considered down. Links may also be administratively configured
as down, and will not recover until manually changed.

20.1 BFD Sessions

A BFD session defines a relationship between TNSR and a peer so they can exchange BFD information and detect link
faults. These sessions are configured by using the bfd session <name> command, which enters config-bfd
mode, and defines a BFD session using the given word for a name.

Example:

tnsr# conf
tnsr(config)# bfd session otherrouter
tnsr(config-bfd)# interface GigabitEthernet0/14/0
tnsr(config-bfd)# local address 203.0.113.2
tnsr(config-bfd)# peer address 203.0.113.25
tnsr(config-bfd)# desired-min-tx 100000
tnsr(config-bfd)# required-min-rx 100000
tnsr(config-bfd)# detect-multiplier 3
tnsr(config-bfd)# exit
tnsr(config)# exit
tnsr#

20.1.1 Session Parameters

interface <if-name> The Ethernet interface on which to enable BFD

local address <ip-address> The local address used as a source for BFD packets

peer address <ip-address> The remote BFD peer address. The local and remote peer IP addresses must
use the same address family (either IPv4 or IPv6)

139

https://tools.ietf.org/html/rfc5880
https://tools.ietf.org/html/rfc5881

Product Manual, TNSR v19.02

desired-min-tx <microseconds> The desired minimum transmit interval, in microseconds

required-min-rx <microseconds> The required minimum transmit interval, in microseconds

detect-multiplier <n-packets> A non-zero value that is, roughly speaking, due to jitter, the number of
packets that have to be missed in a row to declare the session to be down. Must be between 1 and
255.

Additional parameters for authentication are covered in BFD Session Authentication.

20.1.2 Changing the BFD Administrative State

Under normal conditions the state of a link monitored by BFD is handled automatically. The link state can also be set
manually when necessary.

To disable a link and mark it administratively down:

tnsr# bfd session <name>
tnsr(config-bfd) # disable

To remove the administrative down and return the link to BFD management:

tnsr# bfd session <name>
tnsr(config-bfd) # enable

20.1.3 Viewing BFD Session Status

To see the configuration and status of a BFD session, use the show bfd session command:

tnsr# show bfd session
Session Number: 0

Local IP Addr: 203.0.113.2
Peer IP Addr: 203.0.113.25
State: down
Required Min Rx Interval: 100000 usec
Desired Min Tx Interval: 100000 usec
Detect Multiplier: 3
BFD Key Id: 123
Configuration Key Id: 14
Authenticated: true

20.2 BFD Session Authentication

TNSR supports SHA1 and meticulous SHA1 authentication. In either mode, a secret key is used to create a hash of
the outgoing packets. The key itself is not sent in the packets, only the hash and the ID of the key.

A sequence number is used to help avoid replay attacks. With SHA1, this sequence number is incremented occasion-
ally. With meticulous SHA1, the sequence number is incremented on every packet.

The receiving peer will check for a key matching the given ID and then compare a hash of the BFD payload against
the hash sent by the peer. If it matches and the sequence number is valid, the packet is accepted.

20.2. BFD Session Authentication 140

Product Manual, TNSR v19.02

20.2.1 Define BFD Keys

There are two keys defined for each BFD session:

conf-key-id The Configuration Key ID. A 32-bit integer which identifies an internal unique key in
TNSR. Neither the key itself nor this ID are ever communicated to peers. The secret component
of this key must be generated outside of TNSR. It is a group of 1 to 20 hex pair values, such as
4a40369b4df32ed0652b548400.

bfd-key-id The BFD key ID. An 8-bit integer which is the key ID carried in BFD packets, used for
verifying authentication.

To define a new configuration key ID:

tnsr(config)# bfd conf-key-id <conf-key-id>
tnsr(config-bfdkey)# authentication type (keyed-sha1|meticulous-keyed-sha1)
tnsr(config-bfdkey)# secret < (<hex-pair>)[1-20] >

For example:

tnsr(config)# bfd conf-key-id 123456789
tnsr(config-bfdkey)# authentication type meticulous-keyed-sha1
tnsr(config-bfdkey)# secret 4a40369b4df32ed0652b548400

20.2.2 Setup BFD Authentication

Authentication will only be active if both the bfd-key-id and conf-key-id are defined for a BFD session.

An additional delayed keyword is also supported for BFD session which tells BFD to hold off any authentication
action until a peer attempts to authenticate.

To activate authentication, add the chosen identifiers to a BFD session:

tnsr(config)# bfd session <bfd-session>
tnsr(config-bfd)# bfd-key-id <bfd-key-id>
tnsr(config-bfd)# conf-key-id <conf-key-id>
tnsr(config-bfd)# delayed (true|false)
tnsr(config-bfd)# exit

For example:

tnsr(config)# bfd session otherrouter
tnsr(config-bfd)# bfd-key-id 123
tnsr(config-bfd)# conf-key-id 123456789
tnsr(config-bfd)# delayed false
tnsr(config-bfd)# exit

20.2.3 View BFD Keys

To view a list of keys and their types, use the show bfd keys command:

tnsr# show bfd keys
Conf Key Type Use Count
--------- --------------------- ----------
123456789 meticulous-keyed-sha1 1
234567890 keyed-sha1 0

20.2. BFD Session Authentication 141

Product Manual, TNSR v19.02

To view only one specific key, pass its ID to the same command:

tnsr# show bfd keys conf-key-id 123456789
Conf Key Type Use Count
--------- --------------------- ----------
123456789 meticulous-keyed-sha1 1

20.2. BFD Session Authentication 142

CHAPTER

TWENTYONE

USER MANAGEMENT

TNSR includes a tnsr user by default. Administrators may create additional users to provide separate workspaces
for each user. In this workspace the user may save and load configurations.

Warning: User access is controlled by NACM and the NACM default behavior varies by platform and when the
TNSR installation was created. See NETCONF Access Control Model (NACM) for details.

21.1 User Configuration

Entering config-auth mode requires a username. When modifying an existing user, the username is available for
autocompletion. The command will also accept a new username, which it creates when the configuration is committed.
Creating a new user requires providing a means of authentication:

tnsr(config)# auth user <user-name>

A user may be deleted using the no form:

tnsr(config)# no auth user <user-name>

The exit command leaves config-auth mode:

tnsr(config-auth)# exit
tnsr(config)#

When exiting config-auth mode, TNSR commits changes to the user, which will create or update the entry for the
user in the host operating system.

21.2 Authentication Methods

There are two methods for authenticating users: passwords and user keys.

21.2.1 Password Authentication

The password method takes a password entered in plain text, but stores a hashed version of the password in the
configuration:

143

Product Manual, TNSR v19.02

tnsr(config-auth)# password <plain text password>

Note: The password is hashed by the CLI prior to being passed to the backend. The plain text password is never
stored or passed outside the specific CLI instance.

If the configuration is viewed using the show configuration running command, the hashed password will
be present.

21.2.2 User Key Authentication

The second method of authentication is by user key. A user key is the same format as created by ssh-keygen.

To add a user key for authentication, use the user-keys command inside config-auth mode:

tnsr(config-auth)# user-keys <key-name>

The user key is read directly from the CLI. After the command is executed by pressing Enter, the CLI will wait for
the key to be entered, typically by pasting it into the terminal or by typing. The end of input is indicated by a blank
line. The normal CLI features are bypassed during this process.

21.2. Authentication Methods 144

CHAPTER

TWENTYTWO

NETCONF ACCESS CONTROL MODEL (NACM)

NETCONF Access Control Model (NACM) provides a means by which access can be granted to or restricted from
groups in TNSR.

NACM is group-based and these groups and group membership lists are maintained in the NACM configuration.

User authentication is not handled by NACM, but by other processes depending on how the user connects. For
examples, see User Management and HTTP Server.

See also:

The data model and procedures for evaluating whether a user is authorized to perform a given action are defined in
RFC 8341.

Warning: TNSR Does not provide protection against changing the rules in such a way that causes a loss of access.
Should a lockout situation occur, see Regaining Access if Locked Out by NACM.

22.1 NACM Example

The example configuration in this section is the same default configuration shipped on TNSR version 18.08 mentioned
in NACM Defaults.

Warning: In the following example, NACM is disabled first and activated at the end of the configuration. This
avoids locking out the user when they are in the middle of creating the configuration, in case they unintentionally
exit or commit before finishing.

tnsr(config)# nacm disable
tnsr(config)# nacm exec-default deny
tnsr(config)# nacm read-default deny
tnsr(config)# nacm write-default deny
tnsr(config)# nacm group admin
tnsr(config-nacm-group)# member root
tnsr(config-nacm-group)# member tnsr
tnsr(config-nacm-group)# exit
tnsr(config)# nacm rule-list admin-rules
tnsr(config-nacm-rule-list)# group admin
tnsr(config-nacm-rule-list)# rule permit-all
tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action permit

(continues on next page)

145

https://tools.ietf.org/html/rfc8341

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit
tnsr(config)# nacm enable
tnsr(config)# exit

22.2 View NACM Configuration

The current NACM configuration can be viewed with the show nacm command:

tnsr# show nacm

NACM
====
NACM Enable: true
Default Read policy : deny
Default Write policy: deny
Default Exec policy : deny

Group: admin

root
tnsr

Rule List: admin-rules

Groups:

admin

Name Action Op Module Type
----------- ------ -- ------ ----
permit-all permit * *

This may be narrowed down to only show part of the configuration.

To view all groups:

tnsr# show nacm group

NACM
====

Group: admin

root
tnsr

Group: readonly

olly
reed

To view a specific group, use show nacm group <group-name>:

22.2. View NACM Configuration 146

Product Manual, TNSR v19.02

tnsr# show nacm group admin

NACM
====

Group: admin

root
tnsr

To view all rule lists:

tnsr# show nacm rule-list

NACM
====
Rule List: admin-rules

Groups:

admin

Name Action Op Module Type
----------- ------ ---- ------ ----
permit-all permit * *

Rule List: ro-rules

Groups:

Name Action Op Module Type
----------- ------ ---- ------ ----
ro permit exec *
read deny * *

To view a specific rule list, use show nacm rule-list <list-name>:

tnsr# show nacm rule-list admin-rules

NACM
====
Rule List: admin-rules

Groups:

admin

Name Action Op Module Type
----------- ------ -- ------ ----
permit-all permit * *

22.3 Enable or Disable NACM

Warning: Do not enable NACM unless the rules and groups are correctly and completely configured, otherwise
access to TNSR may be cut off. If access is lost, see Regaining Access if Locked Out by NACM.

22.3. Enable or Disable NACM 147

Product Manual, TNSR v19.02

To enable NACM:

tnsr(config)# nacm enable

To disable NACM:

tnsr(config)# nacm disable

22.4 NACM Default Policy Actions

Alter the default policy for executing commands:

tnsr(config)# nacm exec-default <deny|permit>

Alter the default policy for reading status output:

tnsr(config)# nacm read-default <deny|permit>

Alter the default policy for writing configuration changes:

tnsr(config)# nacm write-default <deny|permit>

22.5 NACM Username Mapping

NACM does not authenticate users itself, but it does need to know the username to determine group membership.

The method of authentication determines the username as seen by NACM. For example, users authenticated by user-
name and password (e.g. PAM auth for RESTCONF or the CLI) will have that same username in TNSR.

See also:

For more information on how users are authenticated, see User Management for CLI access and HTTP Server for
access via RESTCONF.

CLI users can check their TNSR username with the whoami command.

NACM obeys the following rules to determine a username:

SSH Password NACM username is the same as the login username

SSH User Key NACM username is the same as the login username

HTTP Server Password NACM username is the same as the login username

HTTP Server Client Certificate NACM username is the Common Name of the user certificate (cn=
subject component)

22.6 NACM Groups

To create a group, use the nacm group <group-name> command:

tnsr(config)# nacm group admin

22.4. NACM Default Policy Actions 148

Product Manual, TNSR v19.02

This changes to the config-nacm-group mode where group members can be defined using the member
<username> command:

tnsr(config-nacm-group)# member root
tnsr(config-nacm-group)# member tnsr

The username in this context is the mapped username described in NACM Username Mapping.

Warning: Host operating system users that were created manually and not managed through TNSR cannot be
used as group members. See User Management for information on managing users in TNSR.

To remove a member, use the no form of the command:

tnsr(config)# nacm group admin
tnsr(config-nacm-group)# no member tnsr

To remove a group, use no nacm group <group-name>:

tnsr(config)# no nacm group admin

22.7 NACM Rule Lists

NACM rules are contained inside a rule list. A rule list may contain multiple rules, and they are used in the order they
are entered. Rule lists are also checked in the order they were created. Consider the order of lists and rules carefully
when crafting rule lists.

Create a rule list:

tnsr(config)# nacm rule-list ro-rules

Set the group to which the rule list applies, use group <group-name>:

tnsr(config-nacm-rule-list)# group readonly

See also:

For information on defining groups, see NACM Username Mapping.

22.8 NACM Rules

When configuring a rule list (config-nacm-rule-list mode), the rule <name> command defines a new
rule:

tnsr(config-nacm-rule-list)# rule permit-all

After entering this command, the CLI will be in config-nacm-rule mode.

From here, a variety of behaviors for the rule can be set, including:

access-operations <exec|*> The type of operation covered by this rule. Can either be exec, or * to
cover all access operations.

22.7. NACM Rule Lists 149

Product Manual, TNSR v19.02

action <deny|permit> The action to take when this rule is matched, either deny to deny access or
permit to allow access.

comment <text> Arbitrary text describing the purpose of this rule.

Next, the following types can be used to specify the restriction to be enacted by this rule:

module <*> The name of the Yang module covered by this rule.

Warning: Only module name * is supported at this time.

path <path-name> XML path to restrict with this rule.

rpc <rpc-name> The name of an RPC call to be restricted by this rule, such as edit-config,
get-config, and so on.

As shown in NACM Example, the following set of commands defines a rule list and then creates a rule to permit access
to everything in TNSR:

tnsr(config)# nacm rule-list admin-rules
tnsr(config-nacm-rule-list)# group admin
tnsr(config-nacm-rule-list)# rule permit-all
tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action permit
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit

22.9 NACM Rule Processing Order

When consulting defined rule lists, NACM acts in the following manner:

• If NACM is disabled, it skips all checks, otherwise it proceeds

• NACM consults group lists to find which groups contain this user

• NACM checks each rule list in the order they are defined

• NACM checks the group membership for each of these rule lists

• NACM compares the group defined on the rule list to the groups for this user, and if there is a match, it checks
rules in the list

• NACM checks the rules in the order they are defined inside the rule list

• NACM compares the current access operation to the rule and if it matches, the rest of the rule is tested

• NACM attempts to match the following criteria, if defined on the rule:

– The module on the rule name must match the requested module or *.

– The rpc-name matches the RPC call in the request

– The path matches the XML path to the requested data

• If the rule is matched, NACM consults the action on the rule and acts as indicated, either permitting or denying
access

• NACM repeats these checks until there are no more rules, and then no more rule lists

22.9. NACM Rule Processing Order 150

Product Manual, TNSR v19.02

• If no rules matched, NACM consults the default policies for the attempted operation and takes the indicated
action

22.10 Regaining Access if Locked Out by NACM

If the NACM configuration prevents an administrator from accessing TNSR in a required way, NACM can be disabled
or its configuration removed to regain access.

22.10.1 Method 1: Temporarily Disable NACM

With a complicated NACM configuration, the easiest way to regain access is to disable NACM, fix the configuration,
and then enable it again. This involves disabling NACM in /etc/tnsr.xml, which is copied from one of the
following locations, depending on which services are stopped/started: /etc/tnsr/tnsr-none.xml, /etc/
tnsr/tnsr-running.xml, and /etc/tnsr/tnsr-startup.xml. The best practice is to edit all three files.

• Stop TNSR

• Edit /etc/tnsr/tnsr-startup.xml

• Locate the line with CLICON_NACM_MODE and change it to:

<CLICON_NACM_MODE>disabled</CLICON_NACM_MODE>

• Repeat the edit in /etc/tnsr/tnsr-none.xml and /etc/tnsr/tnsr-running.xml

• Restart TNSR

• Use the TNSR CLI to fix the broken NACM rules

• Save the new configuration

• Stop TNSR

• Edit /etc/tnsr/tnsr-startup.xml

• Locate the line with CLICON_NACM_MODE and change it to:

<CLICON_NACM_MODE>internal</CLICON_NACM_MODE>

• Repeat the edit in /etc/tnsr/tnsr-none.xml and /etc/tnsr/tnsr-running.xml

• Restart TNSR

TNSR will start with the new, fixed, NACM configuration. If access is still not working properly, repeat the process
making changes to NACM until it is, or proceed to the next method to start over.

22.10.2 Method 2: Remove NACM Configuration

• Stop TNSR

• Edit /var/tnsr/startup_db

• Remove the entire <nacm>...</nacm> section from startup_db

• Start TNSR

TNSR will restart without any NACM configuration and it can then be reconfigured from scratch as shown in NACM
Example.

22.10. Regaining Access if Locked Out by NACM 151

Product Manual, TNSR v19.02

22.11 NACM Defaults

TNSR version 18.08 or later includes a default set of NACM rules. These rules allow members of group admin to
have unlimited access and sets the default policies to deny. This configuration includes the users tnsr and root in
the group admin.

See also:

To see the specific rules from the default configuration, see NACM Example or view the current NACM configuration
as described in View NACM Configuration.

For users of older installations or those who have removed the default NACM configuration, NACM defaults to dis-
abled with no defined groups or rule lists, and with the following default policies:

Default Read policy : permit
Default Write policy: deny
Default Exec policy : permit

22.11. NACM Defaults 152

CHAPTER

TWENTYTHREE

HTTP SERVER

TNSR includes an HTTP server, currently powered by nginx. This HTTP server provides clients with access to the
RESTCONF API, and there are plans to extend it to provide other services in the future.

23.1 HTTP Server Configuration

The server is configured using the http server command to enter http mode:

tnsr# configure
tnsr(config)# http server
tnsr(config-http)#

The server can be disabled with the following command:

tnsr(config)# no http server

23.1.1 Managing the HTTP Server Process

The HTTP server process can be managed using the service command:

tnsr# configure
tnsr(config)# service http <command>

Where <command> can be any of:

start Start the HTTP server

stop Stop the HTTP server

restart Restart (stop and then start) the HTTP server

status Print the status of the HTTP server process

23.2 HTTPS Encryption

The HTTP server can optionally utilize TLS (HTTPS) to secure communications between the client and server.

Warning: Though HTTPS is optional, we strongly recommend its use for optimal security.

153

https://nginx.org/

Product Manual, TNSR v19.02

HTTPS requires a server certificate present on the TNSR device, and this server certificate must be configured in the
HTTP server:

tnsr(config)# http server
tnsr(config-http)# server certificate <cert-name>

See also:

For more information on managing certificates on TNSR, see Public Key Infrastructure.

23.3 Authentication

The HTTP server supports three types of client authentication to protect access to its resources: Client certificate
authentication, password authentication, and none (no authentication):

tnsr(config-http)# authentication type (client-certificate|password|none)

23.3.1 Client Certificate

The most secure means of protecting access to the HTTP server is via client certificates:

tnsr(config-http)# authentication type client-certificate
tnsr(config-http)# authentication client-certificate-ca <cert-name>

To verify client certificates, a Certificate Authority (CA) is configured in TNSR and all client certificates must be
signed by this CA. The client certificate must be used by the client when attempting to connect to the HTTP server.
Clients without a certificate are rejected.

See also:

For more information on managing certificates on TNSR, see Public Key Infrastructure.

When using client certificates the Common Name (cn= parameter) of the client certificate is taken as the username.
That username is then processed through NACM to determine group access privileges for the RESTCONF API.

23.3.2 Password

Password authentication for the HTTP server is handled via Pluggable Authentication Modules (PAM) support:

tnsr(config-http)# authentication type password

Users can be authenticated against any source supported by PAM modules in the operating system.

Once authenticated, the username is processed through NACM to determine group access privileges for the REST-
CONF API.

23.3.3 None

The least secure option is to disable authentication entirely:

tnsr(config-http)# authentication type none

23.3. Authentication 154

Product Manual, TNSR v19.02

Warning: This option must only be used for testing and never in a production environment.

This removes all security protecting the RESTCONF API. Without authentication, any client can send requests or
make changes using the API, which is extremely dangerous.

23.4 RESTCONF Server

The primary service provided by the HTTP server is the API Endpoints which uses RESTCONF. This RESTCONF
service can be enabled and disabled as needed within the HTTP server configuration.

To enable access to the RESTCONF API:

tnsr(config-http)# enable restconf

To disable access to the RESTCONF API:

tnsr(config-http)# disable restconf

23.4. RESTCONF Server 155

CHAPTER

TWENTYFOUR

TNSR CONFIGURATION EXAMPLE RECIPES

This section is a cookbook full of example recipes which can be used to quickly configure TNSR in a variety of ways.
The use cases covered by these recipes are real-world problems encoutered by Netgate customers.

These example scenarios pull together concepts discussed in more detail throguhout the rest of this documentation to
accomplish larger goals.

24.1 RESTCONF Service Setup with Certificate-Based Authentication
and NACM

Covered Topics

• Use Case

• Example Scenario

• TNSR Setup

• Client Configuration

• Example Usage

• Adding More Users

24.1.1 Use Case

RESTCONF is desirable for its ability to implement changes to TNSR remotely using the API, but allowing remote
changes to TNSR also raises security concerns. When using RESTCONF, security is extremely important to protect
the integrity of the router against unauthorized changes.

Note: RESTCONF deals in JSON output and input, which is easily parsed by a variety of existing libraries for
programming and scripting languages.

24.1.2 Example Scenario

In this example, TNSR will be configured to allow access via RESTCONF, but the service will be protected in several
key ways:

156

Product Manual, TNSR v19.02

• The RESTCONF service is configured for TLS to encrypt the transport

• The RESTCONF service is configured to require a client certificate, which is validated against a private Certifi-
cate Authority known to TNSR

• NACM determines if the certificate common-name (username) is allowed access to view or make changes via
RESTCONF

Item Value
TNSR Hostname tnsr.example.com
RESTCONF Username myuser
NACM Group Name admins
Additional User anotheruser

24.1.3 TNSR Setup

Generate Certificates

Create a self-signed Certificate Authority:

tnsr(config)# pki private-key selfca generate
tnsr(config)# pki signing-request set common-name selfca
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request selfca generate
tnsr(config)# pki signing-request selfca sign self enable-ca true

Create a certificate for the user myuser, signed by selfca:

tnsr(config)# pki private-key myuser generate key-length 4096
tnsr(config)# pki signing-request set common-name myuser
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request myuser generate
tnsr(config)# pki signing-request myuser sign ca-name selfca days-valid 365 digest
→˓sha512 enable-ca false

Create a certificate for the RESTCONF service to use. The common-name should be the hostname of the TNSR router,
which should also exist in DNS:

tnsr(config)# pki private-key restconf generate key-length 4096
tnsr(config)# pki signing-request set common-name tnsr.example.com
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request restconf generate
tnsr(config)# pki signing-request restconf sign ca-name selfca days-valid 365 digest
→˓sha512 enable-ca false

Setup NACM

Disable NACM while making changes, to avoid locking out the account making the changes:

tnsr(config)# nacm disable

Set default policies:

24.1. RESTCONF Service Setup with Certificate-Based Authentication and NACM 157

Product Manual, TNSR v19.02

tnsr(config)# nacm exec-default deny
tnsr(config)# nacm read-default deny
tnsr(config)# nacm write-default deny

Setup an admin group containing the default users plus myuser, which will match the common-name of the user
certificate created above:

tnsr(config)# nacm group admin
tnsr(config-nacm-group)# member root
tnsr(config-nacm-group)# member tnsr
tnsr(config-nacm-group)# member myuser
tnsr(config-nacm-group)# exit

Setup rules to permit any action by members of the admin group:

tnsr(config)# nacm rule-list admin-rules
tnsr(config-nacm-rule-list)# group admin
tnsr(config-nacm-rule-list)# rule permit-all
tnsr(config-nacm-rule)# module *
tnsr(config-nacm-rule)# access-operations *
tnsr(config-nacm-rule)# action permit
tnsr(config-nacm-rule)# exit
tnsr(config-nacm-rule-list)# exit

Enable NACM:

tnsr(config)# nacm enable
tnsr(config)# exit

Enable RESTCONF

Enable RESTCONF and configure it for TLS and client certificate authentication:

tnsr(config)# http server
tnsr(config-http)# server certificate restconf
tnsr(config-http)# authentication type client-certificate
tnsr(config-http)# authentication client-certificate-ca selfca
tnsr(config-http)# enable restconf

24.1.4 Client Configuration

On TNSR, export the CA certificate, user certificate, and user certificate key. Place the resulting files in a secure place
on a client system, in a directory with appropriate permissions, readable only by the user. Additionally, the private key
file must only be readable by the user. For this example, the files will be placed in ~/tnsr/.

First, export the CA certificate. Copy and paste this into a local file, named tnsr-selfca.crt:

tnsr# pki ca selfca get
-----BEGIN CERTIFICATE-----
[...]
-----END CERTIFICATE-----

Next, export the user certificate, copy and paste it and save in a local file named tnsr-myuser.crt:

24.1. RESTCONF Service Setup with Certificate-Based Authentication and NACM 158

Product Manual, TNSR v19.02

tnsr# pki certificate myuser get
-----BEGIN CERTIFICATE-----
[...]
-----END CERTIFICATE-----

Finally, export the user certificate private key, copy and paste it and save in a local file named tnsr-myuser.key.
Remember to protect this file so it is only readable by this user:

tnsr# pki private-key myuser get
-----BEGIN PRIVATE KEY-----
[...]
-----END PRIVATE KEY-----

This example uses curl to access RESTCONF, so ensure it is installed and available on the client computer.

24.1.5 Example Usage

This simple example shows fetching the contents of an ACL from RESTCONF as well as adding a new ACL entry.
There are numerous possibilities here, for more details see the REST API documentation.

In this example, there is an existing ACL named blockbadhosts. It contains several entries including a default
allow rule with a sequence number of 5000.

These examples are all run from the client configured above.

Note: This is a simple demonstration using cURL and shell commands. This makes it easy to demonstrate how the
service works, and how RESTCONF URLs are formed, but does not make for a good practical example.

In real-world cases these types of queries would be handled by a program or script that interacts with RESTCONF,
manipulating data directly and a lot of the details will be handled by RESTCONF and JSON programming libraries.

Retrive a specific ACL

Retrieve the entire contents of the blockbadhosts ACL:

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X GET \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-

→˓list=blockbadhosts

Output:

{
"acl-list": [

{
"acl-name": "blockbadhosts",
"acl-description": "Block bad hosts",
"acl-rules": {
"acl-rule": [

{

(continues on next page)

24.1. RESTCONF Service Setup with Certificate-Based Authentication and NACM 159

Product Manual, TNSR v19.02

(continued from previous page)

"sequence": 1,
"action": "deny",
"src-ip-prefix": "203.0.113.14/32"

},
{
"sequence": 2,
"action": "deny",
"src-ip-prefix": "203.0.113.15/32"

},
{
"sequence": 555,
"action": "deny",
"src-ip-prefix": "5.5.5.5/32"

},
{
"sequence": 5000,
"acl-rule-description": "Default Permit",
"action": "permit"

}
]

}
}

]
}

The cURL parameters and RESTCONF URL can be dissected as follows:

Item Value
cURL Client Certificate –cert ~/tnsr/tnsr-myuser.crt
cURL Client Certificate Key –key ~/tnsr/tnsr-myuser.key
cURL CA Cert to validate TLS –cacert ~/tnsr/tnsr-selfca.crt
Request type (GET) -X GET
RESTCONF Server protocol/host https://tnsr.example.com
RESTCONF API location: /restconf/data/
ACL config area (prefix:name) netgate-acl:acl-config/
ACL table acl-table/
ACL List, with restriction acl-list=blockbadhosts

Note: Lists of items with a unique key can be restricted as shown above. The API documentation also calls this out
as well, showing an optional ={name} in the query.

Retrieve a specific rule of a specific ACL

View only the default permit rule of the ACL:

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X GET \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-

→˓list=blockbadhosts/acl-rules/acl-rule=5000 (continues on next page)

24.1. RESTCONF Service Setup with Certificate-Based Authentication and NACM 160

https://tnsr.example.com

Product Manual, TNSR v19.02

(continued from previous page)

Output:

{
"netgate-acl:acl-rule": [

{
"sequence": 5000,
"acl-rule-description": "Default Permit",
"action": "permit"

}
]

}

The query is nearly identical to the previous one, with the following additional components:

Item Value
ACL rules list acl-rules/
ACL rule, with restriction acl-rule=5000

Add a new rule to an existing ACL

Insert a new ACL rule entry with the following parameters:

Item Value
Request Type -X PUT (add content)
ACL Name blockbadhosts
ACL Rule Sequence 10
ACL Rule Action deny
ACL Rule Source Address 10.222.111.222/32

The new data passed in the -d parameter is JSON but with all whitespace removed so it can be more easily expressed
on a command line.

The URL is the same as if the query is retrieving the rule in question.

Warning: Note the presence of the sequence number in both the supplied JSON data and in the URL. This must
match.

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X PUT \
-d '{"netgate-acl:acl-rule":[{"sequence": 10,"action":"deny","src-ip-prefix":"10.

→˓222.111.222/32"}]}' \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-

→˓list=blockbadhosts/acl-rules/acl-rule=10

Output: This command has no output when it works successfully.

Retrieve the contents of the ACL again to see that the new rule is now present:

24.1. RESTCONF Service Setup with Certificate-Based Authentication and NACM 161

Product Manual, TNSR v19.02

Command:

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X GET \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-

→˓list=blockbadhosts

Output:

{
"netgate-acl:acl-list": [

{
"acl-name": "blockbadhosts",
"acl-description": "Block bad hosts",
"acl-rules": {
"acl-rule": [

{
"sequence": 1,
"action": "deny",
"src-ip-prefix": "203.0.113.14/32"

},
{
"sequence": 2,
"action": "deny",
"src-ip-prefix": "203.0.113.15/32"

},
{
"sequence": 10,
"action": "deny",
"src-ip-prefix": "10.222.111.222/32"

},
{
"sequence": 555,
"action": "deny",
"src-ip-prefix": "5.5.5.5/32"

},
{
"sequence": 5000,
"acl-rule-description": "Default Permit",
"action": "permit"

}
]

}
}

]
}

Remove a specific rule from an ACL

Say that entry is no longer needed and it is safe to remove. That can be done with a DELETE request for the URL
corresponding to its sequence number:

Command:

24.1. RESTCONF Service Setup with Certificate-Based Authentication and NACM 162

Product Manual, TNSR v19.02

$ curl --cert ~/tnsr/tnsr-myuser.crt \
--key ~/tnsr/tnsr-myuser.key \
--cacert ~/tnsr/tnsr-selfca.crt \
-X DELETE \
https://tnsr.example.com/restconf/data/netgate-acl:acl-config/acl-table/acl-

→˓list=blockbadhosts/acl-rules/acl-rule=10

Output: This does not produce any output if it completed successfully.

Retrieve the contents of the ACL again to confirm it was removed.

24.1.6 Adding More Users

To create additional RESTCONF users, only two actions are required on TNSR: Generate a certificate for the new
user, and then add the user to NACM. This example adds a new user named anotheruser.

Generate a new user certificate:

tnsr(config)# pki private-key anotheruser generate key-length 4096
tnsr(config)# pki signing-request set common-name anotheruser
tnsr(config)# pki signing-request set digest sha256
tnsr(config)# pki signing-request anotheruser generate
tnsr(config)# pki signing-request anotheruser sign ca-name selfca days-valid 365
→˓digest sha512 enable-ca false

Add this user to the NACM admin group:

tnsr(config)# nacm group admin
tnsr(config-nacm-group)# member anotheruser
tnsr(config-nacm-group)# exit

Then, the user certificate can be copied to a new client and used as explained previously.

24.2 TNSR IPsec Hub for pfSense

Current scenario:

HQ (hub) with 3 branch (spoke) sites, with secure interconnection between thier local networks. One of the branch
routers is assumed to be BGP capable. Internet access for one of the sites should be provided through the hub node.

Covered Topics

• Input Data

– Scenario Topology

– TNSR and Peer Network Configuration

– TNSR and Peer IPsec Configuration

• Setup Details

– Initial setup

* TNSR

24.2. TNSR IPsec Hub for pfSense 163

Product Manual, TNSR v19.02

* Peer 1

* Peer 2

* Peer 3

• Access between local and remote networks via IPsec

– TNSR

* IPsec Configuration

* Routing

* Peer 1

* Peer 2

* Peer 3

– Access to the internet for remote network

* TNSR

* Peer 1

24.2.1 Input Data

The information in this section defines the local configuration which is covered in this recipe. These input values can
be substituted by the actual corresponding values for a real-world implementation.

Scenario Topology

Fig. 1: TNSR IPsec Hub

24.2. TNSR IPsec Hub for pfSense 164

Product Manual, TNSR v19.02

TNSR and Peer Network Configuration

Table 1: TNSR Setup
Item Value
LAN Interface GigabitEthernetb/0/0
LAN Network 192.168.0.0/24
LAN IP Address static 192.168.0.1/24
WAN Interface GigabitEthernet13/0/0
WAN IP Address DHCP 10.129.0.10/24
IPsec VTI Peer 1 IP Address 10.131.1.1/30
IPsec VTI Peer 2 IP Address 10.131.2.1/30
IPsec VTI Peer 3 IP Address 10.131.3.1/30

Table 2: Peer 1 Setup
Item Value
LAN Interface LAN
LAN Network 192.168.1.0/24
LAN IP Address static 192.168.1.1/24
WAN Interface WAN
WAN IP Address DHCP 10.129.0.11/24
IPsec VTI TNSR IP Address 10.131.1.2/30

Table 3: Peer 2 Setup
Item Value
LAN Interface LAN
LAN Network 192.168.2.0/24
LAN IP Address static 192.168.2.1/24
WAN Interface WAN
WAN IP Address DHCP 10.129.0.12/24
IPsec VTI TNSR IP Address 10.131.2.2/30

Table 4: Peer 3 Setup
Item Value
LAN Interface LAN
LAN Network 192.168.3.0/24
LAN IP Address static 192.168.3.1/24
WAN Interface WAN
WAN IP Address DHCP 10.129.0.13/24
IPsec VTI TNSR IP Address 10.131.3.2/30

TNSR and Peer IPsec Configuration

General IPsec settings are the same for every node.

24.2. TNSR IPsec Hub for pfSense 165

Product Manual, TNSR v19.02

Table 5: IPsec IKE/Phase 1 Settings
Item Value
Network Interface WAN Interface
IKE type IKEv2
Authentication method PSK
Pre-Share Key 01234567
Local identifier WAN IP Address
Remote identifier Remote WAN IP Address
Encryption AES-128-CBC
Hash SHA1
DH group 14 (2048 bit modulus)
Lifetime 28800

Table 6: IPsec SA/Phase 2 Settings
Item Value
Mode Routed IPsec (VTI)
Protocol ESP
Encryption AES-128-CBC
Hash SHA1
PFS group 14 (2048)
Lifetime 3600

24.2.2 Setup Details

Initial setup

It is assumed that devices have generic default setup, do not have any existing configuration errors, and are ready to
be configured.

Note: In this scenario every device obtains its own static IP address on its WAN interface from an external lab gateway
which is not a part of the considered scenario.

TNSR

LAN settings

Setup LAN interface with static IP address:

tnsr tnsr# configure
tnsr tnsr(config)# interface GigabitEthernetb/0/0
tnsr tnsr(config-interface)# description LAN
tnsr tnsr(config-interface)# ip address 192.168.0.1/24
tnsr tnsr(config-interface)# enable
tnsr tnsr(config-interface)# exit
tnsr tnsr(config)# exit

24.2. TNSR IPsec Hub for pfSense 166

Product Manual, TNSR v19.02

WAN settings

Setup WAN interface for obtaining IP address via DHCP:

tnsr tnsr# configure
tnsr tnsr(config)# interface GigabitEthernet13/0/0
tnsr tnsr(config-interface)# description WAN
tnsr tnsr(config-interface)# dhcp client ipv4 hostname tnsr
tnsr tnsr(config-interface)# enable
tnsr tnsr(config-interface)# exit
tnsr tnsr(config)# exit

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 7: TNSR DHCP Server Setup
Item Value
DHCP IP address pool 192.168.0.100 to 192.168.0.199
Default gateway TNSR LAN IP address
DNS 8.8.8.8 and 1.1.1.1

tnsr tnsr# configure
tnsr tnsr(config)# dhcp4 server
tnsr tnsr(config-kea-dhcp4)# description LAN DHCP
tnsr tnsr(config-kea-dhcp4)# interface listen GigabitEthernetb/0/0
tnsr tnsr(config-kea-dhcp4)# subnet 192.168.0.0/24
tnsr tnsr(config-kea-subnet4)# interface GigabitEthernetb/0/0
tnsr tnsr(config-kea-subnet4)# pool 192.168.0.100-192.168.0.199
tnsr tnsr(config-kea-subnet4-pool)# exit
tnsr tnsr(config-kea-subnet4)# option routers
tnsr tnsr(config-kea-subnet4-opt)# data 192.168.0.1
tnsr tnsr(config-kea-subnet4-opt)# exit
tnsr tnsr(config-kea-subnet4)# option domain-name-servers
tnsr tnsr(config-kea-subnet4-opt)# data 8.8.8.8, 1.1.1.1
tnsr tnsr(config-kea-subnet4-opt)# exit
tnsr tnsr(config-kea-subnet4)# exit
tnsr tnsr(config-kea-dhcp4)# exit
tnsr tnsr(config)# dhcp4 enable
tnsr tnsr(config)# exit

NAT

tnsr tnsr# configure
tnsr tnsr(config)# nat global-options nat44 forwarding true
tnsr tnsr(config)# nat pool interface GigabitEthernet13/0/0
tnsr tnsr(config)# interface GigabitEthernetb/0/0
tnsr tnsr(config-interface)# ip nat inside
tnsr tnsr(config-interface)# exit
tnsr tnsr(config)# interface GigabitEthernet13/0/0
tnsr tnsr(config-interface)# ip nat outside

(continues on next page)

24.2. TNSR IPsec Hub for pfSense 167

Product Manual, TNSR v19.02

(continued from previous page)

tnsr tnsr(config-interface)# exit
tnsr tnsr(config)# exit

Peer 1

LAN settings

Setup LAN interface with static IP address.

• Navigate to Interfaces > LAN

• Set IPv4 Configuration Type to Static IPv4

• Set IPv4 Address to 192.168.1.1 and mask as 24

• Click Save

• Click Apply Changes

WAN settings

Setup WAN interface for obtaining an IP address via DHCP. This could also be a static setup, following a similar form
to the LAN settings above.

• Navigate to Interfaces > WAN

• Set IPv4 Configuration Type to DHCP

• Click Save

• Click Apply Changes

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 8: Peer 1 DHCP Server Setup
Item Value
DHCP IP address pool 192.168.1.100 to 192.168.1.199
Default gateway LAN IP address (pfSense Default)
DNS LAN IP address (pfSense Default)

• Navigate to Services > DHCP Server, LAN tab

• Set Range From as 192.168.1.100 and To as 192.168.1.199

• Click Save

Peer 2

LAN settings

Setup LAN interface with static IP address.

24.2. TNSR IPsec Hub for pfSense 168

Product Manual, TNSR v19.02

• Navigate to Interfaces > LAN

• Set IPv4 Configuration Type to Static IPv4

• Set IPv4 Address to 192.168.2.1 and mask as 24

• Click Save

• Click Apply Changes

WAN settings

Setup WAN interface for obtaining an IP address via DHCP. This could also be a static setup, following a similar form
to the LAN settings above.

• Navigate to Interfaces > WAN

• Set IPv4 Configuration Type to DHCP

• Click Save

• Click Apply Changes

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 9: Peer 2 DHCP Server Setup
Item Value
DHCP IP address pool 192.168.2.100 to 192.168.2.199
Default gateway LAN IP address (pfSense Default)
DNS LAN IP address (pfSense Default)

• Navigate to Services > DHCP Server, LAN tab

• Set Range From as 192.168.2.100 and To as 192.168.2.199

• Click Save

Peer 3

LAN settings

Setup LAN interface with static IP address.

• Navigate to Interfaces > LAN

• Set IPv4 Configuration Type to Static IPv4

• Set IPv4 Address to 192.168.3.1 and mask as 24

• Click Save

• Click Apply Changes

24.2. TNSR IPsec Hub for pfSense 169

Product Manual, TNSR v19.02

WAN settings

Setup WAN interface for obtaining an IP address via DHCP. This could also be a static setup, following a similar form
to the LAN settings above.

• Navigate to Interfaces > WAN

• Set IPv4 Configuration Type to DHCP

• Click Save

• Click Apply Changes

DHCP server

Setup DHCP server on LAN interface with following settings:

Table 10: Peer 3 DHCP Server Setup
Item Value
DHCP IP address pool 192.168.3.100 to 192.168.3.199
Default gateway LAN IP address (pfSense Default)
DNS LAN IP address (pfSense Default)

• Navigate to Services > DHCP Server, LAN tab

• Set Range From as 192.168.3.100 and To as 192.168.3.199

• Click Save

24.2.3 Access between local and remote networks via IPsec

This section describes minimal IPsec and routing settings in order to obtain secure interconnectivity between LAN
networks for every device.

This document assumes that devices have generic initial setup successfully completed and are able to reach each other
via WAN network.

TNSR

IPsec Configuration

IPsec setup for each pfSense node

Peer 1

Enter config state:

tnsr tnsr# configure

Creating IPsec instance with id 1:

24.2. TNSR IPsec Hub for pfSense 170

Product Manual, TNSR v19.02

tnsr tnsr(config)# ipsec tunnel 1
tnsr tnsr(config-ipsec-tunnel)# local-address 10.129.0.10
tnsr tnsr(config-ipsec-tunnel)# remote-address 10.129.0.11
tnsr tnsr(config-ipsec-tunnel)# crypto config-type ike

P1 encryption settings:

tnsr tnsr(config-ipsec-tunnel)# crypto ike
tnsr tnsr(config-ipsec-crypto-ike)# version 2
tnsr tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr tnsr(config-ike-proposal)# encryption aes128
tnsr tnsr(config-ike-proposal)# integrity sha1
tnsr tnsr(config-ike-proposal)# group modp2048
tnsr tnsr(config-ike-proposal)# exit

Creating peer IDs:

tnsr tnsr(config-ipsec-crypto-ike)# identity local
tnsr tnsr(config-ike-identity)# type address
tnsr tnsr(config-ike-identity)# value 10.129.0.10
tnsr tnsr(config-ike-identity)# exit
tnsr tnsr(config-ipsec-crypto-ike)# identity remote
tnsr tnsr(config-ike-identity)# type address
tnsr tnsr(config-ike-identity)# value 10.129.0.11
tnsr tnsr(config-ike-identity)# exit

Authentication:

tnsr tnsr(config-ipsec-crypto-ike)# authentication local
tnsr tnsr(config-ike-authentication)# round 1
tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit
tnsr tnsr(config-ike-authentication)# exit
tnsr tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr tnsr(config-ike-authentication)# round 1
tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit
tnsr tnsr(config-ike-authentication)# exit

P2 settings:

tnsr tnsr(config-ipsec-crypto-ike)# child 1
tnsr tnsr(config-ike-child)# lifetime 3600
tnsr tnsr(config-ike-child)# proposal 1
tnsr tnsr(config-ike-child-proposal)# encryption aes128
tnsr tnsr(config-ike-child-proposal)# integrity sha1
tnsr tnsr(config-ike-child-proposal)# group modp2048
tnsr tnsr(config-ike-child-proposal)# exit
tnsr tnsr(config-ike-child)# exit
tnsr tnsr(config-ipsec-crypto-ike)# exit
tnsr tnsr(config-ipsec-tunnel)# exit

Configuring tunnel interface

24.2. TNSR IPsec Hub for pfSense 171

Product Manual, TNSR v19.02

tnsr tnsr(config)# interface ipsec1
tnsr tnsr(config-interface)# ip address 10.131.1.1/30
tnsr tnsr(config-interface)# exit
tnsr tnsr(config)# exit

Peer 2

Enter config state:

tnsr tnsr# configure

Creating IPsec instance with id 2:

tnsr tnsr(config)# ipsec tunnel 1
tnsr tnsr(config-ipsec-tunnel)# local-address 10.129.0.10
tnsr tnsr(config-ipsec-tunnel)# remote-address 10.129.0.12
tnsr tnsr(config-ipsec-tunnel)# crypto config-type ike

P1 encryption settings:

tnsr tnsr(config-ipsec-tunnel)# crypto ike
tnsr tnsr(config-ipsec-crypto-ike)# version 2
tnsr tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr tnsr(config-ike-proposal)# encryption aes128
tnsr tnsr(config-ike-proposal)# integrity sha1
tnsr tnsr(config-ike-proposal)# group modp2048
tnsr tnsr(config-ike-proposal)# exit

Creating peer ID’s:

tnsr tnsr(config-ipsec-crypto-ike)# identity local
tnsr tnsr(config-ike-identity)# type address
tnsr tnsr(config-ike-identity)# value 10.129.0.10
tnsr tnsr(config-ike-identity)# exit
tnsr tnsr(config-ipsec-crypto-ike)# identity remote
tnsr tnsr(config-ike-identity)# type address
tnsr tnsr(config-ike-identity)# value 10.129.0.12
tnsr tnsr(config-ike-identity)# exit

Authentication:

tnsr tnsr(config-ipsec-crypto-ike)# authentication local
tnsr tnsr(config-ike-authentication)# round 1
tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit
tnsr tnsr(config-ike-authentication)# exit
tnsr tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr tnsr(config-ike-authentication)# round 1
tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit
tnsr tnsr(config-ike-authentication)# exit

P2 settings:

24.2. TNSR IPsec Hub for pfSense 172

Product Manual, TNSR v19.02

tnsr tnsr(config-ipsec-crypto-ike)# child 1
tnsr tnsr(config-ike-child)# lifetime 3600
tnsr tnsr(config-ike-child)# proposal 1
tnsr tnsr(config-ike-child-proposal)# encryption aes128
tnsr tnsr(config-ike-child-proposal)# integrity sha1
tnsr tnsr(config-ike-child-proposal)# group modp2048
tnsr tnsr(config-ike-child-proposal)# exit
tnsr tnsr(config-ike-child)# exit
tnsr tnsr(config-ipsec-crypto-ike)# exit
tnsr tnsr(config-ipsec-tunnel)# exit

Configuring tunnel interface:

tnsr tnsr(config)# interface ipsec2
tnsr tnsr(config-interface)# ip address 10.131.2.1/30
tnsr tnsr(config-interface)# exit
tnsr tnsr(config)# exit

Peer 3

Enter config state:

tnsr tnsr# configure

Creating IPsec instance with id 1:

tnsr tnsr(config)# ipsec tunnel 1
tnsr tnsr(config-ipsec-tunnel)# local-address 10.129.0.10
tnsr tnsr(config-ipsec-tunnel)# remote-address 10.129.0.13
tnsr tnsr(config-ipsec-tunnel)# crypto config-type ike

P1 encryption settings:

tnsr tnsr(config-ipsec-tunnel)# crypto ike
tnsr tnsr(config-ipsec-crypto-ike)# version 2
tnsr tnsr(config-ipsec-crypto-ike)# lifetime 28800
tnsr tnsr(config-ipsec-crypto-ike)# proposal 1
tnsr tnsr(config-ike-proposal)# encryption aes128
tnsr tnsr(config-ike-proposal)# integrity sha1
tnsr tnsr(config-ike-proposal)# group modp2048
tnsr tnsr(config-ike-proposal)# exit

Creating peer ID’s:

tnsr tnsr(config-ipsec-crypto-ike)# identity local
tnsr tnsr(config-ike-identity)# type address
tnsr tnsr(config-ike-identity)# value 10.129.0.10
tnsr tnsr(config-ike-identity)# exit
tnsr tnsr(config-ipsec-crypto-ike)# identity remote
tnsr tnsr(config-ike-identity)# type address
tnsr tnsr(config-ike-identity)# value 10.129.0.13
tnsr tnsr(config-ike-identity)# exit

Authentication:

24.2. TNSR IPsec Hub for pfSense 173

Product Manual, TNSR v19.02

tnsr tnsr(config-ipsec-crypto-ike)# authentication local
tnsr tnsr(config-ike-authentication)# round 1
tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit
tnsr tnsr(config-ike-authentication)# exit
tnsr tnsr(config-ipsec-crypto-ike)# authentication remote
tnsr tnsr(config-ike-authentication)# round 1
tnsr tnsr(config-ike-authentication-round)# type psk
tnsr tnsr(config-ike-authentication-round)# psk 01234567
tnsr tnsr(config-ike-authentication-round)# exit
tnsr tnsr(config-ike-authentication)# exit

P2 settings:

tnsr tnsr(config-ipsec-crypto-ike)# child 1
tnsr tnsr(config-ike-child)# lifetime 3600
tnsr tnsr(config-ike-child)# proposal 1
tnsr tnsr(config-ike-child-proposal)# encryption aes128
tnsr tnsr(config-ike-child-proposal)# integrity sha1
tnsr tnsr(config-ike-child-proposal)# group modp2048
tnsr tnsr(config-ike-child-proposal)# exit
tnsr tnsr(config-ike-child)# exit
tnsr tnsr(config-ipsec-crypto-ike)# exit
tnsr tnsr(config-ipsec-tunnel)# exit

Configuring tunnel interface:

tnsr tnsr(config)# interface ipsec3
tnsr tnsr(config-interface)# ip address 10.131.3.1/30
tnsr tnsr(config-interface)# exit
tnsr tnsr(config)# exit

Routing

This section describes routing setup. This scenario assumes one of the pfSense IPsec peers, Peer 1, uses a dynamic
routing protocol (BGP) and the remaining two IPsec peers use static routing.

Peer 1 BGP Routing

Enter config state:

tnsr tnsr# configure

Defining redistributed networks, peer 2 and 3:

tnsr tnsr(config)# prefix-list VPN-ROUTES
tnsr tnsr(config-prefix-list)# sequence 1 permit 192.168.2.0/23 le 24
tnsr tnsr(config-prefix-list)# exit
tnsr tnsr(config)# route-map VPN-ROUTES-MAP permit sequence 1
tnsr tnsr(config-route-map)# match ip address prefix-list VPN-ROUTES
tnsr tnsr(config-route-map)# exit

Setup BGP instance:

24.2. TNSR IPsec Hub for pfSense 174

Product Manual, TNSR v19.02

tnsr tnsr(config)# route dynamic bgp
tnsr tnsr(config-route-dynamic-bgp)# server 65000
tnsr tnsr(config-bgp)# router-id 192.168.0.1

Defining neighbor:

tnsr tnsr(config-bgp)# neighbor 10.131.1.2
tnsr tnsr(config-bgp-neighbor)# remote-as 65001
tnsr tnsr(config-bgp-neighbor)# enable
tnsr tnsr(config-bgp-neighbor)# exit

Setup peer in certain address-family space:

tnsr tnsr(config-bgp)# address-family ipv4 unicast
tnsr tnsr(config-bgp-af)# neighbor 10.131.1.2
tnsr tnsr(config-bgp-af-nbr)# activate
tnsr tnsr(config-bgp-af-nbr)# exit

Defining local network in certain address-family space:

tnsr tnsr(config-bgp-af)# network 192.168.0.0/24

Defining redistributed networks

tnsr tnsr(config-bgp-af)# redistribute from kernel route-map VPN-ROUTES-MAP
tnsr tnsr(config-bgp-af)# exit
tnsr tnsr(config-bgp)# exit

Enabling BGP if one is not enabled:

tnsr tnsr(config-route-dynamic-bgp)# enable
tnsr tnsr(config-route-dynamic-bgp)# exit

Better to restart service in order to be sure changes applied effectively:

tnsr tnsr(config)# service bgp restart
tnsr tnsr(config)# exit

Peer 2 Static Routing

tnsr tnsr# configure
tnsr tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr tnsr(config-route-table-v4)# route 192.168.2.0/24
tnsr tnsr(config-rttbl4-next-hop)# next-hop 0 via 10.131.2.2 ipsec3
tnsr tnsr(config-rttbl4-next-hop)# exit
tnsr tnsr(config-route-table-v4)# exit
tnsr tnsr(config)# exit

Peer 3 Static Routing

tnsr tnsr# configure
tnsr tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr tnsr(config-route-table-v4)# route 192.168.3.0/24

(continues on next page)

24.2. TNSR IPsec Hub for pfSense 175

Product Manual, TNSR v19.02

(continued from previous page)

tnsr tnsr(config-rttbl4-next-hop)# next-hop 0 via 10.131.3.2 ipsec3
tnsr tnsr(config-rttbl4-next-hop)# exit
tnsr tnsr(config-route-table-v4)# exit
tnsr tnsr(config)# exit

Peer 1

IPsec Settings

Phase 1

• Navigate to VPN > IPsec

• Click Add P1

• Set Key Exchange version to IKEv2

• Set Internet Protocol to IPv4

• Set Interface to WAN

• Set Remote Gateway to 10.129.0.10

• Set Authentication Method to Mutual PSK

• Set My identifier to My IP address

• Set Peer identifier to Peer IP address

• Set Pre-Shared Key to 01234567

• Set Encryption:

– Algorithm to AES

– Key length to 128 bit

– Hash to SHA1

– DH Group to 14 (2048 bit)

• Set Lifetime as 28800

• Click Save

Phase 2

• On the newly created Phase 1 entry, click Show Phase 2 Entries

• Click Add P2

• Set Mode to Routed (VTI)

• Set Local Network to 10.131.2.2 and mask 30

• Set Remote Network to 10.131.2.1

• Set Protocol to ESP

• Set Encryption Algorithms to AES and 128 bit

24.2. TNSR IPsec Hub for pfSense 176

Product Manual, TNSR v19.02

• Uncheck all other Encryption Algorithms entries

• Set Hash Algorithms to SHA1

• Uncheck all other Hash Algorithms entries

• Set PFS key group to 14 (2048 bit)

• Set Lifetime as 3600

• Click Save

• Click Apply Changes

Interface

• Navigate to Interfaces > Interface Assignments

• From the Available network ports list, choose ipsecNNNN (IPsec VTI) (The ID number will vary)

• Click Add

• Note the newly created interface name, such as OPTX

• Navigate to Interfaces > OPTX

• Check Enable

• Click Save

• Click Apply Changes

Routing

• Navigate to System > Package Manager and install the FRR package

• Browse to Services > FRR Global/Zebra

• Check Enable FRR

• Set Master Password to any value

Note: This is a requirement for the zebra management daemon to run, this password is not used by clients.

• Check Enable logging

• Set Router ID to 192.168.1.1

In this case, it is the LAN interface IP address, assuming it will be always be available for routing between LAN
subnets.

• Click Save

• Navigate to the [BGP] tab

• Check Enable BGP Routing

• Check Log Adjacency Changes

• Set Local AS to 65001

• Set Router ID to 192.168.1.1

24.2. TNSR IPsec Hub for pfSense 177

Product Manual, TNSR v19.02

• Set Networks to Distribute to 192.168.1.0/24

• Navigate to the Neighbors tab

• Click Add

• Set Name/Address to 10.131.1.1 (TNSR VTI interface IP address)

• Set Remote AS to 65000

• Click Save

At this point, routes to 192.168.0.0/24, 192.168.2.0/24, and 192.168.3.0/24 will be learned by BGP
and installed in the routing table. If it is not so, check Status > FRR on the BGP tab. That page contains useful BGP
troubleshooting information. Additionally, check the routing log at Status > System Logs on the Routing tab under
System.

Firewall

To allow connections into the local LAN from remote IPsec sites, create necessary pass rules under Firewall > Rules
on the IPsec tab. These rules would have a Source set to the remote LAN or whichever network is the source of the
traffic to allow.

For simplicity, this example has a rule to pass IPv4 traffic from any source to any destination since the only IPsec
interface traffic will be from 192.168.0.0/22.

NAT

TNSR will perform NAT for this peer, so outbound NAT is not necessary. It may be left at the default, which will not
touch IPsec traffic, or outbound NAT may be disabled entirely which will also prevent LAN subnet traffic from exiting
out the WAN unintentionally.

Peer 2

IPsec Settings

Phase 1

• Navigate to VPN > IPsec

• Click Add P1

• Set Key Exchange version to IKEv2

• Set Internet Protocol to IPv4

• Set Interface to WAN

• Set Remote Gateway to 10.129.0.10

• Set Authentication Method to Mutual PSK

• Set My identifier to My IP address

• Set Peer identifier to Peer IP address

• Set Pre-Shared Key to 01234567

• Set Encryption:

24.2. TNSR IPsec Hub for pfSense 178

Product Manual, TNSR v19.02

– Algorithm to AES

– Key length to 128 bit

– Hash to SHA1

– DH Group to 14 (2048 bit)

• Set Lifetime as 28800

• Click Save

Phase 2

• On the newly created Phase 1 entry, click Show Phase 2 Entries

• Click Add P2

• Set Mode to Routed (VTI)

• Set Local Network to 10.131.3.2 and mask 30

• Set Remote Network to 10.131.3.1

• Set Protocol to ESP

• Set Encryption Algorithms to AES and 128 bit

• Uncheck all other Encryption Algorithms entries

• Set Hash Algorithms to SHA1

• Uncheck all other Hash Algorithms entries

• Set PFS key group to 14 (2048 bit)

• Set Lifetime as 3600

• Click Save

• Click Apply Changes

Interface

• Navigate to Interfaces > Interface Assignments

• From the Available network ports list, choose ipsecNNNN (IPsec VTI) (The ID number will vary)

• Click Add

• Note the newly created interface name, such as OPTX

• Navigate to Interfaces > OPTX

• Check Enable

• Click Save

• Click Apply Changes

24.2. TNSR IPsec Hub for pfSense 179

Product Manual, TNSR v19.02

Routing

• Navigate to System > Routing, Static Routes tab

• Click Add

• Set Destination network to 192.168.0.0 and mask 23

• Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.2.1

• Click Save

• Click Add

• Set Destination network to 192.168.3.0 and mask 24

• Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.2.1

• Click Save

• Click Apply Changes

Firewall

To allow connections into the local LAN from remote IPsec sites, create necessary pass rules under Firewall > Rules
on the IPsec tab. These rules would have a Source set to the remote LAN or whichever network is the source of the
traffic to allow.

For simplicity, this example has a rule to pass IPv4 traffic from any source to any destination since the only IPsec
interface traffic will be from 192.168.0.0/22.

NAT

TNSR will perform NAT for this peer, so outbound NAT is not necessary. It may be left at the default, which will not
touch IPsec traffic, or outbound NAT may be disabled entirely which will also prevent LAN subnet traffic from exiting
out the WAN unintentionally.

Peer 3

IPsec Settings

Phase 1

• Navigate to VPN > IPsec

• Click Add P1

• Set Key Exchange version to IKEv2

• Set Internet Protocol to IPv4

• Set Interface to WAN

• Set Remote Gateway to 10.129.0.10

• Set Authentication Method to Mutual PSK

• Set My identifier to My IP address

24.2. TNSR IPsec Hub for pfSense 180

Product Manual, TNSR v19.02

• Set Peer identifier to Peer IP address

• Set Pre-Shared Key to 01234567

• Set Encryption:

– Algorithm to AES

– Key length to 128 bit

– Hash to SHA1

– DH Group to 14 (2048 bit)

• Set Lifetime as 28800

• Click Save

Phase 2

• On the newly created Phase 1 entry, click Show Phase 2 Entries

• Click Add P2

• Set Mode to Routed (VTI)

• Set Local Network to 10.131.4.2 and mask 30

• Set Remote Network to 10.131.4.1

• Set Protocol to ESP

• Set Encryption Algorithms to AES and 128 bit

• Uncheck all other Encryption Algorithms entries

• Set Hash Algorithms to SHA1

• Uncheck all other Hash Algorithms entries

• Set PFS key group to 14 (2048 bit)

• Set Lifetime as 3600

• Click Save

• Click Apply Changes

Interface

• Navigate to Interfaces > Interface Assignments

• From the Available network ports list, choose ipsecNNNN (IPsec VTI) (The ID number will vary)

• Click Add

• Note the newly created interface name, such as OPTX

• Navigate to Interfaces > OPTX

• Check Enable

• Click Save

• Click Apply Changes

24.2. TNSR IPsec Hub for pfSense 181

Product Manual, TNSR v19.02

Routing

• Navigate to System > Routing, Static Routes tab

• Click Add

• Set Destination network to 192.168.0.0 and mask 23

• Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.3.1

• Click Save

• Click Add

• Set Destination network to 192.168.2.0 and mask 24

• Set Gateway to the newly created VTI interface gateway, which has an address of 10.131.3.1

• Click Save

• Click Apply Changes

Firewall

To allow connections into the local LAN from remote IPsec sites, create necessary pass rules under Firewall > Rules
on the IPsec tab. These rules would have a Source set to the remote LAN or whichever network is the source of the
traffic to allow.

For simplicity, this example has a rule to pass IPv4 traffic from any source to any destination since the only IPsec
interface traffic will be from 192.168.0.0/22.

NAT

TNSR will perform NAT for this peer, so outbound NAT is not necessary. It may be left at the default, which will not
touch IPsec traffic, or outbound NAT may be disabled entirely which will also prevent LAN subnet traffic from exiting
out the WAN unintentionally.

Access to the internet for remote network

This section describes minimal routing and NAT settings which provide access to the Internet for one of the remote
networks. In current case this is Peer 1 that exchanges routing information with TNSR via BGP.

This document assumes that devices have IPsec setup successfully completed, able to reach each other via IPsec tunnel
using path information from the dynamic routing protocol.

TNSR

NAT/PAT

Setup NAT for remote network, in this case PAT is used.

Note: Defining NAT inside interface for internet traffic sourced from Peer 1. Outside interface and PAT were defined
earlier.

24.2. TNSR IPsec Hub for pfSense 182

Product Manual, TNSR v19.02

tnsr tnsr# configure
tnsr tnsr(config)# interface ipsec1
tnsr tnsr(config-interface)# ip nat inside
tnsr tnsr(config-interface)# exit

Peer 1

Routing

Setup access to the internet via IPsec VTI interface with a policy-based routing rule.

• Navigate to Firewall > Rules

• Create (or modify existing default pass ipv4 LAN any) rule:

– Set Address Family to IPv4

– Set Protocol to ANY

– Set Source to LAN net

– Set Destination to ANY

– Click Display Advanced

– Set Gateway to <IPsec interface name>_VTIV4

– Click Save

Note: VTI on pfSense does not support reply-to. Despite this policy routing rule on Peer1 which covers all traffic,
there must also be kernel routes to remote LANs for the return traffic to find the way back.

24.3 Edge Router Speaking eBGP with Static Redistribution for IPv4
And IPv6

Covered Topics

• Use Case

• Example Scenario

• TNSR Configuration Steps

• JSON Configuration

24.3.1 Use Case

Especially in cases where an enterprise is multi-homed with it’s own block of network addresses, it may become
necessary to configure dynamic routing between network service providers. This is accomplished by use of external
BGP (eBGP).

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 183

Product Manual, TNSR v19.02

In this use case, the enterprise will use TNSR to speak eBGP with two network service providers, in order to exchange
routes which may be redistributed from static/connected routing.

24.3.2 Example Scenario

In this example, the enterprise using TNSR will have a fictitious autonomous system number (ASN) of 65505. The
network service providers in this example will have ASNs of 65510 and 65520. The enterprise using TNSR will
redistribute a single /24 network from static into BGP. That network will then be advertised to each of the service
providers. The service providers will announce a full routing table to the TNSR instance.

Scenario Topology

Table 11: BGP Router Setup Parameters
Item Value
TNSR Autonomous System Number 65505
ISP_A Autonomous System Number 65510
ISP_B Autonomous System Number 65520
IPv4 Network to be announced 192.0.2.0/24
IPv6 Network to be announced 2001:db8:a100:1005::/64
TNSR to ISP_A IPv4 Network Address 203.0.113.8/30
TNSR to ISP_A IPv6 Global Address 2001:db8:fa00:ffaa::/64
TNSR to ISP_B IPv4 Network Address 100.64.0.48/30
TNSR to ISP_B IPv6 Global Address 2001:db8:fb00:ffbb::/64

24.3.3 TNSR Configuration Steps

Steps needed in TNSR to complete this configuration

• Step 1: Configure Interfaces

• Step 2: Enable BGP

• Step 3: Create prefix-lists for route export via BGP

• Step 4: Create static route for networks to be advertised in BGP

• Step 5: Configure BGP global options

• Step 6: Configure BGP global neighbor options

• Step 7: Configure BGP neighbor address-family IPv4 unicast options

• Step 8: Configure BGP neighbor address-family IPv6 unicast options

Step 1: Configure Interfaces

tnsr# conf
tnsr(config)# interface GigabitEthernet0/13/0
tnsr(config-interface)# description "To ISP A"
tnsr(config-interface)# ip address 203.0.113.9/30

(continues on next page)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 184

Product Manual, TNSR v19.02

Fig. 2: TNSR BGP Router (IPv4)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 185

Product Manual, TNSR v19.02

Fig. 3: TNSR BGP Router (IPv6)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 186

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-interface)# ipv6 address 2001:db8:1000:aaaa::2/64
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)#
tnsr(config)# interface GigabitEthernet0/14/0
tnsr(config-interface)# description "To ISP B"
tnsr(config-interface)# ip address 100.64.0.49/30
tnsr(config-interface)# ipv6 address 2001:db8:9999:ffff::2/64
tnsr(config-interface)# enable
tnsr(config-interface)# exit
tnsr(config)#

Step 2: Enable BGP

tnsr(config)# route dynamic bgp
tnsr(config-route-dynamic-bgp)# enable
tnsr(config-route-dynamic-bgp)# exit
tnsr(config)#

Step 3: Create prefix-lists for route export via BGP

tnsr(config)# route dynamic prefix-list EXPORT_IPv4
tnsr(config-prefix-list)# description "IPv4 Routes to Export"
tnsr(config-prefix-list)# seq 10 permit 192.0.2.0/24
tnsr(config-prefix-list)# exit
tnsr(config)#
tnsr(config)# route dynamic prefix-list EXPORT_IPv6
tnsr(config-prefix-list)# description "IPv6 Routes to Export"
tnsr(config-prefix-list)# seq 10 permit 2001:db8:a100:1005::/64
tnsr(config-prefix-list)# exit
tnsr(config)#

Step 4: Create static route for networks to be advertised in BGP

tnsr(config)# route ipv4 table ipv4-VRF:0
tnsr(config-route-table-v4)# route 192.0.2.0/24
tnsr(config-rttbl4-next-hop)# next-hop 1 via local
tnsr(config-rttbl4-next-hop)# exit
tnsr(config-route-table-v4)# exit

tnsr(config)# route ipv6 table ipv6-VRF:0
tnsr(config-route-table-v6)# route 2001:db8:a100:1005::/64
tnsr(config-rttbl6-next-hop)# next-hop 1 via local
tnsr(config-rttbl6-next-hop)# exit
tnsr(config-route-table-v6)# exit
tnsr(config)#

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 187

Product Manual, TNSR v19.02

Step 5: Configure BGP global options

tnsr(config)# route dynamic bgp
tnsr(config-route-dynamic-bgp)# server 65505
tnsr(config-bgp)# router-id 203.0.113.9
tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-af)# redistribute from kernel
tnsr(config-bgp-af)# exit
tnsr(config-bgp)# address-family ipv6 unicast
tnsr(config-bgp-af)# redistribute from kernel
tnsr(config-bgp-af)# exit
tnsr(config-bgp)#

Step 6: Configure BGP global neighbor options

tnsr(config-bgp)# neighbor 203.0.113.10
tnsr(config-bgp-neighbor)# remote-as 65510
tnsr(config-bgp-neighbor)# description "ISP_A IPv4"
tnsr(config-bgp-neighbor)# interface GigabitEthernet0/13/0
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

tnsr(config-bgp)# neighbor 2001:db8:1000:aaaa::1
tnsr(config-bgp-neighbor)# remote-as 65510
tnsr(config-bgp-neighbor)# description "ISP_A IPv6"
tnsr(config-bgp-neighbor)# interface GigabitEthernet0/13/0
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

tnsr(config-bgp)# neighbor 100.64.0.50
tnsr(config-bgp-neighbor)# remote-as 65520
tnsr(config-bgp-neighbor)# description "ISP_B IPv4"
tnsr(config-bgp-neighbor)# interface GigabitEthernet0/14/0
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit

tnsr(config-bgp)# neighbor 2001:db8:9999:ffff::1
tnsr(config-bgp-neighbor)# remote-as 65520
tnsr(config-bgp-neighbor)# description "ISP_B IPv6"
tnsr(config-bgp-neighbor)# interface GigabitEthernet0/14/0
tnsr(config-bgp-neighbor)# enable
tnsr(config-bgp-neighbor)# exit
tnsr(config-bgp)#

Step 7: Configure BGP neighbor address-family IPv4 unicast options

tnsr(config-bgp)# address-family ipv4 unicast
tnsr(config-bgp-af)# neighbor 203.0.113.10
tnsr(config-bgp-af-nbr)# prefix-list EXPORT_IPv4 out
tnsr(config-bgp-af-nbr)# activate
tnsr(config-bgp-af-nbr)# exit
tnsr(config-bgp-af)# neighbor 100.64.0.50

(continues on next page)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 188

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-bgp-af-nbr)# prefix-list EXPORT_IPv4 out
tnsr(config-bgp-af-nbr)# activate
tnsr(config-bgp-af-nbr)# exit
tnsr(config-bgp-af)# exit
tnsr(config-bgp)#

Step 8: Configure BGP neighbor address-family IPv6 unicast options

tnsr(config-bgp)# address-family ipv6 unicast
tnsr(config-bgp-af)# neighbor 2001:db8:1000:aaaa::1
tnsr(config-bgp-af-nbr)# prefix-list EXPORT_IPv6 out
tnsr(config-bgp-af-nbr)# activate
tnsr(config-bgp-af-nbr)# exit
tnsr(config-bgp-af)# neighbor 2001:db8:9999:ffff::1
tnsr(config-bgp-af-nbr)# prefix-list EXPORT_IPv6 out
tnsr(config-bgp-af-nbr)# activate
tnsr(config-bgp-af-nbr)# exit
tnsr(config-bgp-af)# exit
tnsr(config-bgp)# exit
tnsr(config-route-dynamic-bgp)# exit
tnsr(config)#

24.3.4 JSON Configuration

Listing 1: Download: tnsr-bgp-edge-router.json

1 {
2 "data": {
3 "bgp-config": {
4 "global-options": {
5 "enable": true
6 },
7 "routers": {
8 "router": [
9 {

10 "asn": 65505,
11 "router-id": "203.0.113.9",
12 "address-families": {
13 "address-family": [
14 {
15 "family": "ipv4",
16 "subfamily": "labeled-unicast"
17 },
18 {
19 "family": "ipv4",
20 "subfamily": "multicast"
21 },
22 {
23 "family": "ipv4",
24 "subfamily": "unicast",
25 "neighbors": {
26 "neighbor": [
27 {

(continues on next page)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 189

Product Manual, TNSR v19.02

(continued from previous page)

28 "peer": "100.64.0.50",
29 "activate": true,
30 "prefix-list-out": "EXPORT_IPv4"
31 },
32 {
33 "peer": "203.0.113.10",
34 "activate": true,
35 "prefix-list-out": "EXPORT_IPv4"
36 }
37]
38 },
39 "redistributions": {
40 "named-sources": {
41 "route-source": [
42 {
43 "source": "kernel",
44 "present": true
45 }
46]
47 }
48 }
49 },
50 {
51 "family": "ipv4",
52 "subfamily": "vpn"
53 },
54 {
55 "family": "ipv6",
56 "subfamily": "labeled-unicast"
57 },
58 {
59 "family": "ipv6",
60 "subfamily": "multicast"
61 },
62 {
63 "family": "ipv6",
64 "subfamily": "unicast",
65 "neighbors": {
66 "neighbor": [
67 {
68 "peer": "2001:db8:1000:aaaa::1",
69 "activate": true,
70 "prefix-list-out": "EXPORT_IPv6"
71 },
72 {
73 "peer": "2001:db8:9999:ffff::1",
74 "activate": true,
75 "prefix-list-out": "EXPORT_IPv6"
76 }
77]
78 },
79 "redistributions": {
80 "named-sources": {
81 "route-source": [
82 {
83 "source": "kernel",
84 "present": true

(continues on next page)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 190

Product Manual, TNSR v19.02

(continued from previous page)

85 }
86]
87 }
88 }
89 },
90 {
91 "family": "ipv6",
92 "subfamily": "vpn"
93 },
94 {
95 "family": "l2vpn",
96 "subfamily": "evpn"
97 },
98 {
99 "family": "vpnv4",

100 "subfamily": "unicast"
101 },
102 {
103 "family": "vpnv6",
104 "subfamily": "unicast"
105 }
106]
107 },
108 "neighbors": {
109 "neighbor": [
110 {
111 "peer": "100.64.0.50",
112 "capability-negotiate": true,
113 "description": "<![CDATA[\"ISP_B IPv4\"]]>",
114 "interface": "GigabitEthernet0/14/0",
115 "remote-asn": 65520,
116 "enable": true
117 },
118 {
119 "peer": "2001:db8:1000:aaaa::1",
120 "capability-negotiate": true,
121 "description": "<![CDATA[\"ISP_A IPv6\"]]>",
122 "interface": "GigabitEthernet0/13/0",
123 "remote-asn": 65510,
124 "enable": true
125 },
126 {
127 "peer": "2001:db8:9999:ffff::1",
128 "capability-negotiate": true,
129 "description": "<![CDATA[\"ISP_B IPv6\"]]>",
130 "interface": "GigabitEthernet0/14/0",
131 "remote-asn": 65520,
132 "enable": true
133 },
134 {
135 "peer": "203.0.113.10",
136 "capability-negotiate": true,
137 "description": "<![CDATA[\"ISP_A IPv4\"]]>",
138 "interface": "GigabitEthernet0/13/0",
139 "remote-asn": 65510,
140 "enable": true
141 }

(continues on next page)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 191

Product Manual, TNSR v19.02

(continued from previous page)

142]
143 }
144 }
145]
146 }
147 },
148 "interfaces-config": {
149 "interface": [
150 {
151 "name": "GigabitEthernet0/13/0",
152 "description": "<![CDATA[\"To ISP A\"]]>",
153 "enabled": true,
154 "ipv4": {
155 "enabled": true,
156 "forwarding": false,
157 "address": {
158 "ip": "203.0.113.9/30"
159 }
160 },
161 "ipv6": {
162 "enabled": true,
163 "forwarding": false,
164 "address": {
165 "ip": "2001:db8:1000:aaaa::2/64"
166 }
167 }
168 },
169 {
170 "name": "GigabitEthernet0/14/0",
171 "description": "<![CDATA[\"To ISP B\"]]>",
172 "enabled": true,
173 "ipv4": {
174 "enabled": true,
175 "forwarding": false,
176 "address": {
177 "ip": "100.64.0.49/30"
178 }
179 },
180 "ipv6": {
181 "enabled": true,
182 "forwarding": false,
183 "address": {
184 "ip": "2001:db8:9999:ffff::2/64"
185 }
186 }
187 },
188 {
189 "name": "GigabitEthernet0/15/0",
190 "enabled": true,
191 "ipv4": {
192 "enabled": true,
193 "forwarding": false,
194 "address": {
195 "ip": "10.255.255.19/24"
196 }
197 }
198 }

(continues on next page)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 192

Product Manual, TNSR v19.02

(continued from previous page)

199]
200 },
201 "http-config": {
202 "restconf": {
203 "enable": true
204 },
205 "authentication": {
206 "auth-type": "none"
207 }
208 },
209 "prefix-list-config": {
210 "prefix-lists": {
211 "list": [
212 {
213 "name": "EXPORT_IPv4",
214 "description": "<![CDATA[\"IPv4 Routes to Export\"]]>",
215 "rules": {
216 "rule": [
217 {
218 "sequence": 10,
219 "action": "permit",
220 "prefix": "192.0.2.0/24"
221 }
222]
223 }
224 },
225 {
226 "name": "EXPORT_IPv6",
227 "description": "<![CDATA[\"IPv6 Routes to Export\"]]>",
228 "rules": {
229 "rule": [
230 {
231 "sequence": 10,
232 "action": "permit",
233 "prefix": "2001:db8:a100:1005::/64"
234 }
235]
236 }
237 }
238]
239 }
240 },
241 "route-table-config": {
242 "static-routes": {
243 "route-table": [
244 {
245 "name": "ipv4-VRF:0",
246 "address-family": "ipv4",
247 "ipv4-routes": {
248 "route": [
249 {
250 "destination-prefix": "192.0.2.0/24",
251 "next-hop": {
252 "hop": [
253 {
254 "hop-id": 1,
255 "local": true

(continues on next page)

24.3. Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6 193

Product Manual, TNSR v19.02

(continued from previous page)

256 }
257]
258 }
259 }
260]
261 }
262 },
263 {
264 "name": "ipv6-VRF:0",
265 "address-family": "ipv6",
266 "ipv6-routes": {
267 "route": [
268 {
269 "destination-prefix": "2001:db8:a100:1005::/64",
270 "next-hop": {
271 "hop": [
272 {
273 "hop-id": 1,
274 "local": true
275 }
276]
277 }
278 }
279]
280 }
281 }
282]
283 }
284 }
285 }
286 }

24.4 Service Provider Route Reflectors and Client for iBGP IPv4

Covered Topics

• Use Case

• Example Scenario

• TNSR Configuration Steps

• JSON Configuration

24.4.1 Use Case

In large service provider networks it is necessary to divide the routing functionality into two or more layers: a backbone
layer and a gateway layer. This allows backbone routers to be focused on core routing and switching to/from other
areas of the routing domain, and gateway routers may then be focused on interconnecting other service provider
customers.

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 194

Product Manual, TNSR v19.02

24.4.2 Example Scenario

In this example, the service provider will have a fictitious autonomous system number (ASN) of 65505, Each network
POP, of which only one will be detailed here, will feature 2 backbone routers which will be configured as route-
reflectors. These backbone routers will be participating in BGP Cluster ID 100. Other POPs will likely be different
Cluster IDs.

There will also be a single gateway router which will be a client of the backbone route-reflectors. Of course, in real
world scenarios there would likely be many more gateway routers, each serving a full complement of customers.

Table 12: BGP Route Reflector Setup Parameters
Item Value
TNSR Autonomous System Number 65505
IPv4 Networks to be announced 192.0.2.0/24, 203.0.113.0/24
BGP Route-Reflector Cluster ID 100

Scenario Topology

24.4.3 TNSR Configuration Steps

Steps needed in TNSR to complete this configuration

• Step 1: Configure Interfaces

• Step 2: Enable BGP

• Step 3: Create prefix-lists for route import into BGP on Route-Reflectors

• Step 4: Create route-map for route import into iBGP on route-reflectors

• Step 5: Create static route for networks to be advertised in BGP

• Step 6: Configure BGP global options

• Step 7: Configure iBGP peer-group for backbone route-reflectors and add neighbor

• Step 8: Configure RR-CLIENT peer-group for route-reflector clients and add neighbor

• Step 9: Configure both peer-group address-family options on route-reflectors

• Step 10: Configure iBGP on gateway router to both route-reflectors

Step 1: Configure Interfaces

RR1:

rr1 tnsr# conf
rr1 tnsr(config)# interface GigabitEthernet0/13/0
rr1 tnsr(config-interface)# description "To Backbone Network"
rr1 tnsr(config-interface)# ip address 203.0.113.13/30
rr1 tnsr(config-interface)# enable
rr1 tnsr(config-interface)# exit
rr1 tnsr(config)# interface GigabitEthernet0/14/0
rr1 tnsr(config-interface)# description "To RR2 Router"
rr1 tnsr(config-interface)# ip address 203.0.113.21/30

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 195

Product Manual, TNSR v19.02

Fig. 4: TNSR BGP Route Reflector

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 196

Product Manual, TNSR v19.02

(continued from previous page)

rr1 tnsr(config-interface)# enable
rr1 tnsr(config-interface)# exit
rr1 tnsr(config)# interface GigabitEthernet0/15/0
rr1 tnsr(config-interface)# description "To GW router"
rr1 tnsr(config-interface)# ip address 203.0.113.5/30
rr1 tnsr(config-interface)# enable
rr1 tnsr(config-interface)# exit
rr1 tnsr(config)#

RR2:

rr2 tnsr# conf
rr2 tnsr(config)# interface GigabitEthernet0/13/0
rr2 tnsr(config-interface)# description "To Backbone Network"
rr2 tnsr(config-interface)# ip address 203.0.113.17/30
rr2 tnsr(config-interface)# enable
rr2 tnsr(config-interface)# exit
rr2 tnsr(config)# interface GigabitEthernet0/14/0
rr2 tnsr(config-interface)# description "To RR1 Router"
rr2 tnsr(config-interface)# ip address 203.0.113.22/30
rr2 tnsr(config-interface)# enable
rr2 tnsr(config-interface)# exit
rr2 tnsr(config)# interface GigabitEthernet0/15/0
rr2 tnsr(config-interface)# description "To GW router"
rr2 tnsr(config-interface)# ip address 203.0.113.9/30
rr2 tnsr(config-interface)# enable
rr2 tnsr(config-interface)# exit
rr2 tnsr(config)#

GW:

gw tnsr# conf
gw tnsr(config)# interface GigabitEthernet0/13/0
gw tnsr(config-interface)# description "To RR1 Router"
gw tnsr(config-interface)# ip address 203.0.113.6/30
gw tnsr(config-interface)# enable
gw tnsr(config-interface)# exit
gw tnsr(config)# interface GigabitEthernet0/14/0
gw tnsr(config-interface)# description "To RR2 Router"
gw tnsr(config-interface)# ip address 203.0.113.10/30
gw tnsr(config-interface)# enable
gw tnsr(config-interface)# exit
gw tnsr(config)# interface GigabitEthernet0/15/0
gw tnsr(config-interface)# desc "To Customer Router"
gw tnsr(config-interface)# ip address 203.0.113.25/30
gw tnsr(config-interface)# enable
gw tnsr(config-interface)# exit
gw tnsr(config)#

Step 2: Enable BGP

RR1:

rr1 tnsr(config)# route dynamic bgp
rr1 tnsr(config-route-dynamic-bgp)# enable

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 197

Product Manual, TNSR v19.02

(continued from previous page)

rr1 tnsr(config-route-dynamic-bgp)# exit
rr1 tnsr(config)#

RR2:

rr2 tnsr(config)# route dynamic bgp
rr2 tnsr(config-route-dynamic-bgp)# enable
rr2 tnsr(config-route-dynamic-bgp)# exit
rr2 tnsr(config)#

GW:

gw tnsr(config)# route dynamic bgp
gw tnsr(config-route-dynamic-bgp)# enable
gw tnsr(config-route-dynamic-bgp)# exit
gw tnsr(config)#

Step 3: Create prefix-lists for route import into BGP on Route-Reflectors

RR1:

rr1 tnsr(config)# route dynamic prefix-list REDISTRIBUTE_IPv4
rr1 tnsr(config-prefix-list)# description "IPv4 Routes to Import"
rr1 tnsr(config-prefix-list)# seq 10 permit 192.0.2.0/24
rr1 tnsr(config-prefix-list)# seq 20 permit 203.0.113.0/24
rr1 tnsr(config-prefix-list)# exit
rr1 tnsr(config)#

RR2:

rr2 tnsr(config)# route dynamic prefix-list REDISTRIBUTE_IPv4
rr2 tnsr(config-prefix-list)# description "IPv4 Routes to Import"
rr2 tnsr(config-prefix-list)# seq 10 permit 192.0.2.0/24
rr2 tnsr(config-prefix-list)# seq 20 permit 203.0.113.0/24
rr2 tnsr(config-prefix-list)# exit
rr2 tnsr(config)#

Step 4: Create route-map for route import into iBGP on route-reflectors

RR1:

rr1 tnsr(config)# route dynamic route-map REDISTRIBUTE_IPv4 permit sequence 10
rr1 tnsr(config-route-map)# match ip address prefix-list REDISTRIBUTE_IPv4
rr1 tnsr(config-route-map)# set origin igp
rr1 tnsr(config-route-map)# exit
rr1 tnsr(config)#

RR2:

rr2 tnsr(config)# route dynamic route-map REDISTRIBUTE_IPv4 permit sequence 10
rr2 tnsr(config-route-map)# match ip address prefix-list REDISTRIBUTE_IPv4
rr2 tnsr(config-route-map)# set origin igp
rr2 tnsr(config-route-map)# exit
rr2 tnsr(config)#

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 198

Product Manual, TNSR v19.02

Step 5: Create static route for networks to be advertised in BGP

RR1:

rr1 tnsr(config)# route ipv4 table ipv4-VRF:0
rr1 tnsr(config-route-table-v4)# route 192.0.2.0/24
rr1 tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rr1 tnsr(config-rttbl4-next-hop)# exit
rr1 tnsr(config-route-table-v4)# route 203.0.113.0/24
rr1 tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rr1 tnsr(config-rttbl4-next-hop)# exit
rr1 tnsr(config-route-table-v4)# exit
rr1 tnsr(config)#

RR2:

rr2 tnsr(config)# route ipv4 table ipv4-VRF:0
rr2 tnsr(config-route-table-v4)# route 192.0.2.0/24
rr2 tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rr2 tnsr(config-rttbl4-next-hop)# exit
rr2 tnsr(config-route-table-v4)# route 203.0.113.0/24
rr2 tnsr(config-rttbl4-next-hop)# next-hop 1 via local
rr2 tnsr(config-rttbl4-next-hop)# exit
rr2 tnsr(config-route-table-v4)# exit
rr2 tnsr(config)#

Step 6: Configure BGP global options

RR1:

rr1 tnsr(config)# route dynamic bgp
rr1 (config-route-dynamic-bgp)# server 65505
rr1 tnsr(config-bgp)# router-id 203.0.113.21
rr1 tnsr(config-bgp)# cluster-id 100
rr1 tnsr(config-bgp)# address-family ipv4 unicast
rr1 tnsr(config-bgp-af)# redistribute from kernel route-map REDISTRIBUTE_IPv4
rr1 tnsr(config-bgp-af)# exit
rr1 tnsr(config-bgp)#

RR2:

rr1 tnsr(config)# route dynamic bgp
rr1 (config-route-dynamic-bgp)# server 65505
rr2 tnsr(config-bgp)# router-id 203.0.113.22
rr2 tnsr(config-bgp)# cluster-id 100
rr2 tnsr(config-bgp)# address-family ipv4 unicast
rr2 tnsr(config-bgp-af)# redistribute from kernel route-map REDISTRIBUTE_IPv4
rr2 tnsr(config-bgp-af)# exit
rr2 tnsr(config-bgp)#

GW:

gw tnsr(config)# route dynamic bgp
gw (config-route-dynamic-bgp)# server 65505
gw tnsr(config-bgp)# router-id 203.0.113.6
gw tnsr(config-bgp)#

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 199

Product Manual, TNSR v19.02

Step 7: Configure iBGP peer-group for backbone route-reflectors and add neighbor

RR1:

rr1 tnsr(config-bgp)# neighbor iBGP
rr1 tnsr(config-bgp-neighbor)# remote-as 65505
rr1 tnsr(config-bgp-neighbor)# description "iBGP Sessions"
rr1 tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/14/0
rr1 tnsr(config-bgp-neighbor)# enable
rr1 tnsr(config-bgp-neighbor)# exit
rr1 tnsr(config-bgp)# neighbor 203.0.113.22
rr1 tnsr(config-bgp-neighbor)# peer-group iBGP
rr1 tnsr(config-bgp-neighbor)# enable
rr1 tnsr(config-bgp-neighbor)# exit

RR2:

rr2 tnsr(config-bgp)# neighbor iBGP
rr2 tnsr(config-bgp-neighbor)# remote-as 65505
rr2 tnsr(config-bgp-neighbor)# description "iBGP Sessions"
rr2 tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/14/0
rr2 tnsr(config-bgp-neighbor)# enable
rr2 tnsr(config-bgp-neighbor)# exit
rr2 tnsr(config-bgp)# neighbor 203.0.113.21
rr2 tnsr(config-bgp-neighbor)# peer-group iBGP
rr2 tnsr(config-bgp-neighbor)# enable
rr2 tnsr(config-bgp-neighbor)# exit

Step 8: Configure RR-CLIENT peer-group for route-reflector clients and add neighbor

RR1:

rr1 tnsr(config-bgp)# neighbor RR-CLIENT
rr1 tnsr(config-bgp-neighbor)# remote-as 65505
rr1 tnsr(config-bgp-neighbor)# description "RR-Client Sessions"
rr1 tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/15/0
rr1 tnsr(config-bgp-neighbor)# enable
rr1 tnsr(config-bgp-neighbor)# exit
rr1 tnsr(config-bgp)# neighbor 203.0.113.6
rr1 tnsr(config-bgp-neighbor)# peer-group RR-CLIENT
rr1 tnsr(config-bgp-neighbor)# enable
rr1 tnsr(config-bgp-neighbor)# exit
rr1 tnsr(config-bgp)#

RR2:

rr2 tnsr(config-bgp)# neighbor RR-CLIENT
rr2 tnsr(config-bgp-neighbor)# remote-as 65505
rr2 tnsr(config-bgp-neighbor)# description "RR-Client Sessions"
rr2 tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/15/0
rr2 tnsr(config-bgp-neighbor)# enable
rr2 tnsr(config-bgp-neighbor)# exit
rr2 tnsr(config-bgp)# neighbor 203.0.113.10
rr2 tnsr(config-bgp-neighbor)# peer-group RR-CLIENT
rr2 tnsr(config-bgp-neighbor)# enable
rr2 tnsr(config-bgp-neighbor)# exit
rr2 tnsr(config-bgp)#

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 200

Product Manual, TNSR v19.02

Step 9: Configure both peer-group address-family options on route-reflectors

RR1:

rr1 tnsr(config-bgp)# address-family ipv4 unicast
rr1 tnsr(config-bgp-af)# neighbor iBGP
rr1 tnsr(config-bgp-af-nbr)# next-hop-self
rr1 tnsr(config-bgp-af-nbr)# activate
rr1 tnsr(config-bgp-af-nbr)# exit
rr1 tnsr(config-bgp-af)# neighbor RR-CLIENT
rr1 tnsr(config-bgp-af-nbr)# route-reflector-client
rr1 tnsr(config-bgp-af-nbr)# activate
rr1 tnsr(config-bgp-af-nbr)# exit
rr1 tnsr(config-bgp-af)# exit
rr1 tnsr(config-bgp)#

RR2:

rr2 tnsr(config-bgp)# address-family ipv4 unicast
rr2 tnsr(config-bgp-af)# neighbor iBGP
rr2 tnsr(config-bgp-af-nbr)# next-hop-self
rr2 tnsr(config-bgp-af-nbr)# activate
rr2 tnsr(config-bgp-af-nbr)# exit
rr2 tnsr(config-bgp-af)# neighbor RR-CLIENT
rr2 tnsr(config-bgp-af-nbr)# route-reflector-client
rr2 tnsr(config-bgp-af-nbr)# activate
rr2 tnsr(config-bgp-af-nbr)# exit
rr2 tnsr(config-bgp-af)# exit
rr2 tnsr(config-bgp)#

Step 10: Configure iBGP on gateway router to both route-reflectors

GW:

gw tnsr(config-bgp)# neighbor 203.0.113.5
gw tnsr(config-bgp-neighbor)# remote-as 65505
gw tnsr(config-bgp-neighbor)# description "RR1 Session"
gw tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/13/0
gw tnsr(config-bgp-neighbor)# enable
gw tnsr(config-bgp-neighbor)# exit
gw tnsr(config-bgp)# neighbor 203.0.113.9
gw tnsr(config-bgp-neighbor)# remote-as 65505
gw tnsr(config-bgp-neighbor)# description "RR2 Session"
gw tnsr(config-bgp-neighbor)# update-source GigabitEthernet0/14/0
gw tnsr(config-bgp-neighbor)# enable
gw tnsr(config-bgp-neighbor)# exit
gw tnsr(config-bgp)# address-family ipv4 unicast
gw tnsr(config-bgp-af)# neighbor 203.0.113.5
gw tnsr(config-bgp-af-nbr)# activate
gw tnsr(config-bgp-af-nbr)# exit
gw tnsr(config-bgp-af)# neighbor 203.0.113.9
gw tnsr(config-bgp-af-nbr)# activate
gw tnsr(config-bgp-af-nbr)# exit
gw tnsr(config-bgp-af)# exit
gw tnsr(config-bgp)#

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 201

Product Manual, TNSR v19.02

24.4.4 JSON Configuration

RR1

Listing 2: Download: tnsr-bgp-router-reflector-rr1.
json

1 {
2 "data": {
3 "bgp-config": {
4 "global-options": {
5 "enable": true
6 },
7 "routers": {
8 "router": [
9 {

10 "asn": 65505,
11 "cluster-id": "100",
12 "router-id": "203.0.113.21",
13 "address-families": {
14 "address-family": [
15 {
16 "family": "ipv4",
17 "subfamily": "labeled-unicast"
18 },
19 {
20 "family": "ipv4",
21 "subfamily": "multicast"
22 },
23 {
24 "family": "ipv4",
25 "subfamily": "unicast",
26 "neighbors": {
27 "neighbor": [
28 {
29 "peer": "RR-CLIENT",
30 "activate": true,
31 "route-reflector-client": true
32 },
33 {
34 "peer": "iBGP",
35 "activate": true,
36 "next-hop-self": true
37 }
38]
39 },
40 "redistributions": {
41 "named-sources": {
42 "route-source": [
43 {
44 "source": "kernel",
45 "route-map": "REDISTRIBUTE_IPv4"
46 }
47]
48 }
49 }
50 },

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 202

Product Manual, TNSR v19.02

(continued from previous page)

51 {
52 "family": "ipv4",
53 "subfamily": "vpn"
54 },
55 {
56 "family": "ipv6",
57 "subfamily": "labeled-unicast"
58 },
59 {
60 "family": "ipv6",
61 "subfamily": "multicast"
62 },
63 {
64 "family": "ipv6",
65 "subfamily": "unicast"
66 },
67 {
68 "family": "ipv6",
69 "subfamily": "vpn"
70 },
71 {
72 "family": "l2vpn",
73 "subfamily": "evpn"
74 },
75 {
76 "family": "vpnv4",
77 "subfamily": "unicast"
78 },
79 {
80 "family": "vpnv6",
81 "subfamily": "unicast"
82 }
83]
84 },
85 "neighbors": {
86 "neighbor": [
87 {
88 "peer": "203.0.113.22",
89 "capability-negotiate": true,
90 "peer-group-name": "iBGP",
91 "enable": true
92 },
93 {
94 "peer": "203.0.113.6",
95 "capability-negotiate": true,
96 "peer-group-name": "RR-CLIENT",
97 "enable": true
98 },
99 {

100 "peer": "RR-CLIENT",
101 "capability-negotiate": true,
102 "description": "<![CDATA[\"RR-Client Sessions\"]]>",
103 "remote-asn": 65505,
104 "enable": true,
105 "update-source": "GigabitEthernet0/15/0"
106 },
107 {

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 203

Product Manual, TNSR v19.02

(continued from previous page)

108 "peer": "iBGP",
109 "capability-negotiate": true,
110 "description": "<![CDATA[\"iBGP Sessions\"]]>",
111 "remote-asn": 65505,
112 "enable": true,
113 "update-source": "GigabitEthernet0/14/0"
114 }
115]
116 }
117 }
118]
119 }
120 },
121 "interfaces-config": {
122 "interface": [
123 {
124 "name": "GigabitEthernet0/13/0",
125 "description": "<![CDATA[\"To Backbone Network\"]]>",
126 "enabled": true,
127 "ipv4": {
128 "enabled": true,
129 "forwarding": false,
130 "address": {
131 "ip": "203.0.113.13/30"
132 }
133 },
134 "ipv6": {
135 "enabled": true,
136 "forwarding": false
137 }
138 },
139 {
140 "name": "GigabitEthernet0/14/0",
141 "description": "<![CDATA[\"To RR2 Router\"]]>",
142 "enabled": true,
143 "ipv4": {
144 "enabled": true,
145 "forwarding": false,
146 "address": {
147 "ip": "203.0.113.21/30"
148 }
149 },
150 "ipv6": {
151 "enabled": true,
152 "forwarding": false
153 }
154 },
155 {
156 "name": "GigabitEthernet0/15/0",
157 "description": "<![CDATA[\"To GW router\"]]>",
158 "enabled": true,
159 "ipv4": {
160 "enabled": true,
161 "forwarding": false,
162 "address": {
163 "ip": "203.0.113.5/30"
164 }

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 204

Product Manual, TNSR v19.02

(continued from previous page)

165 },
166 "ipv6": {
167 "enabled": true,
168 "forwarding": false
169 }
170 }
171]
172 },
173 "prefix-list-config": {
174 "prefix-lists": {
175 "list": [
176 {
177 "name": "REDISTRIBUTE_IPv4",
178 "description": "<![CDATA[\"IPv4 Routes to Import\"]]>",
179 "rules": {
180 "rule": [
181 {
182 "sequence": 10,
183 "action": "permit",
184 "prefix": "192.0.2.0/24"
185 },
186 {
187 "sequence": 20,
188 "action": "permit",
189 "prefix": "203.0.113.0/24"
190 }
191]
192 }
193 }
194]
195 }
196 },
197 "route-map-config": {
198 "route-maps": {
199 "map": [
200 {
201 "name": "REDISTRIBUTE_IPv4",
202 "rules": {
203 "rule": [
204 {
205 "sequence": 10,
206 "policy": "permit",
207 "match": {
208 "ip-address-prefix-list": "REDISTRIBUTE_IPv4"
209 },
210 "set": {
211 "origin": "igp"
212 }
213 }
214]
215 }
216 }
217]
218 }
219 },
220 "route-table-config": {
221 "static-routes": {

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 205

Product Manual, TNSR v19.02

(continued from previous page)

222 "route-table": [
223 {
224 "name": "ipv4-VRF:0",
225 "address-family": "ipv4",
226 "ipv4-routes": {
227 "route": [
228 {
229 "destination-prefix": "192.0.2.0/24",
230 "next-hop": {
231 "hop": [
232 {
233 "hop-id": 1,
234 "local": true
235 }
236]
237 }
238 },
239 {
240 "destination-prefix": "203.0.113.0/24",
241 "next-hop": {
242 "hop": [
243 {
244 "hop-id": 1,
245 "local": true
246 }
247]
248 }
249 }
250]
251 }
252 }
253]
254 }
255 }
256 }
257 }

RR2

Listing 3: Download: tnsr-bgp-router-reflector-rr2.
json

1 {
2 "data": {
3 "bgp-config": {
4 "global-options": {
5 "enable": true
6 },
7 "routers": {
8 "router": [
9 {

10 "asn": 65505,
11 "cluster-id": "100",
12 "router-id": "203.0.113.22",
13 "address-families": {

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 206

Product Manual, TNSR v19.02

(continued from previous page)

14 "address-family": [
15 {
16 "family": "ipv4",
17 "subfamily": "unicast",
18 "neighbors": {
19 "neighbor": [
20 {
21 "peer": "RR-CLIENT",
22 "activate": true,
23 "route-reflector-client": true
24 },
25 {
26 "peer": "iBGP",
27 "activate": true,
28 "next-hop-self": true
29 }
30]
31 },
32 "redistributions": {
33 "named-sources": {
34 "route-source": [
35 {
36 "source": "kernel",
37 "route-map": "REDISTRIBUTE_IPv4"
38 }
39]
40 }
41 }
42 },
43 {
44 "family": "ipv6",
45 "subfamily": "unicast",
46 "redistributions": null
47 }
48]
49 },
50 "neighbors": {
51 "neighbor": [
52 {
53 "peer": "203.0.113.10",
54 "capability-negotiate": true,
55 "peer-group-name": "RR-CLIENT",
56 "enable": true
57 },
58 {
59 "peer": "203.0.113.21",
60 "capability-negotiate": true,
61 "peer-group-name": "iBGP",
62 "enable": true
63 },
64 {
65 "peer": "RR-CLIENT",
66 "capability-negotiate": true,
67 "description": "<![CDATA[\"RR-Client Sessions\"]]>",
68 "remote-asn": 65505,
69 "enable": true,
70 "update-source": "GigabitEthernet0/15/0"

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 207

Product Manual, TNSR v19.02

(continued from previous page)

71 },
72 {
73 "peer": "iBGP",
74 "capability-negotiate": true,
75 "description": "<![CDATA[\"iBGP Sessions\"]]>",
76 "remote-asn": 65505,
77 "enable": true,
78 "update-source": "GigabitEthernet0/14/0"
79 }
80]
81 }
82 }
83]
84 }
85 },
86 "interfaces-config": {
87 "interface": [
88 {
89 "name": "GigabitEthernet0/13/0",
90 "description": "<![CDATA[\"To Backbone Network\"]]>",
91 "enabled": true,
92 "ipv4": {
93 "enabled": true,
94 "forwarding": false,
95 "address": {
96 "ip": "203.0.113.17/30"
97 }
98 },
99 "ipv6": {

100 "enabled": true,
101 "forwarding": false
102 }
103 },
104 {
105 "name": "GigabitEthernet0/14/0",
106 "description": "<![CDATA[\"To RR1 Router\"]]>",
107 "enabled": true,
108 "ipv4": {
109 "enabled": true,
110 "forwarding": false,
111 "address": {
112 "ip": "203.0.113.22/30"
113 }
114 },
115 "ipv6": {
116 "enabled": true,
117 "forwarding": false
118 }
119 },
120 {
121 "name": "GigabitEthernet0/15/0",
122 "description": "<![CDATA[\"To GW router\"]]>",
123 "enabled": true,
124 "ipv4": {
125 "enabled": true,
126 "forwarding": false,
127 "address": {

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 208

Product Manual, TNSR v19.02

(continued from previous page)

128 "ip": "203.0.113.9/30"
129 }
130 },
131 "ipv6": {
132 "enabled": true,
133 "forwarding": false
134 }
135 }
136]
137 },
138 "prefix-list-config": {
139 "prefix-lists": {
140 "list": [
141 {
142 "name": "REDISTRIBUTE_IPv4",
143 "description": "<![CDATA[\"IPv4 Routes to Import\"]]>",
144 "rules": {
145 "rule": [
146 {
147 "sequence": 10,
148 "action": "permit",
149 "prefix": "192.0.2.0/24"
150 },
151 {
152 "sequence": 20,
153 "action": "permit",
154 "prefix": "203.0.113.0/24"
155 }
156]
157 }
158 }
159]
160 }
161 },
162 "route-map-config": {
163 "route-maps": {
164 "map": [
165 {
166 "name": "REDISTRIBUTE_IPv4",
167 "rules": {
168 "rule": [
169 {
170 "sequence": 10,
171 "policy": "permit",
172 "match": {
173 "ip-address-prefix-list": "REDISTRIBUTE_IPv4"
174 },
175 "set": {
176 "origin": "igp"
177 }
178 }
179]
180 }
181 }
182]
183 }
184 },

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 209

Product Manual, TNSR v19.02

(continued from previous page)

185 "route-table-config": {
186 "static-routes": {
187 "route-table": [
188 {
189 "name": "ipv4-VRF:0",
190 "address-family": "ipv4",
191 "ipv4-routes": {
192 "route": [
193 {
194 "destination-prefix": "192.0.2.0/24",
195 "next-hop": {
196 "hop": [
197 {
198 "hop-id": 1,
199 "local": true
200 }
201]
202 }
203 },
204 {
205 "destination-prefix": "203.0.113.0/24",
206 "next-hop": {
207 "hop": [
208 {
209 "hop-id": 1,
210 "local": true
211 }
212]
213 }
214 }
215]
216 }
217 }
218]
219 }
220 }
221 }
222 }

GW

Listing 4: Download: tnsr-bgp-router-reflector-gw.json

1 {
2 "data": {
3 "bgp-config": {
4 "global-options": {
5 "enable": true
6 },
7 "routers": {
8 "router": [
9 {

10 "asn": 65505,
11 "router-id": "203.0.113.6",
12 "address-families": {

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 210

Product Manual, TNSR v19.02

(continued from previous page)

13 "address-family": [
14 {
15 "family": "ipv4",
16 "subfamily": "labeled-unicast"
17 },
18 {
19 "family": "ipv4",
20 "subfamily": "multicast"
21 },
22 {
23 "family": "ipv4",
24 "subfamily": "unicast",
25 "neighbors": {
26 "neighbor": [
27 {
28 "peer": "203.0.113.5",
29 "activate": true
30 },
31 {
32 "peer": "203.0.113.9",
33 "activate": true
34 }
35]
36 }
37 },
38 {
39 "family": "ipv4",
40 "subfamily": "vpn"
41 },
42 {
43 "family": "ipv6",
44 "subfamily": "labeled-unicast"
45 },
46 {
47 "family": "ipv6",
48 "subfamily": "multicast"
49 },
50 {
51 "family": "ipv6",
52 "subfamily": "unicast"
53 },
54 {
55 "family": "ipv6",
56 "subfamily": "vpn"
57 },
58 {
59 "family": "l2vpn",
60 "subfamily": "evpn"
61 },
62 {
63 "family": "vpnv4",
64 "subfamily": "unicast"
65 },
66 {
67 "family": "vpnv6",
68 "subfamily": "unicast"
69 }

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 211

Product Manual, TNSR v19.02

(continued from previous page)

70]
71 },
72 "neighbors": {
73 "neighbor": [
74 {
75 "peer": "203.0.113.5",
76 "capability-negotiate": true,
77 "description": "<![CDATA[\"RR1 Session\"]]>",
78 "remote-asn": 65505,
79 "enable": true,
80 "update-source": "GigabitEthernet0/13/0"
81 },
82 {
83 "peer": "203.0.113.9",
84 "capability-negotiate": true,
85 "description": "<![CDATA[\"RR2 Session\"]]>",
86 "remote-asn": 65505,
87 "enable": true,
88 "update-source": "GigabitEthernet0/14/0"
89 }
90]
91 }
92 }
93]
94 }
95 },
96 "interfaces-config": {
97 "interface": [
98 {
99 "name": "GigabitEthernet0/13/0",

100 "description": "<![CDATA[\"To RR1 Router\"]]>",
101 "enabled": true,
102 "ipv4": {
103 "enabled": true,
104 "forwarding": false,
105 "address": {
106 "ip": "203.0.113.6/30"
107 }
108 },
109 "ipv6": {
110 "enabled": true,
111 "forwarding": false
112 }
113 },
114 {
115 "name": "GigabitEthernet0/14/0",
116 "description": "<![CDATA[\"To RR2 Router\"]]>",
117 "enabled": true,
118 "ipv4": {
119 "enabled": true,
120 "forwarding": false,
121 "address": {
122 "ip": "203.0.113.10/30"
123 }
124 },
125 "ipv6": {
126 "enabled": true,

(continues on next page)

24.4. Service Provider Route Reflectors and Client for iBGP IPv4 212

Product Manual, TNSR v19.02

(continued from previous page)

127 "forwarding": false
128 }
129 },
130 {
131 "name": "GigabitEthernet0/15/0",
132 "description": "<![CDATA[\"To Customer Router\"]]>",
133 "enabled": true,
134 "ipv4": {
135 "enabled": true,
136 "forwarding": false,
137 "address": {
138 "ip": "203.0.113.25/30"
139 }
140 },
141 "ipv6": {
142 "enabled": true,
143 "forwarding": false
144 }
145 }
146]
147 }
148 }
149 }

24.5 LAN + WAN with NAT (Basic SOHO Router Including DHCP and
DNS Resolver)

Covered Topics

• Use Case

• Example Scenario

• TNSR Configuration

– Basic Connectivity

– DHCP

– Outbound NAT

– DNS Resolver

• Local PC Configuration

24.5.1 Use Case

A typical use case for TNSR is a device that sits between a local area network (LAN) in an office or home and a wide
area network (WAN) such as the Internet.

At a minimum, such a TNSR instance routes traffic between the LAN and the WAN. In many cases, it provides
additional services that are useful for a LAN, including:

• DHCP to provide hosts in the LAN with IP addresses.

24.5. LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver) 213

Product Manual, TNSR v19.02

• DNS to respond to name resolution queries from hosts in the LAN

• NAT (Network Address Translation), to map one public IPv4 address to internal (private) IP addresses assigned
to hosts on the LAN.

24.5.2 Example Scenario

This example configures TNSR with basic the basic functions mentioned earlier: DHCP, DNS, and NAT

Item Value
Local PC DHCP: 172.16.1.100/24
TNSR Local Interface GigabitEthernet0/14/2
TNSR Local Address 172.16.1.1/24
TNSR Internet Interface GigabitEthernet0/14/1
TNSR Internet Address 203.0.113.2/24
Remote DNS 8.8.8.8, 8.8.4.4

Fig. 5: Basic SOHO Router Example

24.5.3 TNSR Configuration

Basic Connectivity

First, there is the basic interface configuration of TNSR to handle IP connectivity:

24.5. LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver) 214

Product Manual, TNSR v19.02

tnsr(config)# interface GigabitEthernet0/14/2
tnsr(config-interface)# ip address 172.16.1.1/24
tnsr(config-interface)# description Local
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# ip address 203.0.113.2/24
tnsr(config-interface)# description Internet
tnsr(config-interface)# enable
tnsr(config-interface)# exit

DHCP

Next, configure the DHCP server and DHCP pool on TNSR:

tnsr(config)# dhcp4 server
tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet0/14/2
tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcp4-opt)# exit
tnsr(config-kea-dhcp4)# subnet 172.16.1.0/24
tnsr(config-kea-subnet4)# pool 172.16.1.100-172.16.1.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.1.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-dhcp4)# exit
tnsr(config)# dhcp4 enable

The above example configures example.com as the domain name supplied to all clients. For the specific subnet
in the example, the TNSR IP address inside the subnet is supplied by DHCP as the default gateway for clients, and
DHCP will instruct clients to use the DNS Resolver daemon on TNSR at 172.16.1.1 for DNS.

Outbound NAT

Now configure Outbound NAT:

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit
tnsr(config)# interface GigabitEthernet0/14/2
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit
tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)#

24.5. LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver) 215

Product Manual, TNSR v19.02

DNS Resolver

Finally, configure a DNS Resolver in forwarding mode:

tnsr# configure
tnsr(config)# unbound server
tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 172.16.1.1
tnsr(config-unbound)# access-control 172.16.1.0/24 allow
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4
tnsr(config-unbound-fwd-zone)# exit
tnsr(config-unbound)# exit
tnsr(config)# unbound enable

This example enables the Unbound DNS service and configures it to listen on localhost as well as 172.16.1.1
(GigabitEthernet0/14/2, labeled LAN in the example). The example also allows clients inside that subnet,
172.16.1.0/24, to perform DNS queries and receive responses. It will send all DNS queries to the upstream DNS
servers 8.8.8.8 and 8.8.4.4.

24.5.4 Local PC Configuration

No configuration is necessary on the Local PC, it will pull all its required settings from DHCP.

24.6 Using Access Control Lists (ACLs)

Covered Topics

• Use Case

• Example Scenario

• TNSR Configuration

24.6.1 Use Case

A standard ACL works with IPv4 or IPv6 traffic at layer 3. The name of an ACL is arbitrary so it may be named in a
way that makes its purpose obvious.

ACLs consist of one or more rules, defined by a sequence number that determines the order in which the rules are
applied. A common practice is to start numbering at a value higher than 0 or 1, and to leave gaps in the sequence so
that rules may be added later. For example, the first rule could be 10, followed by 20.

24.6.2 Example Scenario

This example configures TNSR with an ACL that allows SSH, ICMP and HTTP/HTTPs connections only from a
specific Remote Admin Host:

24.6. Using Access Control Lists (ACLs) 216

Product Manual, TNSR v19.02

Item Value
Local PC DHCP: 172.16.1.100/24
TNSR Local Interface GigabitEthernet0/14/2
TNSR Local Address 172.16.1.1/24
TNSR Internet Interface GigabitEthernet0/14/1
TNSR Internet Address 203.0.113.2/24
Remote Admin Host 208.123.73.10/24

Fig. 6: ACL Example Scenario

24.6. Using Access Control Lists (ACLs) 217

Product Manual, TNSR v19.02

24.6.3 TNSR Configuration

tnsr(config)# acl WAN_protecting_acl
tnsr(config-acl)# rule 10
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# destination ip address 203.0.113.2/32
tnsr(config-acl-rule)# destination ip port 22
tnsr(config-acl-rule)# source ip address 208.123.73.10/32
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 20
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# destination ip address 203.0.113.2/32
tnsr(config-acl-rule)# destination ip port 80
tnsr(config-acl-rule)# source ip address 208.123.73.10/32
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 30
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# destination ip address 203.0.113.2/32
tnsr(config-acl-rule)# destination ip port 443
tnsr(config-acl-rule)# source ip address 208.123.73.10/32
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 40
tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# destination ip port 22
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 50
tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# destination ip port 80
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# rule 60
tnsr(config-acl-rule)# action deny
tnsr(config-acl-rule)# destination ip port 443
tnsr(config-acl-rule)# protocol tcp
tnsr(config-acl-rule)# exit
tnsr(config-acl)# exit
tnsr(config-acl)# rule 70
tnsr(config-acl-rule)# action permit
tnsr(config-acl-rule)# exit
tnsr(config)# int GigabitEthernet0/14/1
tnsr(config-interface)# access-list input acl WAN_protecting_acl sequence 10
tnsr(config-interface)# exit
tnsr(config)#

Rules 10-30 allow SSH, HTTP and HTTPs access to the WAN IP address from the Remote Admin Host. Then Rules
40-60 block SSH, HTTPS and HTTPs on the WAN IP address from all other IP addresses. Finally, the rule allows all
other incoming traffic.

24.7 Inter-VLAN Routing

24.7. Inter-VLAN Routing 218

Product Manual, TNSR v19.02

Covered Topics

• Use Case

• Example Scenario

• TNSR Configuration

– Create Subinterfaces

– Configure Interfaces

– Configure DHCP

– Configure Outbound NAT

– Configure DNS Resolver

24.7.1 Use Case

Inter-VLAN routing is a process of forwarding network traffic from one VLAN to another VLAN using a router or
layer 3 device.

24.7.2 Example Scenario

This example configures TNSR with VLANs:

Item Value
TNSR Internet Interface GigabitEthernet0/14/1
TNSR Internet Address 203.0.113.2/24
TNSR Local Interface GigabitEthernet0/14/2
TNSR VLAN 10 Interface GigabitEthernet0/14/2.10
TNSR VLAN 10 Address 172.16.10.1/24
TNSR VLAN 20 Interface GigabitEthernet0/14/2.20
TNSR VLAN 20 Address 172.16.20.1/24

24.7.3 TNSR Configuration

A few pieces of information are necessary to create a VLAN subinterface (“subif”):

• The parent interface which will carry the tagged traffic, e.g. GigabitEthernet3/0/0

• The subinterface ID number, which is a positive integer that uniquely identifies this subif on the parent interface.
It is commonly set to the same value as the VLAN tag

• The VLAN tag used by the subif to tag outgoing traffic, and to use for identifying incoming traffic bound for this
subif. This is an integer in the range 1-4095, inclusive. This VLAN must also be tagged on the corresponding
switch configuration for the port used by the parent interface.

Create Subinterfaces

First, create subinterfaces for VLAN 10 and VLAN 20:

24.7. Inter-VLAN Routing 219

Product Manual, TNSR v19.02

Fig. 7: Inter-VLAN Routing Example

24.7. Inter-VLAN Routing 220

Product Manual, TNSR v19.02

tnsr(config)# interface subif GigabitEthernet0/14/2 10
tnsr(config-subif)# dot1q 10 exact-match
tnsr(config-subif)# exit

tnsr(config)# interface subif GigabitEthernet0/14/2 20
tnsr(config-subif)# dot1q 20 exact-match
tnsr(config-subif)# exit

The subif interface appears with the parent interface name and the subif id, joined by a ..

Configure Interfaces

At this point,subinterface behaves identically to a regular interface in that it may have an IP address, routing, and so
on:

tnsr(config)# interface GigabitEthernet0/14/2.10
tnsr(config-interface)# ip address 172.16.10.1/24
tnsr(config-interface)# description VLAN10
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface GigabitEthernet0/14/2.20
tnsr(config-interface)# ip address 172.16.20.1/24
tnsr(config-interface)# description VLAN20
tnsr(config-interface)# enable
tnsr(config-interface)# exit

Configure DHCP

Next, configure the DHCP server and DHCP pool on TNSR for each VLAN.

For VLAN 10:

tnsr(config)# dhcp4 server
tnsr(config-kea-dhcp4)# description LAN DHCP Server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet0/14/2.10
tnsr(config-kea-dhcp4)# option domain-name
tnsr(config-kea-dhcp4-opt)# data example.com
tnsr(config-kea-dhcp4-opt)# exit
tnsr(config-kea-dhcp4)# subnet 172.16.10.0/24
tnsr(config-kea-subnet4)# pool 172.16.10.100-172.16.10.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2.10
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.10.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.10.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-dhcp4)# exit

And for VLAN 20:

24.7. Inter-VLAN Routing 221

Product Manual, TNSR v19.02

tnsr(config)# dhcp4 server
tnsr(config-kea-dhcp4)# interface listen GigabitEthernet0/14/2.20
tnsr(config-kea-dhcp4)# subnet 172.16.20.0/24
tnsr(config-kea-subnet4)# pool 172.16.20.100-172.16.20.245
tnsr(config-kea-subnet4-pool)# exit
tnsr(config-kea-subnet4)# interface GigabitEthernet0/14/2.20
tnsr(config-kea-subnet4)# option domain-name-servers
tnsr(config-kea-subnet4-opt)# data 172.16.20.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-subnet4)# option routers
tnsr(config-kea-subnet4-opt)# data 172.16.20.1
tnsr(config-kea-subnet4-opt)# exit
tnsr(config-kea-dhcp4)# exit
tnsr(config)# dhcp4 enable

Configure Outbound NAT

Now configure Outbound NAT:

tnsr(config)# nat pool addresses 203.0.113.2
tnsr(config)# interface GigabitEthernet0/14/1
tnsr(config-interface)# ip nat outside
tnsr(config-interface)# exit
tnsr(config)# interface GigabitEthernet0/14/2.10
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit
tnsr(config)# interface GigabitEthernet0/14/2.20
tnsr(config-interface)# ip nat inside
tnsr(config-interface)# exit
tnsr(config)# nat global-options nat44 forwarding true
tnsr(config)#

Configure DNS Resolver

Finally, configure a DNS Resolver in forwarding mode:

tnsr# configure
tnsr(config)# unbound server
tnsr(config-unbound)# interface 127.0.0.1
tnsr(config-unbound)# interface 172.16.10.1
tnsr(config-unbound)# interface 172.16.20.1
tnsr(config-unbound)# access-control 172.16.10.0/24 allow
tnsr(config-unbound)# access-control 172.16.20.0/24 allow
tnsr(config-unbound)# forward-zone .
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.8.8
tnsr(config-unbound-fwd-zone)# nameserver address 8.8.4.4
tnsr(config-unbound-fwd-zone)# exit
tnsr(config-unbound)# exit
tnsr(config)# unbound enable

Now there are two VLANs on the physical “LAN” port and interface GigabitEthernet0/14/2 now works as
trunk port between TNSR and downstream L2/L3 switch.

This switch must be configured to match the expected VLAN tags and it must also have access ports configured for
clients on each VLAN.

24.7. Inter-VLAN Routing 222

Product Manual, TNSR v19.02

24.8 GRE ERSPAN Example Use Case

Encapsulated Remote Switched Port Analyzer (ERSPAN) is a type of GRE tunnel which allows a remote Intrusion
Detection System (IDS) or similar packet inspection device to receive copies of packets from a local interface. This
operates similar to a local mirror or span port on a switch, but in a remote capacity.

A typical use case for this is central packet inspection or a case where a remote site has plenty of bandwidth available,
but no suitable local hardware for inspecting packets.

On TNSR, this is accomplished by configuring an ERSPAN GRE tunnel and then configuring a span to link the
ERSPAN tunnel a local interface. From that point on, a copy of every packet on the interface being spanned is sent
across GRE.

Note: The receiving end does not need to support ERSPAN, a standard GRE tunnel will suffice.

24.8.1 Example Scenario

In this example, copies of packets from a local TNSR interface will be copied to a remote IDS for inspection.

Item Value
Local Server: 172.29.193.47/24
TNSR Local Interface: VirtualFunctionEthernet0/6/0
TNSR Local Address: 172.29.193.60/24
TNSR Internet Interface: VirtualFunctionEthernet0/7/0
TNSR Internet Address: 172.29.194.142/24
IDS Address: 172.29.194.90/24

24.8.2 TNSR Configuration

First, there is the basic interface configuration of TNSR to handle IP connectivity:

tnsr(config)# interface VirtualFunctionEthernet0/6/0
tnsr(config-interface)# ip address 172.29.193.160/24
tnsr(config-interface)# description Local
tnsr(config-interface)# enable
tnsr(config-interface)# exit

tnsr(config)# interface VirtualFunctionEthernet0/7/0
tnsr(config-interface)# ip address 172.29.194.142/24
tnsr(config-interface)# description Internet
tnsr(config-interface)# enable
tnsr(config-interface)# exit

Next, configure the GRE tunnel on TNSR:

tnsr(config)# gre gre1
tnsr(config-gre)# destination 172.29.194.90
tnsr(config-gre)# source 172.29.194.142
tnsr(config-gre)# tunnel-type erspan session-id 1
tnsr(config-gre)# instance 1
tnsr(config-gre)# exit

(continues on next page)

24.8. GRE ERSPAN Example Use Case 223

Product Manual, TNSR v19.02

Fig. 8: ERSPAN Example

(continued from previous page)

tnsr(config)# interface gre1
tnsr(config-interface)# enable
tnsr(config-interface)# exit

Finally, configure a SPAN that ties the local interface to the GRE interface:

tnsr(config)# span VirtualFunctionEthernet0/6/0
tnsr(config-span)# onto gre1 hw both
tnsr(config-span)# exit

24.8.3 Server Configuration

No configuration is necessary on the server. Any packet it sends which flows through TNSR will automatically be
copied across the ERSPAN tunnel to the IDS.

24.8.4 IDS Configuration

The IDS must support GRE interfaces and also must support inspecting packets on GRE interfaces. The IDS does not
need to explicitly support ERSPAN to receive copies of packets from TNSR.

At a minimum, take the following steps on the IDS:

24.8. GRE ERSPAN Example Use Case 224

Product Manual, TNSR v19.02

• Configure a GRE tunnel between the IDS and TNSR, it does not need to have an address internal to the GRE
tunnel.

• Configure the IDS software to inspect packets on the GRE interface

24.8. GRE ERSPAN Example Use Case 225

CHAPTER

TWENTYFIVE

COMMANDS

• Mode List

• Master Mode Commands

• Config Mode Commands

• Show Commands in Both Master and Config Modes

• Access Control List Modes

• MACIP ACL Mode

• GRE Mode

• HTTP mode

• Interface Mode

• Loopback Mode

• Bridge Mode

• NAT Commands in Configure Mode

• NAT Reassmbly Mode

• DS-Lite Commands in Configure Mode

• Tap Mode

• BFD Key Mode

• BFD Mode

• Host Interface Mode

• IPsec Tunnel Mode

• IKE mode

• IKE Peer Authentication Mode

• IKE Peer Authentication Round Mode

• IKE Child SA Mode

• IKE Child SA Proposal Mode

• IKE Peer Identity Mode

• IKE Proposal Mode

226

Product Manual, TNSR v19.02

• IPsec Related Enumerated Types

• Map Mode

• Map Parameters Mode

• memif Mode

• Dynamic Routing Access List Mode

• Dynamic Routing Prefix List Mode

• Dynamic Routing Route Map Rule Mode

• Dynamic Routing BGP Mode

• Dynamic Routing BGP Server Mode

• Dynamic Routing BGP Neighbor Mode

• Dynamic Routing BGP Address Family Mode

• Dynamic Routing BGP Address Family Neighbor Mode

• Dynamic Routing BGP Community List Mode

• Dynamic Routing BGP AS Path Mode

• Dynamic Routing Manager Mode

• IPv4 Route Table Mode

• IPv6 Route Table Mode

• IPv4 or IPv6 Next Hop Mode

• SPAN Mode

• VXLAN Mode

• User Authentication Configuration Mode

• NTP Configuration Mode

• NACM Group Mode

• NACM Rule-list Mode

• NACM Rule Mode

• DHCP IPv4 Server Config Mode

• DHCP4 Subnet4 Mode

• DHCP4 Subnet4 Pool Mode

• DHCP4 Subnet4 Reservation Mode

• Kea DHCP4, Subnet4, Pool, or Reservation Option Mode

• Unbound Mode

• Unbound Forward-Zone Mode

• Subif Mode

• Bond Mode

227

Product Manual, TNSR v19.02

25.1 Mode List

Mode Name Description
access_list BGP Accesss List mode
acl Access Control List mode
acl_rule ACL Rule mode
aspath AS Path ordered rule mode
auth User Authentication mode
bfd Bidirectional Forwarding Detection mode
bfd_key BFD key mode
bgp_af BGP Address Family mode
bgp_af_nbr BGP Address Family Neighbor mode
bgp_neighbor BGP Neighbor mode
bond Interface bonding mode
bridge Bridge mode
community_list BGP community list mode
config Configuration mode
gre Generic Route Encapsulation mode
host_if Host interface mode
http HTTP server mode
ike_authentication IKE peer authentication mode
ike_authentication_round IKE peer authentication round mode
ike_child IKE child SA mode
ike_child_proposal IKE child SA proposal mode
ike_identity IKE peer identity mode
ike_proposal IKE proposal mode
interface Interface mode
ipsec_crypto_ike IKE mode
ipsec_crypto_manual IPsec static keying mode
ipsec_tunnel IPsec tunnel mode
kea_dhcp4 Kea DHCP4 Server mode
kea_dhcp4_log Kea DHCP4 Log mode
kea_dhcp4_log_out Kea DHCP4 Log output mode
kea_dhcp4_opt Kea DHCP4 option mode
kea_logging Kea DHCP Server mode
kea_subnet4 Kea DHCP4 subnet4 mode
kea_subnet4_opt Kea DHCP4 subnet4 option mode
kea_subnet4_pool Kea DHCP4 subnet4 pool mode
kea_subnet4_pool_opt Kea DHCP4 subnet4 pool option mode
kea_subnet4_reservation Kea DHCP4 subnet4 host reservation mode
kea_subnet4_reservation_opt Kea DHCP4 subnet4 host reservation option mode
loopback Loopback interface mode
macip MAC/IP access control list mode
macip_rule MACIP Rule mode
map MAP-E/MAP-T mode
map_param MAP-E/MAP-T global parameter mode
master Initial, priviledged mode
memif Memif interface mode
nacm_group NACM group mode
nacm_rule NACM rule mode

Continued on next page

25.1. Mode List 228

Product Manual, TNSR v19.02

Table 1 – continued from previous page
Mode Name Description
nacm_rule_list NACM rule list mode
nat_reassembly NAT reassembly mode
ntp NTP mode
ntp_restrict NTP restriction mode
ntp_server NTP server mode
prefix_list BGP prefix list mode
route_dynamic Dynamic routing mode
route_dynamic_bgp BGP dynamic routing mode
route_dynamic_bgp_server BGP server mode
route_dynamic_manager Dynamic routing manager mode
route_map Route Map mode
route_table_v4 IPv4 Static Route Table mode
route_table_v6 IPv6 Static Route Table mode
rttbl4_next_hop Ipv4 Next Hop mode
rttbl6_next_hop Ipv6 Next Hop mode
span SPAN mode
subif Sub-interface VLAN mode
tap Tap mode
unbound Unbound DNS Server mode
unbound_fwd_zone Unbound forward-zone mode
unbound_local_host Unbound local host override mode
unbound_local_zone Unbound local zone override mode
vxlan VXLAN mode

25.2 Master Mode Commands

tnsr# configure [terminal]
tnsr# debug cli [level <n>]
tnsr# debug tnsr (clear|set|value) <flags>
tnsr# debug vmgmt (clear|set|value) <flags>
tnsr# no debug (cli|tnsr|vmgmt)
tnsr# exit
tnsr# ls
tnsr# ping (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>]

[source <src-addr>] [count <count>] [packet-size <bytes>]
[ttl <ttl-hops>] [timeout <wait-sec>]

tnsr# pwd
tnsr# shell [<command>]
tnsr# traceroute (<dest-host>|<dest-ip>) [ipv4|ipv6] [interface <if-name>]

[source <src-addr>] [packet-size <bytes>] [no-dns] [timeout <seconds>]
[ttl <ttl-hos>] [waittime <wait-sec>]

tnsr# whoami

25.2.1 Package Management Commands

tnsr# package (info|list) [available|installed|updates] [<pkg-name>]
tnsr# package install <pkg-glob>
tnsr# package remove <pkg-glob>
tnsr# package search <term>
tnsr# package upgrade <pkg-glob>

25.2. Master Mode Commands 229

Product Manual, TNSR v19.02

25.2.2 Public Key Infrastructure Commands

tnsr# pki ca list
tnsr# pki ca <name> (append <source-name>|delete|enter|get|import <file>)
tnsr# pki certificate list
tnsr# pki certificate <name> (delete|enter|get|import <file>)
tnsr# pki private-key list
tnsr# pki private-key <name> (delete|enter|get|import <file>)
tnsr# pki private-key <name> generate [key-length (2048|3072|4096)]
tnsr# pki signing-request list
tnsr# pki signing-request <name> (delete|generate|get|sign (ca-name <ca>|self))
tnsr# pki signing-request set (city|common-name|country|org|org-unit|state) <text>
tnsr# pki signing-request set digest (md5|sha1|sha224|sha256|sha384|sha512)
tnsr# pki signing-request settings (clear|show)

25.2.3 Exit Master Mode

tnsr# exit

25.3 Config Mode Commands

tnsr(config)# [no] acl <acl-name>
tnsr(config)# [no] auth system-certificate <certificate>
tnsr(config)# [no] auth user <user-name>
tnsr(config)# bfd conf-key-id <conf-key-id>
tnsr(config)# bfd session <bfd-session>
tnsr(config)# [no] cli option auto-discard
tnsr(config)# configuration candidate clear
tnsr(config)# configuration candidate commit
tnsr(config)# configuration candidate discard
tnsr(config)# configuration candidate load <filename> [(replace|merge)]
tnsr(config)# configuration candidate validate
tnsr(config)# configuration copy candidate startup
tnsr(config)# configuration copy running (candidate|startup)
tnsr(config)# configuration copy startup candidate
tnsr(config)# configuration save (candidate|running) <filename>
tnsr(config)# [no] dataplane cpu workers [<num-workers>]
tnsr(config)# [no] dataplane dpdk uio-driver [<uio-driver>]
tnsr(config)# [no] dataplane dpdk dev <pci-id> (crypto|network)

[num-rx-queues [<num-rxqs>]] [num-tx-queues [<num-txqs>]]
tnsr(config)# [no] dataplane dpdk vdev <sw-dev-type>
tnsr(config)# [no] dataplane dpdk no-tx-checksum-offload
tnsr(config)# [no] dataplane ip heap-size [<size>]
tnsr(config)# [no] dataplane ip6 heap-size [<size>]
tnsr(config)# [no] dataplane ip6 hash-buckets [<size>]
tnsr(config)# [no] dataplane nat dslite-ce
tnsr(config)# [no] dataplane nat max-translations-per-user <n>
tnsr(config)# [no] dataplane nat mode (deterministic|endpoint-dependent|simple)
tnsr(config)# [no] dataplane nat mode-options simple (out2in-dpo|static-mapping-only)
tnsr(config)# debug cli [level <n>]
tnsr(config)# debug tnsr (clear|set|value) <flags>
tnsr(config)# debug vmgmt (clear|set|value) <flags>
tnsr(config)# no debug (cli|tnsr|vmgmt)

(continues on next page)

25.3. Config Mode Commands 230

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config)# dhcp4 (enable|disable)
tnsr(config)# dhcp4 server
tnsr(config)# dslite aftr endpoint <ip6-address>
tnsr(config)# dslite b4 endpoint <ip6-address>
tnsr(config)# dslite pool address <ipv4-addr-first> [- <ipv4-addr-last>]
tnsr(config)# exit
tnsr(config)# [no] gre <gre-name>
tnsr(config)# [no] host interface <host-if-name>
tnsr(config)# http (enable|disable)
tnsr(config)# [no] http server
tnsr(config)# [no] interface <if-name>
tnsr(config)# interface clear counters [<interface>]
tnsr(config)# [no] interface bond <instance>
tnsr(config)# [no] interface bridge domain <domain-id>
tnsr(config)# [no] interface loopback <name>
tnsr(config)# [no] interface memif interface <id>
tnsr(config)# [no] interface memif socket id <id> filename <file>
tnsr(config)# [no] interface subif <interface> <subid>
tnsr(config)# [no] interface tap <host-name>
tnsr(config)# nacm (enable|disable)
tnsr(config)# [no] nacm exec-default (deny|permit)
tnsr(config)# [no] nacm group <group-name>
tnsr(config)# [no] nacm read-default (deny|permit)
tnsr(config)# [no] nacm rule-list <rule-list-name>
tnsr(config)# [no] nacm write-default (deny|permit)
tnsr(config)# [no] nat deterministic mapping inside <inside-prefix> outside <outside-
→˓prefix>
tnsr(config)# [no] nat global-options nat44 forwarding (true|false)
tnsr(config)# [no] nat ipfix logging [domain <domain-id>] [src-port <src-port>]
tnsr(config)# [no] nat nat64 map <domain-name>
tnsr(config)# [no] nat nat64 map parameters
tnsr(config)# [no] nat pool (addresses <ip-first> [- <ip-last>]|interface <if-name>)

[twice-nat] [route-table <rt-tbl-name>]
tnsr(config)# [no] nat reassembly (ipv4|ipv6)
tnsr(config)# [no] nat static mapping (icmp|udp|tcp) local <ip-local> [<port-local>]

external (<ip-external>|<if-name>) [<port-external>]
[twice-nat] [out-to-in-only] [route-table <rt-tbl-name>]

tnsr(config)# [no] ipsec tunnel <tunnel-num>
tnsr(config)# [no] lldp system-name <system-name>
tnsr(config)# [no] lldp tx-hold <transmit-hold>
tnsr(config)# [no] lldp tx-interval <transmit-interval>
tnsr(config)# [no] macip <macip-name>
tnsr(config)# ntp (enable|disable)
tnsr(config)# no ntp enable
tnsr(config)# ntp server
tnsr(config)# [no] route dynamic access-list <access-list-name>
tnsr(config)# route dynamic bgp
tnsr(config)# route dynamic manager
tnsr(config)# [no] route dynamic prefix-list <prefix-list-name>
tnsr(config)# [no] route dynamic route-map <route-map-name> (permit|deny) sequence
→˓<sequence>
tnsr(config)# [no] route (ipv4|ipv6) table <route-table-name>
tnsr(config)# service backend (enable|disable) coredump
tnsr(config)# service bgp (enable|disable) coredump
tnsr(config)# service bgp (start|stop|restart|status)
tnsr(config)# service dataplane (enable|disable) coredump
tnsr(config)# service dataplane (start|stop|restart|status)

(continues on next page)

25.3. Config Mode Commands 231

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config)# service dhcp (enable|disable) coredump
tnsr(config)# service dhcp (start|stop|reload|status) [dhcp4|dhcp6|dhcp_ddns]
tnsr(config)# service http (start|stop|restart|status)
tnsr(config)# service ntp (start|stop|restart|status)
tnsr(config)# service restconf (enable|disable) coredump
tnsr(config)# service unbound (start|stop|status|restart|reload)
tnsr(config)# [no] sysctl vm nr_hugepages <u64>
tnsr(config)# [no] sysctl vm max_map_count <u64>
tnsr(config)# [no] sysctl kernel shmmem <u64>
tnsr(config)# [no] system contact <text>
tnsr(config)# [no] system description <text>
tnsr(config)# [no] system location <text>
tnsr(config)# [no] system name <text>
tnsr(config)# unbound server
tnsr(config)# unbound (enable|disable)
tnsr(config)# vxlan <vxlan-name>

25.3.1 Exit Configure Mode

tnsr(config)# exit

25.4 Show Commands in Both Master and Config Modes

tnsr# show acl [<acl-name>]
tnsr# show bfd
tnsr# show bfd keys [conf-key-id <conf-key-id>]
tnsr# show bfd sessions [conf-key-id <conf-key-id> | peer-ip-addr <peer-addr>]
tnsr# show cli
tnsr# show clock
tnsr# show configuration (candidate|running|startup) [xml|json]
tnsr# show counters [<interface>]
tnsr# show dslite
tnsr# show gre [<tunnel-name>]
tnsr# show host interface (acl|bonding|counters|ipv4|ipv6|link|mac|nat)
tnsr# show http [<config-file>]
tnsr# show interface [<if-name>] [(acl|bonding|counters|ipv4|ipv6|link|mac|nat)]

tnsr# show interface bridge domain [<bdi>]
tnsr# show interface loopback [<loopback-name>]
tnsr# show interface memif [<id>]
tnsr# show interface bond [<id>]
tnsr# show interface lacp [<if-name>]
tnsr# show interface tap
tnsr# show ipsec tunnel [<tunnel_number> [child|ike|verbose]]
tnsr# show kea [keactrl|dhcp4] [config-file]
tnsr# show macip [<macip-name>]
tnsr# show map [<map-domain-name>]
tnsr# show nacm [group [<group-name>] | rule-list [<rule-list-name>]]
tnsr# show nat [config|deterministic-mappings|interface-sides|reassembly|static-
→˓mappings]
tnsr# show nat dynamic (addresses|interfaces)
tnsr# show neighbor [interface <if-name>]

(continues on next page)

25.4. Show Commands in Both Master and Config Modes 232

Product Manual, TNSR v19.02

(continued from previous page)

tnsr# show route dynamic access-list [<access-list-name>]
tnsr# show route dynamic bgp as-path [<as-path-name>]
tnsr# show route dynamic bgp community-list [<community-list-name>]
tnsr# show route dynamic bgp config [<as-number>]
tnsr# show route dynamic bgp neighbors [[<peer>] [advertised-routes|dampened-routes|

flap-statistics|prefix-counts|received|received-routes|routes]]
tnsr# show route dynamic bgp network <prefix>
tnsr# show route dynamic bgp nexthop [detail]
tnsr# show route dynamic bgp peer-group <peer-group-name>
tnsr# show route dynamic bgp summary
tnsr# show route dynamic manager
tnsr# show route dynamic prefix-list [<prefix-list-name>]
tnsr# show route dynamic route-map [<route-map-name>]
tnsr# show route [table <route-table-name>]
tnsr# show span
tnsr# show sysctl
tnsr# show system
tnsr# show unbound [config-file]
tnsr# show version
tnsr# show vxlan [<vxlan-name>]

25.5 Access Control List Modes

25.5.1 Enter Access Control List Mode

tnsr(config)# acl <acl-name>

25.5.2 Access Control List Mode Commands

tnsr(config-acl)# rule <seq-number>

25.5.3 Exit Access Control List Mode

tnsr(config-acl)# exit

25.5.4 Delete Access Control List

tnsr(config)# no acl <acl-name>

25.5.5 Enter ACL Rule Mode

tnsr(config-acl)# rule <seq-number>

25.5. Access Control List Modes 233

Product Manual, TNSR v19.02

25.5.6 ACL Rule Mode Commands

tnsr(config-acl-rule)# action (deny|permit|reflect)
tnsr(config-acl-rule)# no action [deny|permit|reflect]
tnsr(config-acl-rule)# destination (ip|ipv4) address <ipv4-prefix>
tnsr(config-acl-rule)# no destination [ip|ipv4 [address [<ipv4-prefix>]]]
tnsr(config-acl-rule)# destination ipv6 address <ipv6-prefix>
tnsr(config-acl-rule)# no destination ipv6 [address [<ipv6-prefix>]]
tnsr(config-acl-rule)# [no] destination (ip|ipv4|ipv6) port (any|<first> [- <last>])
tnsr(config-acl-rule)# [no] icmp type (any|<type-first> [- <type-last>])
tnsr(config-acl-rule)# [no] icmp code (any|<code-first> [- <code-last>])
tnsr(config-acl-rule)# [no] protocol (icmp|udp|tcp)
tnsr(config-acl-rule)# source (ip|ipv4) address <ipv4-prefix>
tnsr(config-acl-rule)# no source (ip|ipv4) [address [<ipv4-prefix>]]
tnsr(config-acl-rule)# source ipv6 address <ipv6-prefix>
tnsr(config-acl-rule)# no source ipv6 [address [<ipv6-prefix>]]
tnsr(config-acl-rule)# [no]source (ip|ipv4|ipv6) port <port>
tnsr(config-acl-rule)# [no] tcp flags mask <mask> value <value>
tnsr(config-acl-rule)# [no] tcp flags value <value> mask <mask>

25.5.7 Exit ACL Rule Mode

tnsr(config-acl-rule)# exit

25.5.8 Delete ACL Rule

tnsr(config-acl)# no rule <seq>

25.5.9 ACL Rule Notes

• If both src and dst IP addrs are given, they must agree on IP version

• If protocol is UDP or TCP, then port source/dest may be specified

• If protocol is ICMP, then icmp type/code may be specified

• If protocol is ICMP, then ip => ICMP and ipv6 => ICMPv6

• If protocol is TCP, tcp flags mask and value may be specified

• protocol default is 0 == “any”

• port first default is 0, port last is 65535 == “any”

• icmp type and code ranges are 0-255

25.6 MACIP ACL Mode

25.6.1 Enter MACIP ACL Mode

tnsr(config)# macip <macip-name>

25.6. MACIP ACL Mode 234

Product Manual, TNSR v19.02

25.6.2 MACIP ACL Mode Commands

tnsr(config-macip)# rule <seq>

25.6.3 Exit MACIP ACL Mode

tnsr(config-macip)# exit

25.6.4 Delete MACIP ACL

tnsr(config-macip)# no macip <macip-name>

25.6.5 Enter MACIP ACL Rule Mode

tnsr(config-macip)# rule <seq-number>

25.6.6 MACIP Rule Mode Commands

tnsr(config-macip-rule)# action (deny|permit)
tnsr(config-macip-rule)# no action [deny|permit]
tnsr(config-macip-rule)# (ip|ipv4) address <ipv4-prefix>
tnsr(config-macip-rule)# no (ip|ipv4) address [<ipv4-prefix>]
tnsr(config-macip-rule)# ipv6 address <ipv6-prefix>
tnsr(config-macip-rule)# no ipv6 address [<ipv6-prefix>]
tnsr(config-macip-rule)# mac address <mac-address> [mask <mac-mask>]
tnsr(config-macip-rule)# mac mask <mac-mask> [address <mac-address>]
tnsr(config-macip-rule)# no mac
tnsr(config-macip-rule)# no mac address [<mac-address>] [mask [<mac-mask>]]
tnsr(config-macip-rule)# no mac mask [<mac-mask>] [address [<mac-address>]]

25.6.7 Exit MACIP ACL Rule Mode

tnsr(config-macip-rule)# exit

25.6.8 Delete MACIP ACL Rule

tnsr(config-macip)# no rule <seq-number>

25.6. MACIP ACL Mode 235

Product Manual, TNSR v19.02

25.7 GRE Mode

25.7.1 Enter GRE Mode

tnsr(config)# [no] gre <gre-name>

25.7.2 Exit GRE Mode

tnsr(config-gre)# exit

25.7.3 GRE Mode Commands

tnsr(config-gre)# encapsulation route-table <rt-table-name>
tnsr(config-gre)# instance <id>
tnsr(config-gre)# destination <ip-address>
tnsr(config-gre)# source <ip-address>
tnsr(config-gre)# tunnel-type erspan session-id <session-id>
tnsr(config-gre)# tunnel-type (l3|teb)

25.7.4 GRE Mode Notes

• <session-id> has the range [0..1023]

• The comands instance, source, and destination are required.

• The source and destination <ip-address> must agree on address family

• The default tunnel-type is l3.

25.8 HTTP mode

25.8.1 Enter HTTP mode

tnsr(config)# http server

25.8.2 Exit HTTP mode

tnsr(config-http)# exit

25.8.3 HTTP Mode Commands

25.7. GRE Mode 236

Product Manual, TNSR v19.02

tnsr(config-http)# authentication client-certificate-ca <cert-name>
tnsr(config-http)# authentication type (client-certificate|password|none)
tnsr(config-http)# enable restconf
tnsr(config-http)# disable restconf
tnsr(config-http)# server certificate <cert-name>

25.8.4 Remove http Configuration

tnsr(config)# no http server

25.9 Interface Mode

25.9.1 Enter Interface mode

tnsr(config)# interface <if-name>

25.9.2 Interface Notes

• Maximum interface name length is 63 characters.

25.9.3 Interface Mode Commands

tnsr(config-if)# access-list (input|output) acl <acl-name> sequence <number>
tnsr(config-if)# access-list macip <macip-name>
tnsr(config-if)# no access-list
tnsr(config-if)# no access-list acl <acl-name>
tnsr(config-if)# no access-list macip [<macip-name>]
tnsr(config-if)# no access-list [(input|output) [acl <acl-name> [sequence <number>]]]
tnsr(config-if)# bond <instance> [long-timeout] [passive]
tnsr(config-if)# [no] bond <instance>
tnsr(config-if)# bridge domain <bridge-domain-id> [bvi <bvi>] [shg <shg>]
tnsr(config-if)# description <string-description>
tnsr(config-if)# [no] dhcp client ipv4 [hostname <host-name>]
tnsr(config-if)# disable
tnsr(config-if)# [no] enable
tnsr(config-if)# [no] ip address <ip-prefix>
tnsr(config-if)# [no] ip nat (inside|outside)
tnsr(config-if)# [no] ip route-table <route-table-name-ipv4>
tnsr(config-if)# [no] ipv6 address <ipv6-prefix>
tnsr(config-if)# [no] ipv6 route-table <route-table-name-ipv6>
tnsr(config-if)# lldp port-name <port-name>
tnsr(config-if)# lldp management ipv4 <ip-address>
tnsr(config-if)# lldp management ipv6 <ipv6-address>
tnsr(config-if)# lldp management oid <oid>
tnsr(config-if)# map (disable|enable|translate)
tnsr(config-if)# no map (enable|translate)
tnsr(config-if)# mac-address <mac-address>
tnsr(config-if)# mtu <mtu>

25.9. Interface Mode 237

Product Manual, TNSR v19.02

25.9.4 Exit interface mode

tnsr(config-if)# exit

25.9.5 Remove Interface

tnsr(config)# no interface <if-name>

25.10 Loopback Mode

25.10.1 Enter Loopback Mode

tnsr(config)# interface loopback <loopback-name>

25.10.2 Exit Loopback Mode

tnsr(config-loopback)# exit

25.10.3 Remove a Loopback interface

tnsr(config)# no interface <loop<n>>
tnsr(config)# no interface loopback <loopback-name>

25.10.4 Loopback Mode Commands

tnsr(config-loopback)# instance <u16>
tnsr(config-loopback)# mac-address <mac-addr>
tnsr(config-loopback)# description <rest>

25.11 Bridge Mode

25.11.1 Enter Bridge Mode

tnsr(config)# interface bridge <bdi>

25.11.2 Bridge Mode commands

25.10. Loopback Mode 238

Product Manual, TNSR v19.02

tnsr(config-bridge)# [no] arp entry ip <ip-addr> mac <mac-addr>
tnsr(config-bridge)# [no] arp term
tnsr(config-bridge)# [no] flood
tnsr(config-bridge)# [no] forward
tnsr(config-bridge)# [no] learn
tnsr(config-bridge)# [no] mac-age <mins>
tnsr(config-bridge)# [no] rewrite
tnsr(config-bridge)# [no] uu-flood

25.11.3 Exit Bridge Mode

tnsr(config-bridge)# exit

25.11.4 Remove a Bridge

tnsr(config)# no interface bridge <bdi>

25.12 NAT Commands in Configure Mode

tnsr(config)# [no] nat static mapping (icmp|udp|tcp)
local <ip> [<port>]
external (<ip>|<if-name>) [<port>]
[twice-nat] [out-to-in-only]
[route-table <rt-tbl-name>]

tnsr(config)# [no] nat ipfix logging [domain <domain-id>] [src-port <port>]
tnsr(config)# [no] nat pool address <ip-first> [- <ip-last>] [twice-nat]
tnsr(config)# [no] nat pool interface <if-name> [twice-nat]
tnsr(config)# show nat [config|interface-sides|static-mappings]
tnsr(config)# show nat dynamic (addresses|interfaces)
tnsr(config)# show nat reassembly

25.13 NAT Reassmbly Mode

25.13.1 Enter NAT Reassmbly Mode

tnsr(config)# nat reassembly (ipv4|ipv6)

25.13.2 NAT Reassmbly Mode

tnsr(config-nat-reassembly)# concurrent-reassemblies <max-reassemblies>
tnsr(config-nat-reassembly)# disable
tnsr(config-nat-reassembly)# enable
tnsr(config-nat-reassembly)# fragments <max-fragments>
tnsr(config-nat-reassembly)# timeout <seconds>

25.12. NAT Commands in Configure Mode 239

Product Manual, TNSR v19.02

25.13.3 Exit NAT Reassembly Mode

tnsr(config-nat-reassembly)# exit

25.14 DS-Lite Commands in Configure Mode

tnsr(config)# dslite aftr endpoint <ip6-address>
tnsr(config)# dslite b4 endpoint <ip6-address>
tnsr(config)# dslite pool address <ipv4-addr-first> [- <ipv4-addr-last>]
tnsr(config)# show dslite

25.15 Tap Mode

25.15.1 Enter Tap Mode

tnsr(config)# interface tap <tap-name>

25.15.2 Tap Mode commands

tnsr(config-tap)# [no] host bridge <bridge-name>
tnsr(config-tap)# [no] host ipv4 gateway <ipv4-addr>
tnsr(config-tap)# [no] host ipv4 prefix <ipv4-prefix>
tnsr(config-tap)# [no] host ipv6 gateway <ipv6-addr>
tnsr(config-tap)# [no] host ipv6 prefix <ipv6-prefix>
tnsr(config-tap)# [no] host mac-address <host-mac-address>
tnsr(config-tap)# [no] host name-space <netns>
tnsr(config-tap)# [no] instance <instance>
tnsr(config-tap)# [no] mac-address <mac-address>
tnsr(config-tap)# [no] rx-ring-size <size>
tnsr(config-tap)# [no] tx-ring-size <size>

25.15.3 Exit Tap Mode

tnsr(config-tap)# exit

25.15.4 Remove a Tap

tnsr(config)# no interface tap <tap-name>

25.15.5 Tap Notes

• Instance is required

• Can not have both and IP address and a bridge name set.

25.14. DS-Lite Commands in Configure Mode 240

Product Manual, TNSR v19.02

• Default ring size is 256; must be power of 2; must be <= 32768.

25.16 BFD Key Mode

25.16.1 Enter BFD Key Mode

tnsr(config)# bfd conf-key-id <conf-key-id>

25.16.2 BFD Key Mode Commands

tnsr(config-bfdkey)# authentication type (keyed-sha1|meticulous-keyed-sha1)
tnsr(config-bfdkey)# secret < (<hex-pair>)[1-20] >

25.16.3 Exit BFD Key Mode

tnsr(config-bfdkey)# exit

25.16.4 Delete a BFD Key Configuration

tnsr(config)# no bfd conf-key-id <conf-key-id>

25.17 BFD Mode

25.17.1 Enter BFD Mode

tnsr(config)# bfd session <bfd-session>

25.17.2 BFD Mode

tnsr(config-bfd)# [no] bfd-key-id <bfd-key-id>
tnsr(config-bfd)# [no] conf-key-id <conf-key-id>
tnsr(config-bfd)# delayed (true|false)
tnsr(config-bfd)# desired-min-tx <microseconds>
tnsr(config-bfd)# detect-multiplier <n-packets>
tnsr(config-bfd)# disable
tnsr(config-bfd)# [no] enable
tnsr(config-bfd)# interface <if-name>
tnsr(config-bfd)# local address <ip-address>
tnsr(config-bfd)# peer address <ip-address>
tnsr(config-bfd)# remote address <ip-address>
tnsr(config-bfd)# required-min-rx <microseconds>

25.16. BFD Key Mode 241

Product Manual, TNSR v19.02

25.17.3 BFD Notes

• <if-name> Name of an ethernet interface

• Both <ip-addresses> must be of the same protocol (IPv4 or IPv6)

• The <ip-address> must be present on the interface <if-name>

• Both (bfd-key-id and conf-key-id) or neither.

– 0 <= bfd-key-id <= 255

– conf-key-id is u32

– 1 <= n-packets <= 255

• RFC-5880 Says:

– The Detect Mult value is (roughly speaking, due to jitter) the number of packets that have to be missed in
a row to declare the session to be down.

• Supported Auth-type:

– "keyed-sha1" == 4 - Keyed SHA1

– "meticulous-keyed-sha1" == 5 - Meticulous Keyed SHA1

25.17.4 Exit BFD Mode

tnsr(config-bfd)# exit

25.17.5 Delete a BFD Configuration

tnsr(config)# no bfd session <bfd-session>

25.17.6 Change BFD Admin State

tnsr# bfd session <bfd-session>
tnsr(config-bfd)# disable
tnsr(config-bfd)# [no] enable
tnsr(config-bfd)# exit

25.17.7 Change BFD Authentication

tnsr(config)# bfd session <bfd-session>
tnsr(config-bfd)# bfd-key-id <bfd-key-id>
tnsr(config-bfd)# conf-key-id <conf-key-id>
tnsr(config-bfd)# delayed (true|false)
tnsr(config-bfd)# exit

25.17. BFD Mode 242

Product Manual, TNSR v19.02

25.18 Host Interface Mode

tnsr(config-host-if)# [no] description <rest>
tnsr(config-host-if)# disable
tnsr(config-host-if)# [no] enable
tnsr(config-host-if)# [no] ip address <ipv4-prefix>
tnsr(config-host-if)# [no] ipv6 address <ipv6-prefix>
tnsr(config-host-if)# mtu <mtu-value>

25.19 IPsec Tunnel Mode

25.19.1 Enter IPsec Tunnel Mode

tnsr(config)# ipsec tunnel <tunnel-num>

25.19.2 IPsec Tunnel Mode Commands

tnsr(config-ipsec-tun)# crypto config-type (ike|manual)
tnsr(config-ipsec-tun)# crypto (ike|manual)
tnsr(config-ipsec-tun)# [no] local-address <ip-address>
tnsr(config-ipsec-tun)# [no] remote-address (<ip-address>|<hostname>)

25.19.3 Exit IPsec Tunnel Mode

tnsr(config-ipsec-tun)# exit

25.19.4 Delete an IPsec Tunnel

tnsr(config)# no ipsec tunnel <tunnel-num>

25.20 IKE mode

25.20.1 Enter IKE mode

tnsr(config-ipsec-tun)# crypto ike

25.20.2 IKE Mode Commands

tnsr(config-ipsec-crypto-ike)# [no] authentication (local|remote)
tnsr(config-ipsec-crypto-ike)# [no] child <name>
tnsr(config-ipsec-crypto-ike)# [no] identity (local|remote)
tnsr(config-ipsec-crypto-ike)# lifetime <seconds>

(continues on next page)

25.18. Host Interface Mode 243

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-ipsec-crypto-ike)# no lifetime
tnsr(config-ipsec-crypto-ike)# [no] proposal <number>
tnsr(config-ipsec-crypto-ike)# version (0|1|2)
tnsr(config-ipsec-crypto-ike)# no version

25.20.3 Exit IKE Mode

tnsr(config-ipsec-crypto-ike)# exit

25.20.4 Delete IKE configuration

tnsr(config-ipsec-tun)# no crypto ike

25.21 IKE Peer Authentication Mode

25.21.1 Enter IKE Peer Authentication Mode

tnsr(config-ipsec-crypto-ike)# authentication (local|remote)

25.21.2 IKE Peer Authentication Commands

tnsr(config-ike-auth)# [no] round (1|2)

25.21.3 Exit IKE Peer Authentication Mode

tnsr(config-ike-auth)# exit

25.21.4 Delete IKE Peer Authentication Configuration

tnsr(config-ipsec-crypto-ike)# no authentication (local|remote)

25.22 IKE Peer Authentication Round Mode

25.22.1 Enter IKE Peer Authentication Round Mode

tnsr(config-ike-auth)# round (1|2)

25.21. IKE Peer Authentication Mode 244

Product Manual, TNSR v19.02

25.22.2 IKE Peer Authentication Round Commands

tnsr(config-ike-auth-round)# type psk
tnsr(config-ike-auth-round)# no type
tnsr(config-ike-auth-round)# psk <pre-shared-key>
tnsr(config-ike-auth-round)# no psk

25.22.3 Exit IKE Peer Authentication Round Mode

tnsr(config-ike-auth-round)# exit

25.22.4 Delete IKE Peer Authentication Round Configuration

tnsr(config-ike-auth)# no round (1|2)

25.23 IKE Child SA Mode

25.23.1 Enter IKE Child SA Mode

tnsr(config-ipsec-crypto-ike)# child <name>

25.23.2 IKE Child SA Mode Commands

tnsr(config-ike-child)# lifetime <seconds>
tnsr(config-ike-child)# no lifetime
tnsr(config-ike-child)# [no] proposal <number>

25.23.3 Exit IKE Child Mode

tnsr(config-ike-child)# exit

25.23.4 Delete IKE Child SA

tnsr(config-ipsec-crypto-ike)# no child <name>

25.24 IKE Child SA Proposal Mode

25.24.1 Enter IKE Child SA Proposal Mode

tnsr(config-ike-child)# proposal <number>

25.23. IKE Child SA Mode 245

Product Manual, TNSR v19.02

25.24.2 IKE Child SA Proposal Commands

tnsr(config-ike-child-proposal)# encryption <crypto-algorithm>
tnsr(config-ike-child-proposal)# no encryption
tnsr(config-ike-child-proposal)# integrity <integrity-algorithm>
tnsr(config-ike-child-proposal)# no integrity
tnsr(config-ike-child-proposal)# group <pfs-group>
tnsr(config-ike-child-proposal)# no group
tnsr(config-ike-child-proposal)# sequence-number (esn|noesn)
tnsr(config-ike-child-proposal)# no sequence-number

25.24.3 Exit Child SA Proposal Mode

tnsr(config-ike-child-proposal)# exit

25.24.4 Delete IKE Child SA Proposal

tnsr(config-ike-child)# no proposal <number>

25.25 IKE Peer Identity Mode

25.25.1 Enter IKE Peer Identity Mode

tnsr(config-ipsec-crypto-ike)# identity (local|remote)

25.25.2 IKE Peer Identity Commands

tnsr(config-ike-identity)# type (none|address|email|fqdn|dn|key-id)
tnsr(config-ike-identity)# no type
tnsr(config-ike-identity)# value <identity>
tnsr(config-ike-identity)# no value

25.25.3 Exit IKE Peer Identity Mode

tnsr(config-ike-identity)# exit

25.25.4 Delete IKE Peer Identity Configuration

tnsr(config-ipsec-crypto-ike)# no identity (local|remote)

25.25. IKE Peer Identity Mode 246

Product Manual, TNSR v19.02

25.26 IKE Proposal Mode

25.26.1 Enter IKE Proposal Mode

tnsr(config-ipsec-crypto-ike)# proposal <number>

25.26.2 IKE Proposal Mode Commands

tnsr(config-ike-proposal)# encryption <crypto-algorithm>
tnsr(config-ike-proposal)# no encryption
tnsr(config-ike-proposal)# integrity <integrity-algorithm>
tnsr(config-ike-proposal)# no integrity
tnsr(config-ike-proposal)# prf <prf-algorithm>
tnsr(config-ike-proposal)# no prf
tnsr(config-ike-proposal)# group <diffie-hellman-group>
tnsr(config-ike-proposal)# no group

25.26.3 Exit IKE Proposal Mode

tnsr(config-ike-proposal)# exit

25.26.4 Delete IKE Proposal Configuration

tnsr(config-ipsec-crypto-ike)# no proposal <number>

25.27 IPsec Related Enumerated Types

• ng-ike-encryption-algorithm

3des
cast128
blowfish128
blowfish192
blowfish256
null
aes128
aes192
aes256
aes128ctr
aes192ctr
aes256ctr
aes128ccm8
aes192ccm8
aes256ccm8
aes128ccm12
aes192ccm12
aes256ccm12

(continues on next page)

25.26. IKE Proposal Mode 247

Product Manual, TNSR v19.02

(continued from previous page)

aes128ccm16
aes192ccm16
aes256ccm16
aes128gcm8
aes192gcm8
aes256gcm8
aes128gcm12
aes192gcm12
aes256gcm12
aes128gcm16
aes192gcm16
aes256gcm16
aes128gmac
aes192gmac
aes256gmac
camellia128
camellia192
camellia256
camellia128ctr
camellia192ctr
camellia256ctr
camellia128ccm8
camellia192ccm8
camellia256ccm8
camellia128ccm12
camellia192ccm12
camellia256ccm12
camellia128ccm16
camellia192ccm16
camellia256ccm16
chacha20poly1305

• vpp-esp-encryption-algorithm

aes128gcm16
aes192gcm16
aes256gcm16
aes128
aes192
aes256

• ng-ike-integrity-algorithm

none
md5
sha1
aesxcbc
md5_128
sha1_160
aescmac
aes128gmac
aes192gmac
aes256gmac
sha256
sha384
sha512
sha256_96

25.27. IPsec Related Enumerated Types 248

Product Manual, TNSR v19.02

• vpp-esp-integrity-algorithm

md5
sha1
sha256
sha384
sha512

• ng-diffie-hellman-group

none
modp768
modp1024
modp1536
modp2048
modp3072
modp4096
modp6144
modp8192
ecp256
ecp384
ecp521
modp1024s160
modp2048s224
modp2048s256
ecp192
ecp224

• ng-pseudo-random-function

none
prfmd5
prfsha1
prfaesxcbc
prfsha256
prfsha384
prfsha512
prfaescmac

• ike-identity-type

none
email
fqdn
dn
key-id
address

• authentication-method

pre-shared-key
certificate

• ike-phase1-mode

main
aggressive

• ipsec-protocol

25.27. IPsec Related Enumerated Types 249

Product Manual, TNSR v19.02

esp

• ipsec-mode

transport
tunnel

• peer-position

remote
local

25.28 Map Mode

25.28.1 Enter Map Mode

tnsr(config)# nat nat64 map <domain-name>

25.28.2 Map Mode Commands

tnsr(config-map)# [no] description <desc>
tnsr(config-map)# [no] embedded-address bit-length <ea-width>
tnsr(config-map)# [no] ipv4 prefix <ip4-prefix>
tnsr(config-map)# [no] ipv6 prefix <ip6-prefix>
tnsr(config-map)# [no] ipv6 source <ip6-src>
tnsr(config-map)# [no] mtu <mtu-val>
tnsr(config-map)# [no] port-set length <psid-length>
tnsr(config-map)# [no] port-set offset <psid-offset>
tnsr(config-map)# [no] rule port-set <psid> ipv6-destination <ip6-address>

25.28.3 Delete a Map Entry

tnsr(config)# [no] nat nat64 map <domain-name>

25.29 Map Parameters Mode

25.29.1 Enter Map Parameters Mode

tnsr(config)# nat nat64 map parameters

25.29.2 Map Parameters Mode Commands

25.28. Map Mode 250

Product Manual, TNSR v19.02

tnsr(config-map-param)# [no] fragment (inner|outer)
tnsr(config-map-param)# [no] fragment ignore-df
tnsr(config-map-param)# [no] icmp source-address <ipv4-address>
tnsr(config-map-param)# [no] icmp6 unreachable-msgs (disable|enable)
tnsr(config-map-param)# [no] pre-resolve (ipv4|ipv6) next-hop <ip46-address>
tnsr(config-map-param)# [no] reassembly (ipv4|ipv6) (buffers|ht-ratio|lifetime|pool-
→˓size) <value>
tnsr(config-map-param)# [no] security-check (disable|enable)
tnsr(config-map-param)# [no] security-check fragments (disable|enable)
tnsr(config-map-param)# [no] traffic-class copy (disable|enable)
tnsr(config-map-param)# [no] traffic-class tc <tc-value>

25.30 memif Mode

25.30.1 Enter memif Mode

tnsr(config)# interface memif interface <id>

25.30.2 Exit memif Mode

tnsr(config-memif)# exit

25.30.3 Delete memif Interface

tnsr(config)# no interface memif interface <id>

25.30.4 memif mode Commands

tnsr(config-memif)# buffer-size <u16>
tnsr(config-memif)# mac-address <mac-addr>
tnsr(config-memif)# mode (ethernet|ip|punt/inject)
tnsr(config-memif)# ring-size <power-of-2>
tnsr(config-memif)# role master
tnsr(config-memif)# role slave [rx-queues <u8>|tx-queues <u8>]
tnsr(config-memif)# secret <string-24>
tnsr(config-memif)# socket-id <socket-id>

25.30.5 memif Mode Notes

• <power-of-2> is [8..32], default is 10 for 1024 entries

• Default role is master

• The <socket-id> is required

• Mode punt/inject is not implemented yet

• If <mac-address> is not supplied in ethernet mode, it will be random.

25.30. memif Mode 251

Product Manual, TNSR v19.02

• Default buffer-size is 2048 bytes.

25.31 Dynamic Routing Access List Mode

25.31.1 Enter Dynamic Routing Access List Mode

tnsr(config)# route dynamic access-list <access-list-name>

25.31.2 Dynamic Routing Access List Mode Commands

tnsr(config-access)# [no] remark <rest>
tnsr(config-access)# rule <seq#> (permit|deny) <ip-prefix>
tnsr(config-access)# no rule <seq#> [(permit|deny) [<ip-prefix>]]

25.31.3 Exit Dynamic Routing Access List Mode

tnsr(config-access)# exit

25.31.4 Delete Dynamic Routing Access List

tnsr(config)# no access-list <access-list-name>

25.32 Dynamic Routing Prefix List Mode

25.32.1 Enter Dynamic Routing Prefix List Mode

tnsr(config)# route dynamic prefix-list <pl-name>

25.32.2 Exit Dynamic Routing Prefix List Mode

tnsr(config-pref-list)# exit

25.32.3 Delete a Dynamic Routing Prefix List

tnsr(config)# no prefix-list <pl-name>

25.32.4 Dynamic Routing Prefix List Mode Commands

25.31. Dynamic Routing Access List Mode 252

Product Manual, TNSR v19.02

tnsr(config-pref-list)# [no] sequence <seq> [(permit|deny) [le <upper-bound>] [ge
→˓<lower-bound>]]
tnsr(config-pref-list)# descripton <desc...>

25.33 Dynamic Routing Route Map Rule Mode

25.33.1 Enter Dynamic Routing Route Map Rule Mode

tnsr(config)# route dynamic route-map <route-map-name> (permit|deny) sequence
→˓<sequence>

25.33.2 Exit Dynamic Routing Route Map Mode

tnsr(config-rt-map)# exit

25.33.3 Delete a Dynamic Routing Route Map

tnsr(config-rt-map)# no route-map <route-map-name> [permit|deny]

25.33.4 Delete a Dynamic Routing Route Map Rule

tnsr(config-rt-map)# no route-map <route-map-name> [permit|deny] sequence <sequence>

25.33.5 Dynamic Routing Route Map Mode Commands

tnsr(config-rt-map)# [no] description <string>

tnsr(config-rt-map)# [no] match as-path <as-path-name>
tnsr(config-rt-map)# [no] match community <comm-list-name> [exact-match]
tnsr(config-rt-map)# [no] match extcommunity <extcomm-list-name>
tnsr(config-rt-map)# [no] match interface <if-name>
tnsr(config-rt-map)# [no] match ip address access-list <access-list-name>
tnsr(config-rt-map)# [no] match ip address prefix-list <prefix-list-name>
tnsr(config-rt-map)# [no] match ip next-hop access-list <access-list-name>
tnsr(config-rt-map)# [no] match ip next-hop <ipv4-address>
tnsr(config-rt-map)# [no] match ip next-hop prefix-list <prefix-list-name>
tnsr(config-rt-map)# [no] match ipv6 address access-list <access-list-name>
tnsr(config-rt-map)# [no] match ipv6 address prefix-list <prefix-list-name>
tnsr(config-rt-map)# [no] match large-community <large-comm-list-name>
tnsr(config-rt-map)# [no] match local-preference <preference-uint32>
tnsr(config-rt-map)# [no] match metric <metric-uint32>
tnsr(config-rt-map)# [no] match origin (egp|igp|incomplete)
tnsr(config-rt-map)# [no] match peer <peer-ip-address>
tnsr(config-rt-map)# [no] match probability <percent>
tnsr(config-rt-map)# [no] match source-protocol <src-protocol>
tnsr(config-rt-map)# [no] match tag <value-(1-4294967295)>

(continues on next page)

25.33. Dynamic Routing Route Map Rule Mode 253

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-rt-map)# [no] set aggregator as <asn> ip address <ipv4-address>
tnsr(config-rt-map)# [no] set as-path exclude <string-of-as-numbers>
tnsr(config-rt-map)# [no] set as-path prepend <string-of-as-numbers>
tnsr(config-rt-map)# [no] set as-path prepend last-as <asn>
tnsr(config-rt-map)# [no] set atomic-aggregate
tnsr(config-rt-map)# [no] set community none
tnsr(config-rt-map)# [no] set community <community-value> [additive]
tnsr(config-rt-map)# [no] set comm-list <community-list-name> delete
tnsr(config-rt-map)# [no] set extcommunity (rt|soo) <extcommunity-list-name>
tnsr(config-rt-map)# [no] set forwarding-address <ipv6-address>
tnsr(config-rt-map)# [no] set ip next-hop <ipv4-address>|peer-address|unchanged
tnsr(config-rt-map)# [no] set ipv4 vpn next-hop (<ipv4-address>|<ipv6-address>)
tnsr(config-rt-map)# [no] set ipv6 next-hop global <ipv6-address>
tnsr(config-rt-map)# [no] set ipv6 next-hop local <ipv6-address>
tnsr(config-rt-map)# [no] set ipv6 next-hop peer-address
tnsr(config-rt-map)# [no] set ipv6 next-hop prefer-global
tnsr(config-rt-map)# [no] set ipv6 vpn next-hop (<ipv4-address>|<ipv6-address>)
tnsr(config-rt-map)# [no] set label-index <label>
tnsr(config-rt-map)# [no] set large-community none
tnsr(config-rt-map)# [no] set large-community <large-community-value> [additive]
tnsr(config-rt-map)# [no] set large-comm-list <large-comm-list-name> delete
tnsr(config-rt-map)# [no] set local-preference <preference>
tnsr(config-rt-map)# [no] set metric <metric-uint32>
tnsr(config-rt-map)# [no] set metric (+metric|-metric|+rtt|-rtt|rtt)
tnsr(config-rt-map)# [no] set metric (type-1|type-2)
tnsr(config-rt-map)# [no] set origin (egp|igp|unknown)
tnsr(config-rt-map)# [no] set originator <ipv4-addr>
tnsr(config-rt-map)# [no] set src <ip-address>
tnsr(config-rt-map)# [no] set tag <tag-(1-4294967295)>
tnsr(config-rt-map)# [no] set weight <weight>

tnsr(config-rt-map)# [no] call <rt-map-name>

tnsr(config-rt-map)# [no] on-match next
tnsr(config-rt-map)# [no] on-match goto <sequence>

25.33.6 Dynamic Routing Route Map Notes

• <src-protocol> is one of:

– babel - BABEL protocol

– bgp - BGP protocol

– connected - Routes from directly connected peer

– eigrp - EIGRP protocol

– isis - ISIS protocol

– kernel - Routes from kernel

– nhrp - NHRP protocol

– ospf - OSPF protocol

– ospf6 - OSPF6 protocol

25.33. Dynamic Routing Route Map Rule Mode 254

Product Manual, TNSR v19.02

– pim - PIM protocol

– rip - RIP protocol

– ripng - RIPNG protocol

– static - Statically configured routes

– system - Routes from system configuration

25.34 Dynamic Routing BGP Mode

25.34.1 Enter Dynamic Routing BGP Mode

tnsr(config)# route dynamic bgp

25.34.2 Exit Dynamic Routing BGP Mode

tnsr(config-route-dynamic-bgp)# exit

25.34.3 Dynamic Routing BGP Mode Commands

tnsr(config-route-dynamic-bgp)# [no] as-path <as-path-name>
tnsr(config-route-dynamic-bgp)# clear * [soft]
tnsr(config-route-dynamic-bgp)# [no] community-list <comm-list-name>
→˓(standard|expanded)

[extended|large]
tnsr(config-route-dynamic-bgp)# disable
tnsr(config-route-dynamic-bgp)# [no] enable
tnsr(config-route-dynamic-bgp)# [no] option debug (allow-martians|nht|update-groups)
tnsr(config-route-dynamic-bgp)# [no] option debug as4 [segment]
tnsr(config-route-dynamic-bgp)# [no] option debug bestpath <ipv6-prefix>
tnsr(config-route-dynamic-bgp)# [no] option debug keepalive [<peer>]
tnsr(config-route-dynamic-bgp)# [no] option debug neighbor-events [<peer>]
tnsr(config-route-dynamic-bgp)# [no] option debug updates

[in <peer>|out <peer>|prefix (<ipv4-prefix>|<ipv6-
→˓prefix>)]
tnsr(config-route-dynamic-bgp)# [no] option debug zebra [prefix (<ipv4-prefix>|<ipv6-
→˓prefix>)]
tnsr(config-route-dynamic-bgp)# [no] server <asn>
tnsr(config-route-dynamic-bgp)# [no] route-map delay-timer <interval-sec>
tnsr(config-route-dynamic-bgp)# neighbor <if-name> <ip-address> <mac-address>

[no-adj-route-table-entry]
tnsr(config-route-dynamic-bgp)# no neighbor <if-name> [<ip-address>

[<mac-address> [no-adj-route-table-entry]]]

25.34. Dynamic Routing BGP Mode 255

Product Manual, TNSR v19.02

25.35 Dynamic Routing BGP Server Mode

25.35.1 Enter Dynamic Routing BGP Server Mode

tnsr(config-route-dynamic-bgp)# server <asn>

25.35.2 Exit Dynamic Routing BGP Server Mode

tnsr(config-bgp)# exit

25.35.3 Delete a Dynamic Routing BGP Server

tnsr(config-route-dynamic-bgp)# no server <asn>

25.35.4 Dynamic Routing BGP Server Mode Commands

tnsr(config-bgp)# [no] address-family (ipv4|ipv6) (unicast|multicast|vpn|labeled-
→˓unicast)
tnsr(config-bgp)# [no] address-family (vpnv4|vpnv6) unicast
tnsr(config-bgp)# [no] address-family <l2vpn evpn>
tnsr(config-bgp)# [no] always-compare-med
tnsr(config-bgp)# [no] bestpath as-path (confed|ignore|multipath-relax [as-set|no-as-
→˓set])
tnsr(config-bgp)# [no] bestpath compare-routerid
tnsr(config-bgp)# [no] bestpath med [confed|missing-as-worst]
tnsr(config-bgp)# [no] client-to-client reflection
tnsr(config-bgp)# [no] coalesce-time <uint32>
tnsr(config-bgp)# [no] cluster-id (<ipv4>|<(1..4294967295)>)
tnsr(config-bgp)# [no] confederation identifier <ASN>
tnsr(config-bgp)# [no] confederation peer <ASN>
tnsr(config-bgp)# [no] deterministic-med
tnsr(config-bgp)# [no] disable-ebgp-connected-route-check
tnsr(config-bgp)# [no] enforce-first-as
tnsr(config-bgp)# [no] listen limit <1-5000>
tnsr(config-bgp)# [no] listen range (<ip4-prefix>|<ip6-prefx>) peer-group <peer-group-
→˓name>
tnsr(config-bgp)# [no] max-med administrative [<med-value>]
tnsr(config-bgp)# [no] max-med on-startup period <secs-(5-86400)> [<med-value>]
tnsr(config-bgp)# [no] neighbor <peer>
tnsr(config-bgp)# [no] network import-check
tnsr(config-bgp)# [no] route-reflector allow-outbound-policy
tnsr(config-bgp)# [no] router-id <A.B.C.D>
tnsr(config-bgp)# [no] timers keep-alive <interval> hold-time <hold-time>
tnsr(config-bgp)# [no] update-delay <delay>
tnsr(config-bgp)# [no] write-quanta <num-of-packets>

25.35. Dynamic Routing BGP Server Mode 256

Product Manual, TNSR v19.02

25.36 Dynamic Routing BGP Neighbor Mode

25.36.1 Enter Dynamic Routing BGP Neighbor Mode

tnsr(config-bgp)# neighbor <peer>

25.36.2 Exit Dynamic Routing BGP Neighbor Mode

tnsr(config-bgp-neighbor)# exit

25.36.3 Remove a Dynamic Routing BGP Neighbor

tnsr(config-bgp)# no neighbor <peer>

25.36.4 Dynamic Routing BGP Neighbor Mode Commands

tnsr(config-bgp-neighbor)# [no] advertisement-interval <interval-sec-0-600>
tnsr(config-bgp-neighbor)# [no] bfd [mutiplier <detect-multiplier-2-255> receive <rx-
→˓50-60000>

transmit <tx-50-60000>]
tnsr(config-bgp-neighbor)# [no] capability (dynamic|extended-nexthop)
tnsr(config-bgp-neighbor)# [no] disable-connected-check
tnsr(config-bgp-neighbor)# [no] description <string>
tnsr(config-bgp-neighbor)# disable
tnsr(config-bgp-neighbor)# [no] dont-capability-negotiate
tnsr(config-bgp-neighbor)# [no] ebgp-multihop [hop-maximum <max-hop-count-1-255>]
tnsr(config-bgp-neighbor)# [no] enable
tnsr(config-bgp-neighbor)# [no] enforce-multihop
tnsr(config-bgp-neighbor)# [no] interface <ifname>
tnsr(config-bgp-neighbor)# [no] local-as <asn> [no-prepend [replace-as]]
tnsr(config-bgp-neighbor)# [no] override-capability
tnsr(config-bgp-neighbor)# [no] passive
tnsr(config-bgp-neighbor)# [no] password <line>
tnsr(config-bgp-neighbor)# [no] peer-group [<peer-group-name>]
tnsr(config-bgp-neighbor)# [no] port <port>
tnsr(config-bgp-neighbor)# [no] remote-as <asn>
tnsr(config-bgp-neighbor)# [no] solo
tnsr(config-bgp-neighbor)# [no] strict-capability-match
tnsr(config-bgp-neighbor)# [no] timers keepalive <interval-0-65535> holdtime <hold-0-
→˓65535>
tnsr(config-bgp-neighbor)# [no] timers connect <bgp-connect-1-65535>
tnsr(config-bgp-neighbor)# [no] ttl-security hops <n-hops>
tnsr(config-bgp-neighbor)# [no] update-source (<ifname>|<ip-address>)

25.36. Dynamic Routing BGP Neighbor Mode 257

Product Manual, TNSR v19.02

25.37 Dynamic Routing BGP Address Family Mode

25.37.1 Enter Dynamic Routing BGP Address Family Mode

tnsr(config-bgp)# address-family (ipv4|ipv6) (unicast|multicast|vpn|labeled-unicast)
tnsr(config-bgp)# address-family (vpnv4|vpnv6) unicast
tnsr(config-bgp)# address-family <l2vpn evpn>

25.37.2 Exit Dynamic Routing BGP Address Family Mode

tnsr(config-bgp-af)# exit

25.37.3 Delete a Dynamic Routing BGP Address Family

tnsr(config-bgp)# no address-family (ipv4|ipv6) (unicast|multicast|vpn|labeled-
→˓unicast)
tnsr(config-bgp)# no address-family (vpnv4|vpnv6) unicast
tnsr(config-bgp)# no address-family <l2vpn evpn>

25.37.4 Dynamic Routing BGP Address Family Mode Commands

tnsr(config-bgp-af)# [no] aggregate-address <ipv4-prefix> [as-set] [summary-only]
tnsr(config-bgp-af)# [no] dampening [penalty <half-life> [reuse <reuse>

suppress <suppress> maximum <maximum>]]
tnsr(config-bgp-af)# [no] distance external <extern> internal <intern> local <local>
tnsr(config-bgp-af)# [no] distance administrative <dist> prefix <ipv4-prefix>

access-list <access-list-name>
tnsr(config-bgp-af)# [no] maximum-paths <non-ibgp-paths> [igbp <ibgp-paths>

[equal-cluster-length]]
tnsr(config-bgp-af)# [no] neighbor <peer>
tnsr(config-bgp-af)# [no] network <ipv4-prefix> [route-map <route-map>] [label-index
→˓<index>]
tnsr(config-bgp-af)# [no] redistribute from <route-source> [metric <val>|

route-map <rt-map>]
tnsr(config-bgp-af)# [no] redistribute ospf instance <ospf-instance-id> [metric <val>|

route-map <route-map-name>]
tnsr(config-bgp-af)# [no] redistribute table id <kernel-table-id> [metric <val>|

route-map <route-map-name>]
tnsr(config-bgp-af)# [no] table-map <route-map-name>

25.37.5 Dynamic Routing BGP Notes

• <peer> == IP address

• <asn> == uint32? uint16?

• <weight> == uint32?

• <n-hops> == [1 .. max TTL]

• <route-source> == kernel|static|connected|rip|ospf

25.37. Dynamic Routing BGP Address Family Mode 258

Product Manual, TNSR v19.02

25.38 Dynamic Routing BGP Address Family Neighbor Mode

25.38.1 Enter Dynamic Routing BGP Address Family Neighbor Mode

tnsr(config-bgp-af)# [no] neighbor <peer>

25.38.2 Enter Dynamic Routing BGP Address Family Neighbor Mode

tnsr(config-bgp-af-nbr)# exit

25.38.3 Dynamic Routing BGP Address Family Neighbor Mode Commands

tnsr(config-bgp-af-nbr)# [no] activate
tnsr(config-bgp-af-nbr)# [no] addpath-tx-all-paths
tnsr(config-bgp-af-nbr)# [no] addpath-tx-bestpath-per-as
tnsr(config-bgp-af-nbr)# [no] allowas-in [<occurence-1-10>|<origin>]
tnsr(config-bgp-af-nbr)# [no] as-override
tnsr(config-bgp-af-nbr)# [no] attribute-unchanged [as-path|next-hop|med]
tnsr(config-bgp-af-nbr)# [no] capability orf prefix-list (send|receive|both)
tnsr(config-bgp-af-nbr)# [no] default-originate [route-map <route-map>]
tnsr(config-bgp-af-nbr)# [no] distribute-list <access-list-name> (in|out)
tnsr(config-bgp-af-nbr)# [no] filter-list <access-list-name> (in|out)
tnsr(config-bgp-af-nbr)# [no] maximum-prefix limit <val-1-4294967295>
tnsr(config-bgp-af-nbr)# [no] maximum-prefix restart <val-1-65535>
tnsr(config-bgp-af-nbr)# [no] maximum-prefix threshold <val-1-100>
tnsr(config-bgp-af-nbr)# [no] maximum-prefix warning-only
tnsr(config-bgp-af-nbr)# [no] next-hop-self [force]
tnsr(config-bgp-af-nbr)# [no] prefix-list <prefix-list-name> (in|out)
tnsr(config-bgp-af-nbr)# [no] remove-private-AS [all] [replace-AS]
tnsr(config-bgp-af-nbr)# [no] route-map <name> (in|out)
tnsr(config-bgp-af-nbr)# [no] route-reflector-client
tnsr(config-bgp-af-nbr)# [no] route-server-client
tnsr(config-bgp-af-nbr)# [no] send-community (standard|large|extended)
tnsr(config-bgp-af-nbr)# [no] soft-reconfiguration inbound
tnsr(config-bgp-af-nbr)# [no] unsuppress-map <route-map>
tnsr(config-bgp-af-nbr)# [no] weight <weight>

25.39 Dynamic Routing BGP Community List Mode

25.39.1 Enter Dynamic Routing BGP Community List Mode

tnsr(config-route-dynamic-bgp)# community-list <cl-name> (standard|expanded)
→˓[extended|large]

25.38. Dynamic Routing BGP Address Family Neighbor Mode 259

Product Manual, TNSR v19.02

25.39.2 Exit Dynamic Routing BGP Community List Mode

tnsr(config-community)# exit

25.39.3 Delete a Dynamic Routing BGP Community List

tnsr(config-route-dynamic-bgp)# no community-list <cl-name> (standard|expanded)
→˓[extended|large]

25.39.4 Dynamic Routing BGP Community List Mode Commands

tnsr(config-community)# description <desc...>
tnsr(config-community)# sequence <seq> (permit|deny) <community-value>
tnsr(config-community)# no description [<desc...>]
tnsr(config-community)# no sequence <seq> [(permit|deny) <community-value>]

25.40 Dynamic Routing BGP AS Path Mode

25.40.1 Enter Dynamic Routing BGP AS Path Mode

tnsr(config-route-dynamic-bgp)# as-path <as-path-name>

25.40.2 Exit Dynamic Routing BGP AS Path Mode

tnsr(config-aspath)# exit

25.40.3 Delete a Dynamic Routing BGP AS Path

tnsr(config-route-dynamic-bgp)# no as-path <as-path-name>

25.40.4 Dynamic Routing BGP AS Path Mode Commands

tnsr(config-aspath)# [no] rule <seq> (permit|deny) <pattern>

25.41 Dynamic Routing Manager Mode

25.41.1 Enter Dynamic Routing Manager Mode

tnsr(config)# route dynamic manager

25.40. Dynamic Routing BGP AS Path Mode 260

Product Manual, TNSR v19.02

25.41.2 Exit Dynamic Routing Manager Mode

tnsr(route_dynamic_manager)# exit

25.41.3 Dynamic Routing Manager Mode Commands

tnsr(route_dynamic_manager)# [no] zebra debug (events|fpm|nht)
tnsr(route_dynamic_manager)# [no] zebra debug kernel [msgdump [send|receive]]
tnsr(route_dynamic_manager)# [no] zebra debug packet [send|receive] [detailed]
tnsr(route_dynamic_manager)# [no] zebra debug rib [detailed]
tnsr(route_dynamic_manager)# [no] zebra log file <filename> [<level>]
tnsr(route_dynamic_manager)# [no] zebra log syslog [<level>]

25.42 IPv4 Route Table Mode

25.42.1 Enter IPv4 Route Table Mode

tnsr(config)# route (ip|ipv4) table <route-table-name>

25.42.2 Exit IPv4 Route Table Mode

tnsr(config-rt-table-v4)# exit

25.42.3 Delete IPv4 Route Table

tnsr(config-rt-table-v4)# no route (ip|ipv4) table <route-table-name>

25.42.4 IPv4 Route Table Commands

tnsr(config-rt-table-v4)# description <rest-of-line>
tnsr(config-rt-table-v4)# [no] route <destination-prefix>

25.43 IPv6 Route Table Mode

25.43.1 Enter IPv6 Route Table Mode

tnsr(config)# route (ip|ipv6) table <route-table-name>

25.42. IPv4 Route Table Mode 261

Product Manual, TNSR v19.02

25.43.2 Exit IPv6 Route Table Mode

tnsr(config-rt-table-v6)# exit

25.43.3 Delete IPv6 Route Table

tnsr(config-rt-table-v6)# no route (ip|ipv6) table <route-table-name>

25.43.4 IPv6 Route Table Commands

tnsr(config-rt-table-v6)# description <rest-of-line>
tnsr(config-rt-table-v6)# [no] route <destination-prefix>

25.44 IPv4 or IPv6 Next Hop Mode

25.44.1 Enter IPv4 or IPv6 Next Hop Mode

tnsr(config-rt-table-v46)# route <destination-prefix>

25.44.2 Exit IPv4 or IPv6 Next Hop Mode

tnsr(config-rt46-next-hop)# exit

25.44.3 Delete IPv4 or IPv6 Next Hop

tnsr(config-rt46-next-hop)# no next-hop <hop-id>

25.44.4 IPv4 or IPv6 Next Hop Mode Commands

tnsr(config-rt46-next-hop)# [no] description <rest-of-line>
tnsr(config-rt46-next-hop)# [no] next-hop <hop-id> via <ip46-addr>

[<if-name>|<next-hop-table <route-table-name>>]
[weight <multi-path-weight>]
[preference <admin-preference>]
[resolve-via-host] [resolve-via-attached]

tnsr(config-rt46-next-hop)# [no] next-hop <hop-id> via drop
tnsr(config-rt46-next-hop)# [no] next-hop <hop-id> via local
tnsr(config-rt46-next-hop)# [no] next-hop <hop-id> via null-send-unreach
tnsr(config-rt46-next-hop)# [no] next-hop <hop-id> via null-send-prohibit
tnsr(config-rt46-next-hop)# [no] next-hop <hop-id> classify <classify-table-name>
tnsr(config-rt46-next-hop)# [no] next-hop <hop-id> lookup [in] route-table <route-
→˓table-name>

25.44. IPv4 or IPv6 Next Hop Mode 262

Product Manual, TNSR v19.02

25.45 SPAN Mode

25.45.1 Enter SPAN Mode

tnsr(config)# span <if-name-src>

25.45.2 Exit SPAN Mode

tnsr(config-span)# exit

25.45.3 Delete a SPAN

tnsr(config)# no span <if-name-src>
tnsr(config-span)# no onto <if-name-dst> [(hw|l2) [rx|tx|both]]

25.45.4 SPAN Mode Commands

tnsr(config-span)# onto <if-name-dst> (h2|l2) (rx|tx|both)

25.45.5 SPAN Notes

• <if-name-src> and <if-name-dst> can not name the same interface

• When removing a mirror any [rx|tx}both] indication is ignored

25.46 VXLAN Mode

25.46.1 Enter VXLAN Mode

tnsr(config)# vxlan <tunnel-name>

25.46.2 Exit VXLAN Mode

tnsr(config-vxlan)# exit

25.46.3 Delete a VXLAN Tunnel

tnsr(config)# no vxlan [<tunnel-name>]

25.45. SPAN Mode 263

Product Manual, TNSR v19.02

25.46.4 VXLAN Mode Commands

tnsr(config-vxlan)# [no] destination <ip-addr>
tnsr(config-vxlan)# [no] encapsulation (ipv4|ipv6) route-table <rt-table-name>
tnsr(config-vxlan)# [no] instance <id>
tnsr(config-vxlan)# [no] multicast interface <if-name>
tnsr(config-vxlan)# [no] source <ip-addr>
tnsr(config-vxlan)# [no] vni <u24>

25.46.5 VXLAN Notes

• Source IP, Destination IP and Encapsulation route table must agree on AF.

• Instance, Source IP, Destination IP and VNI are required fields.

• If Destination IP is a multicast addres, the multicast IF is required.

• If a multicast interface is given, the Destination IP must be mutlicast.

25.47 User Authentication Configuration Mode

25.47.1 Enter User Authentication Configuration Mode

tnsr(config)# auth user <user-name>

25.47.2 User Authentication Mode Commands

tnsr(config-user)# [no] password <user-password>
tnsr(config-user)# [no] user-keys <key-name>

25.47.3 Exit User Authentication Configuration Mode

tnsr(config-user)# exit

25.47.4 Delete User

tnsr(config)# no auth user <user-name>

25.48 NTP Configuration Mode

25.48.1 Enter NTP Configuration Mode

tnsr(config)# ntp server

25.47. User Authentication Configuration Mode 264

Product Manual, TNSR v19.02

25.48.2 Exit NTP Configuration Mode

tnsr(config-ntp)# exit

25.48.3 Delete an NTP Server

tnsr(config)# no ntp server

25.48.4 NTP Mode Commands

tnsr(config-ntp)# disable monitor
tnsr(config-ntp)# enable monitor
tnsr(config-ntp)# driftfile <file-path>
tnsr(config-ntp)# interface sequence <seq> (drop|ignore|listen)

(all|interface <if-name>|prefix <ip-prefix>)
tnsr(config-ntp)# logconfig sequence <seq> (add|delete|set)

(all|clock|peer|sync|sys) (all|events|info|statistics|status)
tnsr(config-ntp)# restrict (default|host <fqdn>|prefix <ip-prefix>|source)
tnsr(config-ntp)# server (address <ip-address>|host <fqdn>)
tnsr(config-ntp)# statsdir <directory-path>
tnsr(config-ntp)# tinker panic <n-secs>
tnsr(config-ntp)# tos orphan <stratum>

25.48.5 NTP Restrict Mode Commands

tnsr(config-ntp-restrict)# kod
tnsr(config-ntp-restrict)# limited
tnsr(config-ntp-restrict)# nomodify
tnsr(config-ntp-restrict)# nopeer
tnsr(config-ntp-restrict)# noquery
tnsr(config-ntp-restrict)# noserve
tnsr(config-ntp-restrict)# notrap

25.48.6 NTP Server Mode Commands

tnsr(config-ntp-server)# iburst
tnsr(config-ntp-server)# maxpoll <power-of-2-sec>
tnsr(config-ntp-server)# noselect
tnsr(config-ntp-server)# operational-mode (pool|server)
tnsr(config-ntp-server)# prefer

25.48.7 Notes

• <power-of-2-sec> is in the range 7..17

• <stratum> is in the range 1..16

• An NTP operational mode is required in config-ntp-server mode.

25.48. NTP Configuration Mode 265

Product Manual, TNSR v19.02

25.49 NACM Group Mode

25.49.1 Enter NACM Group Mode

tnsr(config)# nacm group <group-name>

25.49.2 NACM Group Mode Commands

tnsr(config-nacm-group)# [no] member <user-name>

25.49.3 Exit NACM Group Mode

tnsr(config-nacm-group)# exit

25.49.4 Delete NACM Group

tnsr(config)# no nacm group <group-name>

25.50 NACM Rule-list Mode

25.50.1 Enter NACM Rule-list Mode

tnsr(config)# nacm rule-list <rule-list-name>

25.50.2 NACM Rule-list Mode Commands

tnsr(config-nacm-rule-list)# [no] group (*|<group-name>)
tnsr(config-nacm-rule-list)# [no] rule <rule-name>

25.50.3 Enter NACM Rule-list Mode

tnsr(config-nacm-rule-list)# exit

25.50.4 Delete NACM Rule-list

tnsr(config)# no nacm rule-list <rule-list-name>

25.49. NACM Group Mode 266

Product Manual, TNSR v19.02

25.51 NACM Rule Mode

25.51.1 Enter NACM Rule Mode

tnsr(config-nacm-rule-list)# rule <rule-name>

25.51.2 Exit NACM Rule Mode

tnsr(config-nacm-rule)# exit

25.51.3 NACM Rule Mode Commands

tnsr(config-nacm-rule)# [no] access-operations (*|create|read|update|delete|exec)
tnsr(config-nacm-rule)# [no] action (deny|permit)
tnsr(config-nacm-rule)# [no] module (*|<module-name>)
tnsr(config-nacm-rule)# [no] comment <rest>
tnsr(config-nacm-rule)# [no] rpc (*|<rpc-name>)
tnsr(config-nacm-rule)# [no] notification (*|<notification-name>)
tnsr(config-nacm-rule)# [no] path <node-id>

25.51.4 Delete NACM Rule

tnsr(config-nacm-rule-list)# no rule <rule-name>

25.52 DHCP IPv4 Server Config Mode

25.52.1 Enter DHCP IPv4 Server Mode

tnsr(config)# [no] dhcp4 server
tnsr(config)# dhcp4 {disable|enable}
tnsr(config)# no dhcp4 enable
tnsr(config-kea-dhcp4)#

25.52.2 DHCP IPv4 Server Mode

tnsr(config-kea-dhcp4)# [no] decline-probation-period <seconds>
tnsr(config-kea-dhcp4)# [no] description <desc>
tnsr(config-kea-dhcp4)# [no] echo-client-id <boolean>
tnsr(config-kea-dhcp4)# [no] interface listen <if-name>
tnsr(config-kea-dhcp4)# [no] interface listen *
tnsr(config-kea-dhcp4)# [no] interface socket (raw|udp)
tnsr(config-kea-dhcp4)# [no] lease filename <filename>
tnsr(config-kea-dhcp4)# [no] lease lfc-interval <seconds>
tnsr(config-kea-dhcp4)# [no] lease persist <boolean>

(continues on next page)

25.51. NACM Rule Mode 267

Product Manual, TNSR v19.02

(continued from previous page)

tnsr(config-kea-dhcp4)# [no] logging <logger-name>
tnsr(config-kea-dhcp4)# [no] match-client-id <boolean>
tnsr(config-kea-dhcp4)# [no] next-server <ipv4-address>
tnsr(config-kea-dhcp4)# [no] option <dhcp4-option>
tnsr(config-kea-dhcp4)# [no] rebind-timer <seconds>
tnsr(config-kea-dhcp4)# [no] renew-timer <seconds>
tnsr(config-kea-dhcp4)# [no] valid-lifetime <seconds>

25.52.3 Exit DHCP IPv4 Server Mode

tnsr(config-kea-dhcp4)# exit

25.52.4 Delete DHCP IPv4 Server Configuration

tnsr(config)# no dhcp4 server

25.53 DHCP4 Subnet4 Mode

25.53.1 Enter DHCP4 Subnet4 Mode

tnsr(config-kea-dhcp4)# subnet <ipv4-prefix>

25.53.2 DHCP4 Subnet4 Mode Commands

tnsr(config-kea-subnet4)# [no] id <uint32>
tnsr(config-kea-subnet4)# [no] option <dhcp4-option>
tnsr(config-kea-subnet4)# [no] pool <ipv4-prefix>|<ipv4-range>
tnsr(config-kea-subnet4)# [no] interface <if-name>

25.53.3 Exit DHCP4 IPv4 Subnet4 Mode

tnsr(config-kea-subnet4)# exit

25.53.4 Delete DHCP4 IPv4 Subnet4 Configuration

tnsr(config-kea-dhcp4)# no subnet <ipv4-prefix>|<ipv4-range>

25.53. DHCP4 Subnet4 Mode 268

Product Manual, TNSR v19.02

25.54 DHCP4 Subnet4 Pool Mode

25.54.1 Enter DHCP4 Subnet4 Pool Mode

tnsr(config-kea-subnet4)# pool <ipv4-prefix>|<ipv4-range>

25.54.2 DHCP4 Subnet4 Pool Mode Commands

tnsr(config-kea-subnet4-pool)# [no] option <dhcp4-option>

25.54.3 Exit DHCP4 Subnet4 Pool Mode

tnsr(config-kea-subnet4-pool)# exit

25.54.4 Delete DHCP4 IPv4 Subnet4 Pool

tnsr(config-kea-subnet4)# no pool <ipv4-prefix>|<ipv4-range>

25.55 DHCP4 Subnet4 Reservation Mode

25.55.1 Enter DHCP4 Subnet4 Reservation Mode

tnsr(config-kea-subnet4)# reservation <ipv4-address>

25.55.2 DHCP4 Subnet4 Reservation Mode Commands

tnsr(config-kea-subnet4-reservation)# [no] hostname <hostname>
tnsr(config-kea-subnet4-reservation)# [no] mac-address <mac-address>
tnsr(config-kea-subnet4-reservation)# [no] option <dhcp4-option>

25.55.3 Exit DHCP4 Subnet4 Reservation Mode

tnsr(config-kea-subnet4-reservation)# exit

25.55.4 Delete DHCP4 IPv4 Subnet4 Reservation

tnsr(config-kea-subnet4)# no reservation <ipv4-address>

25.54. DHCP4 Subnet4 Pool Mode 269

Product Manual, TNSR v19.02

25.56 Kea DHCP4, Subnet4, Pool, or Reservation Option Mode

tnsr(config-kea-*-opt)#

25.56.1 DHCP4 Option Mode Commands

tnsr(config-kea-*-opt)# [no] always-send <boolean>
tnsr(config-kea-*-opt)# [no] csv-format <boolean>
tnsr(config-kea-*-opt)# [no] data <option-data>
tnsr(config-kea-*-opt)# [no] space <space-name>

25.56.2 Exit DHCP4 Option Mode

tnsr(config-kea-*-opt)# exit

25.56.3 Delete DHCP4 Option Configuration

tnsr(config-kea-*)# no option <dhcp4-option>

25.56.4 Kea Notes

• The interface <if-name> within a subnet4 is mandatory.

• <ipv4-range> is <ipv4-addr>-<ipv4-addr>

• <option-data> is a well-formed string of data appropriate for the option

• <logger-name> is one of:

kea-ctrl-agent
kea-ctrl-agent.http
kea-dhcp-ddns
kea-dhcp-ddns.d2-to-dns
kea-dhcp-ddns.dctl
kea-dhcp-ddns.dhcp-to-d2
kea-dhcp-ddns.dhcpddns
kea-dhcp4
kea-dhcp4.alloc-engine
kea-dhcp4.bad-packets
kea-dhcp4.callouts
kea-dhcp4.commands
kea-dhcp4.ddns
kea-dhcp4.dhcp4
kea-dhcp4.dhcpsrv
kea-dhcp4.eval
kea-dhcp4.hooks
kea-dhcp4.hosts
kea-dhcp4.leases
kea-dhcp4.options
kea-dhcp4.packets

(continues on next page)

25.56. Kea DHCP4, Subnet4, Pool, or Reservation Option Mode 270

Product Manual, TNSR v19.02

(continued from previous page)

kea-dhcp4.stat-cmds-hooks
kea-dhcp6
kea-dhcp6.alloc-engine
kea-dhcp6.bad-packets
kea-dhcp6.callouts
kea-dhcp6.commands
kea-dhcp6.ddns
kea-dhcp6.dhcp6
kea-dhcp6.dhcpsrv
kea-dhcp6.eval
kea-dhcp6.hooks
kea-dhcp6.hosts
kea-dhcp6.leases
kea-dhcp6.options
kea-dhcp6.packets
kea-dhcp6.stat-cmds-hooks

• <dhcp4-option> is one of

all-subnets-local
arp-cache-timeout
auto-config
bcms-controller-address
bcms-controller-names
boot-file-name
boot-size
broadcast-address
capwap-ac-v4
client-ndi
client-system
cookie-servers
default-ip-ttl
default-tcp-ttl
default-url
dhcp-max-message-size
dhcp-message
dhcp-option-overload
dhcp-server-identifier
domain-name
domain-name-servers
domain-search
extensions-path
finger-server
font-servers
geoconf-civic
ieee802-3-encapsulation
impress-servers
interface-mtu
ip-forwarding
irc-server
log-servers
lpr-servers
mask-supplier
max-dgram-reassembly
merit-dump
mobile-ip-home-agent
name-servers

(continues on next page)

25.56. Kea DHCP4, Subnet4, Pool, or Reservation Option Mode 271

Product Manual, TNSR v19.02

(continued from previous page)

name-service-search
nds-context
nds-server
nds-tree-name
netbios-dd-server
netbios-name-servers
netbios-node-type
netbios-scope
netinfo-server-address
netinfo-server-tag
nis-domain
nis-servers
nisplus-domain-name
nisplus-servers
nntp-server
non-local-source-routing
ntp-servers
nwip-domain-name
nwip-suboptions
option-6rd
pana-agent
path-mtu-aging-timeout
path-mtu-plateau-table
pcode
perform-mask-discovery
policy-filter
pop-server
rdnss-selection
resource-location-servers
root-path
router-discovery
router-solicitation-address
routers
sip-ua-cs-domains
slp-directory-agent
slp-service-scope
smtp-server
static-routes
streettalk-directory-assistance-server
streettalk-server
subnet-selection
swap-server
tcode
tcp-keepalive-garbage
tcp-keepalive-interval
tftp-server-name
time-offset
time-servers
trailer-encapsulation
uap-servers
user-class
uuid-guid
v4-access-domain
v4-captive-portal
v4-lost
v4-portparams
vendor-class-identifier

(continues on next page)

25.56. Kea DHCP4, Subnet4, Pool, or Reservation Option Mode 272

Product Manual, TNSR v19.02

(continued from previous page)

vendor-encapsulated-options
vivco-suboptions
vivso-suboptions
www-server
x-display-manager

25.57 Unbound Mode

25.57.1 Enter Unbound Mode

tnsr(config)# unbound server

25.57.2 Exit Unbound Mode

tnsr(config-unbound)# exit

25.57.3 Delete an Unbound Server

tnsr(config)# no unbound server

25.57.4 Unbound Mode Commands

tnsr(config-unbound)# disable (caps-for-id | harden (dnssec-stripped|glue) |
hide (version|identity) | ip4 | ip6 | message prefetch |
serve-expired | tcp | udp)

tnsr(config-unbound)# edns reassembly size <s>
tnsr(config-unbound)# enable (caps-for-id | harden (dnssec-stripped|glue) |

hide (version|identity) | ip4 | ip6 | message prefetch |
serve-expired | tcp | udp)

tnsr(config-unbound)# forward-zone <zone-name>
tnsr(config-unbound)# host cache (num-hosts <num> | slabs <s> | ttl <t>)
tnsr(config-unbound)# interface <ip4-address>
tnsr(config-unbound)# jostle timeout <t>
tnsr(config-unbound)# key cache slabs <s>
tnsr(config-unbound)# message cache (size <s> | slabs <s>)
tnsr(config-unbound)# port outgoing range <n>
tnsr(config-unbound)# rrset cache (size <s> | slabs <s>)
tnsr(config-unbound)# rrset-message cache ttl (minimum <min> | maximum <max>)
tnsr(config-unbound)# socket receive-buffer size <s>
tnsr(config-unbound)# tcp buffers (incoming <n> | outgoing <n>)
tnsr(config-unbound)# thread (num-queries <n> | num-threads <n> |

unwanted-reply-threshold <threshold>)
tnsr(config-unbound)# verbosity <level-0..5>

25.57. Unbound Mode 273

Product Manual, TNSR v19.02

25.58 Unbound Forward-Zone Mode

25.58.1 Enter Unbound Forward-Zone Mode

tnsr(config-unbound)# forward-zone <zone-name>

25.58.2 Exit Unbound Forward-Zone Mode

tnsr(config-unbound-fwd-zone)# exit

25.58.3 Delete an Unbound Forward-Zone Zone

tnsr(config-unbound)# no forward-zone <zone-name>

25.58.4 Unbound Forward-Zone Mode Commands

tnsr(config-unbound-fwd-zone)# disable (forward-first | forward-tls-upstream)
tnsr(config-unbound-fwd-zone)# enable (forward-first | forward-tls-upstream)
tnsr(config-unbound-fwd-zone)# nameserver address <ip-address> [port <port>] [auth-
→˓name <name>]
tnsr(config-unbound-fwd-zone)# nameserver host <host-name>

25.59 Subif Mode

25.59.1 Enter Subif Mode

tnsr(config)# interface subif <if-name> <subid>

25.59.2 Subif Mode Commands

tnsr(config-subif)# default
tnsr(config-subif)# dot1q (<outer-vlan-id>|any)
tnsr(config-subif)# exact-match
tnsr(config-subif)# inner-dot1q (inner-vlan-id>|any)
tnsr(config-subif)# outer-dot1ad (<outer-vlan-id>|any)
tnsr(config-subif)# outer-dot1q (<outer-vlan-id>|any)
tnsr(config-subif)# vlan tag-rewrite (disable|pop-1|pop-2)
tnsr(config-subif)# vlan tag-rewrite push-1 (dot1ad|dot1q) <tag1>
tnsr(config-subif)# vlan tag-rewrite push-2 (dot1ad|dot1q) <tag1> <tag2>
tnsr(config-subif)# vlan tag-rewrite (translate-1-1|translate-2-1) (dot1ad|dot1q)
→˓<tag1>
tnsr(config-subif)# vlan tag-rewrite (translate-1-2|translate-2-2) (dot1ad|dot1q)
→˓<tag1> <tag2>

25.58. Unbound Forward-Zone Mode 274

Product Manual, TNSR v19.02

25.59.3 Exit Subif Mode

tnsr(config-subif)# exit

25.59.4 Delete a Subif

tnsr(config)# no interface subif <if-name> <subid>

25.60 Bond Mode

25.60.1 Enter Bond Mode

tnsr(config)# interface bond <instance>

25.60.2 Bond Mode Commands

tnsr(config-bond)# [no] load-balance (l2|l23|l34)
tnsr(config-bond)# [no] mode (round-robin|active-backup|xor|broadcast|lacp)
tnsr(config-bond)# [no] mac-address <mac-address>

25.60.3 Exit Bond Mode

tnsr(config-bond)# exit

25.60.4 Delete a Bond

tnsr(config)# no interface bond <instance>

25.60. Bond Mode 275

CHAPTER

TWENTYSIX

API ENDPOINTS

In addition to the CLI, there are a variety of ways to configure TNSR, including a RESTful API.

26.1 YANG Data Models

The sets of functions and procedures used to manipulate the TNSR configuration are generated from the RFC 7950
data models defined in the TNSR YANG models.

26.2 RESTCONF API

TNSR can be controlled via a RESTCONF API. Reference material, code examples, and more on the RESTCONF
API may be found in the TNSR API Documentation.

276

https://tools.ietf.org/html/rfc7950
https://github.com/netgate/tnsr-yang-models
https://tools.ietf.org/html/rfc8040

CHAPTER

TWENTYSEVEN

NETGATE TNSR RELEASES

27.1 TNSR 19.02.1 Release Notes

• About This Release

– General

– NAT

• Known Limitations

– ACL

– BFD

– BGP

– CLI

– DHCP

– DNS

– HTTP Server / RESTCONF

– Interfaces

– IPsec

– NACM

– NAT

– Routing

– User Management

• Reporting Issues

27.1.1 About This Release

This is a maintenance release for TNSR software version 19.02 with bug fixes and Azure support.

See also:

For more information on changes in TNSR version 19.02, see TNSR 19.02 Release Notes.

277

Product Manual, TNSR v19.02

General

• TNSR is now supported on Azure [974]

NAT

• Fixed a problem with removing MAP entries after restarting TNSR [1653]

27.1.2 Known Limitations

ACL

• Attempting to create an ACL containing only a description fails [1558]

Workaround: Define one or more rules on the ACL.

BFD

• Attempting to change a BFD local/peer address fails [1549]

BGP

• TNSR does not send BGP updates without restarting service with redistribute from connected op-
tion [746]

• Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

• BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

• The maximum-prefix restart command does not work [859]

• TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the
BGP service to start again.

• Changing update-source from an IP address to loop1 allows a session to establish but remote prefixes do
not appear in the FIB until reboot [1104]

• IPv6 BGP neighbors get entered as peer-groups only in bgpd.conf [1190]

• BGP import-check feature does not work [781]

CLI

• show route table causes the backend to die with large numbers of routes in the table [506]

For example, this crash happens with a full BGP feed.

• Using service dataplane restart can cause clixon_backend to lose its configuration [1383]

27.1. TNSR 19.02.1 Release Notes 278

Product Manual, TNSR v19.02

DHCP

• The DHCP server does not function if an interface is configured as a DHCP client [1801]

Corrected in the next release under development (19.05).

• DHCP server uses default VPP interface IP address (169.254.0.x) as a source address for DHCP packets and as
a DHCP Server Identifier [1222]

• Adding a DHCP reservation without a MAC address causes Kea to fail and the entry cannot be removed [1530]

Workaround: A MAC address is required for DHCP reservations, so always enter a MAC address when creating
an entry.

• Configuring Kea to log all names with * does not work [1307]

Workaround: Configure each name separately instead of using a wildcard.

DNS

• Local zone FQDN handling for forward (A) and reverse (PTR) data is inconsistent, only allowing one or the
other to work as expected for a given FQDN [1384]

HTTP Server / RESTCONF

• nginx does not behave as expected with authentication type none and TLS [1086]

This mode is primarily for testing and not production use.

Workaround: Use password or certificate-based authentication for RESTCONF.

• HTTP server runs even though it’s not configured to run after TNSR services restart [1153]

Workaround: Manually stop the nginx service using systemctl.

• RESTCONF get of /restconf/data/ does not properly return state data [1534]

• RESTCONF query replies may contain CDATA tags in JSON [1463]

• Adding an ACL rule entry via RESTCONF may appear to add a duplicate ACL [1238]

Interfaces

• Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]

• Unable to delete an interface if has had an ACL or MACIP applied [1177, 1178]

Workaround: Remove the entire ACL or MACIP entry. Then, the interface may be removed.

• MACIP ACL remains in the interface configuration after being removed [1179]

• Bond interfaces in LACP mode will send LACPDUs even when configured for passive mode [1614]

• Non-LACP bond interfaces may experience packet drops when a bond member interface is down [1603]

• MAC address change on tap interfaces may not be reflected in the dataplane until the dataplane is restarted
[1502]

Workaround: Restart the dataplane after changing an interface MAC address.

27.1. TNSR 19.02.1 Release Notes 279

Product Manual, TNSR v19.02

• MAC address change on bond interfaces may not be reflected in the dataplane until the dataplane is restarted
[1502]

Workaround: Set the MAC address when creating the bond interface.

• VLAN tag rewrite settings are only available in subinterfaces [1344]

• Packets do not pass through a subinterface after the subinterface configuration has been modified [1612]

• QinQ VLAN termination is not working [1550]

• ARP replies received from another host on a VLAN subinterface are not processed correctly [1326]

IPsec

• An IPsec tunnel which was removed and then added back in may take longer than expected to establish [1313]

NACM

• Permitted default read and write operations cannot be executed if default exec policy is set to deny [1158]

NAT

• twice-nat does not work [1023]

• NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

• NAT forwarding is not working for in2out direction [1039]

• NAT static mappings are not added as expected when only the port-local value differs [1100]

• NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

• DS-Lite is not functional; B4 router sends encapsulated IPv4-in-IPv6 packets, but AFTR replies with an error
[1626]

• DS-Lite B4 endpoint is not shown by show dslite command [1625]

• Unable to view a list of NAT sessions [975, 1456]

Routing

• Deleting a non-empty route table fails with an error and the table remains in the configuration, but it cannot be
changed afterward [1241]

Workaround: Remove all routes from the table before deleting. Alternately, copy the running configuration to
startup and restart TNSR, which will make the route table appear again so the routes and then the table can be
removed.

User Management

• When deleting a user key from the running configuration it is not removed from the user’s authorized_keys
file [1162]

Workaround: Manually edit the authorized_keys file for the user and remove the key.

27.1. TNSR 19.02.1 Release Notes 280

Product Manual, TNSR v19.02

27.1.3 Reporting Issues

For issues, please contact the Netgate Support staff.

• Send email to support@netgate.com

• Phone: 512.646.4100 (Support is Option 2)

27.2 TNSR 19.02 Release Notes

• About This Release

– General

– BGP

– CLI

– Dataplane

– DHCP Server

– DNS

– Host

– Interfaces

– NAT

– RESTCONF

– Routing

• Known Limitations

– ACL

– BFD

– BGP

– CLI

– DHCP

– DNS

– HTTP Server / RESTCONF

– Interfaces

– IPsec

– NACM

– NAT

– Routing

– User Management

• Reporting Issues

27.2. TNSR 19.02 Release Notes 281

mailto:support@netgate.com

Product Manual, TNSR v19.02

27.2.1 About This Release

Warning: A number of commands were reorganized with this release, more information will be noted below in
individual sections. If a command that worked in a previous release is no longer present, it has most likely been
changed to a more logical and consistent location.

Warning: RESTCONF queries now require a namespace in the format of module:name where only the name
was required in previous versions. To locate the correct module:name combination, see API Endpoints.

General

• The data models have been updated with more consistent naming and locations

• Introduced a YANG id type for name fields [1318]

• Miscellaneous code cleanup and refactoring for stability and performance improvements [1516] [1571]

• Updated to CentOS 7.6 [1335]

• Updated build to use gcc 7 [1147]

• Fixed a potential crash when listing packages [1312]

• Improved handling of package versions to better handle situations where a dependency update requires rein-
stalling related packages [950]

BGP

• BGP commands reorganized under route dynamic for configuration and show route dynamic for
status. See Commands and Border Gateway Protocol. [1369]

• FRR updated to 6.0.x

CLI

• The configuration database commands have been reorganized under configuration for making changes,
such as copy, and under show configuration for viewing the contents of a configuration. See Commands
and Configuration Database. [1347]

• Fixed system location text handling when the value contains whitespace [1584]

Dataplane

• Updated DPDK igb_uio module to v19.02 [842]

DHCP Server

• Updated Kea to 1.4.0-P1 [1239]

27.2. TNSR 19.02 Release Notes 282

Product Manual, TNSR v19.02

DNS

• Fixed removal of access-control entries in the CLI [1417]

Host

• Fixed inconsistent behavior of host interface commands [1611]

• Added a default set of nftables rules to limit inbound traffic to the host [476]

Interfaces

• Several interface-related configuration commands have been moved under the interface command for better
consistency. These include: bridge, loopback, memif, subif, and tap. See Commands and Types of
Interfaces [1336]

• Added support for Bonding Interfaces for link aggregation and redundancy, including support for LACP [1025]

• Fixed display of a single TAP interface [1554]

• Fixed state data returned from a GET request for /netgate-interface:interfaces-state/
interface [1553]

• Corrected validation of memif socket ID to exclude 0 which is reserved, and enforce a maximum of
4294967294 [1527]

• Corrected validation of bridge domain ID to exclude 0which is reserved, and enforce a maximum of 16777215
[1526]

• Fixed handling of non-default routing tables assigned to interfaces at startup [1518]

• Removed unused container /interfaces-config/interface/tunnel from data model [1427]

• Fixed subif commands outer-dot1q any and outer-dot1ad any [1552] [1352]

• Fixed subinterfaces failing after changing configuration [1346]

• Removed the untagged command from subif as it was non-functional and unnecessary (use the parent
interface for untagged traffic) [1345]

NAT

• Added support for MAP-T and MAP-E BR [1399]

RESTCONF

Warning: RESTCONF queries now require a namespace in the format of module:name where only the name
was required in previous versions. To locate the correct module:name combination, see API Endpoints.

• Fixed RESTCONF calls for RPCs returning error 400 despite succeeding [1511]

Routing

• Fixed removing a route table reporting failure when the operation succeeded [1515]

27.2. TNSR 19.02 Release Notes 283

Product Manual, TNSR v19.02

27.2.2 Known Limitations

ACL

• Attempting to create an ACL containing only a description fails [1558]

Workaround: Define one or more rules on the ACL.

BFD

• Attempting to change a BFD local/peer address fails [1549]

BGP

• TNSR does not send BGP updates without restarting service with redistribute from connected op-
tion [746]

• Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

• BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

• The maximum-prefix restart command does not work [859]

• TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the
BGP service to start again.

• Changing update-source from an IP address to loop1 allows a session to establish but remote prefixes do
not appear in the FIB until reboot [1104]

• IPv6 BGP neighbors get entered as peer-groups only in bgpd.conf [1190]

• BGP import-check feature does not work [781]

CLI

• show route table causes the backend to die with large numbers of routes in the table [506]

For example, this crash happens with a full BGP feed.

• Using service dataplane restart can cause clixon_backend to lose its configuration [1383]

DHCP

• DHCP server uses default VPP interface IP address (169.254.0.x) as a source address for DHCP packets and as
a DHCP Server Identifier [1222]

• Adding a DHCP reservation without a MAC address causes Kea to fail and the entry cannot be removed [1530]

Workaround: A MAC address is required for DHCP reservations, so always enter a MAC address when creating
an entry.

• Configuring Kea to log all names with * does not work [1307]

Workaround: Configure each name separately instead of using a wildcard.

27.2. TNSR 19.02 Release Notes 284

Product Manual, TNSR v19.02

DNS

• Local zone FQDN handling for forward (A) and reverse (PTR) data is inconsistent, only allowing one or the
other to work as expected for a given FQDN [1384]

HTTP Server / RESTCONF

• nginx does not behave as expected with authentication type none and TLS [1086]

This mode is primarily for testing and not production use.

Workaround: Use password or certificate-based authentication for RESTCONF.

• HTTP server runs even though it’s not configured to run after TNSR services restart [1153]

Workaround: Manually stop the nginx service using systemctl.

• RESTCONF get of /restconf/data/ does not properly return state data [1534]

• RESTCONF query replies may contain CDATA tags in JSON [1463]

• Adding an ACL rule entry via RESTCONF may appear to add a duplicate ACL [1238]

Interfaces

• Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]

• Unable to delete an interface if has had an ACL or MACIP applied [1177, 1178]

Workaround: Remove the entire ACL or MACIP entry. Then, the interface may be removed.

• MACIP ACL remains in the interface configuration after being removed [1179]

• Bond interfaces in LACP mode will send LACPDUs even when configured for passive mode [1614]

• Non-LACP bond interfaces may experience packet drops when a bond member interface is down [1603]

• MAC address change on tap interfaces may not be reflected in the dataplane until the dataplane is restarted
[1502]

Workaround: Restart the dataplane after changing an interface MAC address.

• MAC address change on bond interfaces may not be reflected in the dataplane until the dataplane is restarted
[1502]

Workaround: Set the MAC address when creating the bond interface.

• VLAN tag rewrite settings are only available in subinterfaces [1344]

• Packets do not pass through a subinterface after the subinterface configuration has been modified [1612]

• QinQ VLAN termination is not working [1550]

• ARP replies received from another host on a VLAN subinterface are not processed correctly [1326]

IPsec

• An IPsec tunnel which was removed and then added back in may take longer than expected to establish [1313]

27.2. TNSR 19.02 Release Notes 285

Product Manual, TNSR v19.02

NACM

• Permitted default read and write operations cannot be executed if default exec policy is set to deny [1158]

NAT

• twice-nat does not work [1023]

• NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

• NAT forwarding is not working for in2out direction [1039]

• NAT static mappings are not added as expected when only the port-local value differs [1100]

• NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

• DS-Lite is not functional; B4 router sends encapsulated IPv4-in-IPv6 packets, but AFTR replies with an error
[1626]

• DS-Lite B4 endpoint is not shown by show dslite command [1625]

• Unable to view a list of NAT sessions [975, 1456]

Routing

• Deleting a non-empty route table fails with an error and the table remains in the configuration, but it cannot be
changed afterward [1241]

Workaround: Remove all routes from the table before deleting. Alternately, copy the running configuration to
startup and restart TNSR, which will make the route table appear again so the routes and then the table can be
removed.

User Management

• When deleting a user key from the running configuration it is not removed from the user’s authorized_keys
file [1162]

Workaround: Manually edit the authorized_keys file for the user and remove the key.

27.2.3 Reporting Issues

For issues, please contact the Netgate Support staff.

• Send email to support@netgate.com

• Phone: 512.646.4100 (Support is Option 2)

27.3 TNSR 18.11 Release Notes

• About This Release

– Access Lists (ACLs)

– Authentication & Access Control

27.3. TNSR 18.11 Release Notes 286

mailto:support@netgate.com

Product Manual, TNSR v19.02

– BGP

– Bridge

– CLI

– Hardware & Installation

– Interfaces

– Host

– IPsec

– NAT

– NTP

– RESTCONF

– VLAN/Subinterfaces

• Known Limitations

– Authentication & Access Control

– BGP

– CLI

– DHCP

– HTTP Server / RESTCONF

– Interfaces

– NAT

– Routing

– User Management

• Reporting Issues

27.3.1 About This Release

Access Lists (ACLs)

• Added a description field to ACL rule entries [1195]

• Fixed issues with numerical sorting of ACL entries in show output [1255]

• Fixed issues with order of installed ACL rules in the dataplane with large sequence numbers [1270]

Authentication & Access Control

• Removed users from the TNSR configuration so they are stored/managed directly in the host operating system,
which eliminates any chance to be out of sync [1067]

• Fixed issues with deleting NACM rule lists [1137]

27.3. TNSR 18.11 Release Notes 287

Product Manual, TNSR v19.02

BGP

• Fixed an issue where the BGP service could not restart more that three times in a row [902]

• Added bgp clear command to clear active BGP sessions [923]

Bridge

• Fixed a problem where the TNSR CLI incorrectly allowed multiple bridge interfaces to have bvi set [984]

CLI

• Fixed a problem where applied dataplane commands were not immediately present in the running configu-
ration database until another change was made [1099]

• Fixed a problem where the candidate configuration database could not be emptied with the clear command
[1066]

Hardware & Installation

• Added an ISO image to install TNSR on supported hardware [1364]

• Added support for VMware installations [1026]

• Added support for Mellanox network adapters [1268]

Interfaces

• Fixed interface link speed displaying incorrectly in CLI and RESTCONF [672]

• Fixed issues with duplicate entries being generated in the dataplane interface configuration [1243]

Host

• Added the ability to configure host OS management interfaces in the CLI [260, 261, 262]

• Fixed issues with ping command parameter parsing [1133]

• Fixed issues specifying a source address with ping [1134]

IPsec

• Fixed issues with IPsec tunnels failing to establish after a dataplane restart [1138]

NAT

• Changed the default NAT mode to endpoint-dependent [1079]

• Fixed creating a twice-nat pool [972]

• Fixed creating out-to-in-only static mappings [976]

• Fixed NAT reassembly for ICMP packets [990]

• Fixed fragment limitations for NAT reassembly [1065]

27.3. TNSR 18.11 Release Notes 288

Product Manual, TNSR v19.02

• Added support for deterministic NAT [360]

NTP

• Fixed issues with the ntp restrict command [1163]

RESTCONF

• Fixed validation when submitting invalid MAC addresses via RESTCONF [1197]

• Fixed validation when submitting invalid IP addresses via RESTCONF [1199]

VLAN/Subinterfaces

• Fixed issues where daemons such as Kea and ntpd did not correctly form configuration file references to subin-
terface names [1150]

• Fixed issues with clients on subinterface networks from receiving return traffic that passes through TNSR [1152]

The upstream VPP issue causing this has been fixed, but an additional source of problems in this area is that the
dot1q setting for a subinterface must use exact-match to communicate properly with hosts on the VLAN.
Ensure subinterfaces are configured to use this property.

27.3.2 Known Limitations

Authentication & Access Control

BGP

• TNSR does not send BGP updates without restarting service with redistribute from connected op-
tion [746]

• Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

• BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

• The maximum-prefix restart command does not work [859]

• TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the
BGP service to start again.

• Changing update-source from an IP address to loop1 allows a session to establish but remote prefixes do
not appear in the FIB until reboot [1104]

• IPv6 BGP neighbors get entered as peer-groups only in bgpd.conf [1190]

• peer-group attribute remote-as does not get into FRR bgpd.conf [1272]

CLI

• show route table causes the backend to die with large numbers of routes in the table [506]

For example, this crash happens with a full BGP feed.

27.3. TNSR 18.11 Release Notes 289

Product Manual, TNSR v19.02

DHCP

• A single IP address can be set in a pool range, but the DHCP daemon requires a start/end IP address or a prefix
[1208]

Workaround: Configure a pool with a start and end address or prefix.

• DHCP server uses default VPP interface IP address (169.254.0.x) as a source address for DHCP packets and as
a DHCP Server Identifier [1222]

• Unable to delete DHCPv4 options specified within the pool configuration [1267]

HTTP Server / RESTCONF

• nginx does not behave as expected with authentication type none and TLS [1086]

This mode is primarily for testing and not production use.

Workaround: Use password or certificate-based authentication for RESTCONF.

• HTTP server runs even though it’s not configured to run after TNSR services restart [1153]

Workaround: Manually stop the nginx service using systemctl.

Interfaces

• Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]

• Unable to delete an interface if has had an ACL or MACIP applied [1177, 1178]

Workaround: Remove the entire ACL or MACIP entry. Then, the interface may be removed.

• MACIP ACL remains in the interface configuration after being removed [1179]

NAT

• twice-nat does not work [1023]

• NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

• NAT forwarding is not working for in2out direction [1039]

• NAT static mappings are not added as expected when only the port-local value differs [1100]

• NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

• PAT dynamic sessions limited to 100 entries per address [1303]

This is the default limit per user in VPP and will be configurable in the next release.

Routing

• Deleting a non-empty route table fails with an error and the table remains in the configuration, but it cannot be
changed afterward [1241]

Workaround: Remove all routes from the table before deleting. Alternately, copy the running configuration to
startup and restart TNSR, which will make the route table appear again so the routes and then the table can be
removed.

27.3. TNSR 18.11 Release Notes 290

Product Manual, TNSR v19.02

User Management

• When deleting a user key from the running configuration it is not removed from the user’s authorized_keys
file [1162]

Workaround: Manually edit the authorized_keys file for the user and remove the key.

27.3.3 Reporting Issues

For issues, please contact the Netgate Support staff.

• Send email to support@netgate.com

• Phone: 512.646.4100 (Support is Option 2)

27.4 TNSR 18.08 Release Notes

• About This Release

– Authentication & Access Control

– BGP

– CLI

– DHCP

– DNS Resolver

– Hardware & Installation

– IPsec

– NAT

– NTP

– PKI (Certificates)

– RESTCONF

• Known Limitations

– Authentication & Access Control

– BGP

– Bridge

– CLI

– RESTCONF

– Interfaces

– NAT

– VLAN/Subinterfaces

• Reporting Issues

27.4. TNSR 18.08 Release Notes 291

mailto:support@netgate.com

Product Manual, TNSR v19.02

27.4.1 About This Release

Authentication & Access Control

• Added support for NETCONF Access Control Model (NACM) management.

NACM provides group-based controls to selectively allow command access for users. Users are authenticated
by other means (e.g. RESTCONF certificates or users, CLI user) and then mapped to groups based on username.

• Added default configurations for NACM for different platforms [891]

These default rules allow members of group admin to have unlimited access and sets the default values to
deny. It includes the users tnsr and root in the group admin.

Warning: TNSR Does not prevent a user from changing the rules in a way that would cut off all access.

• Changed password management to allow changing passwords for users in the host OS as well as for TNSR users
[1091]

BGP

• Added explicit sequence numbering to BGP AS Path statements to support multiple patterns in a single AS Path
[898]

• Added show bgp network A.B.C.D command to display detailed information about BGP routes [922]

CLI

• Added enable and disable commands to be used in favor of no shutdown/shutdown [938]

• Fixed CLI issues with data encoding that could lead to XML Parsing errors [887]

DHCP

• Improved support and control for DHCP server (Kea) management [490, 738, 1037, 1045]

• Added explicit enable/disable for DHCP Server daemon [1053]

• Added logging support to the DHCP Server [907]

DNS Resolver

• Added support for management of a DNS Resolver (Unbound) [492, 1072, 1093, 1094]

Hardware & Installation

• Added support for installation on Xeon D, C3000 SoCs [961]

• Added configuration packages for Netgate hardware that can run TNSR [1056]

• Fixed a Layer 2 connectivity issue with certain Intel 10G fiber configurations due to a timeout waiting for link
[509]

27.4. TNSR 18.08 Release Notes 292

https://kea.isc.org/
https://nlnetlabs.nl/projects/unbound/about/

Product Manual, TNSR v19.02

IPsec

• Added QAT cryptographic acceleration enabled for IPsec [912, 940]

This acceleration works with QAT CPIC cards as well as C62X, C3XXX, and D15XX QAT devices.

• Fixed an issue where an IPsec Child SA would disappear after an IKEv1 Security Association re-authenticates
[628]

NAT

• Fixed creating a NAT pool for custom route tables in the CLI [1055]

• Fixed handling of the NAT reassembly timeout value [1000]

• Added support for output feature NAT [867, 897]

• Fixed an error when changing static NAT command boolean properties [703]

• Addressed NAT issues which prevent the TNSR host OS network services from working on nat outside
interfaces [616]

This can only work in endpoint-dependent NAT mode, which can be enabled as follows:

dataplane nat endpoint-dependent
service dataplane restart

This may become the default NAT mode in future TNSR releases [1079]

NTP

• Added support for NTP server (ntp.org) management [847, 939, 948, 952]

PKI (Certificates)

• Added support to the PKI CLI for managing certificate authority (CA) entries as well as certificate signing [930]

RESTCONF

• Added commands for RESTCONF management and authentication (HTTP server, nginx) [933]

• Added support to RESTCONF for certificate-based authentication [937]

When using certificates to authenticate, the common name (CN) part of the subject is used as the username.

• Added PAM support for HTTP authentication to the HTTP server [934]

27.4.2 Known Limitations

Authentication & Access Control

• Unable to delete a user from the CLI after TNSR services restart [1067]

27.4. TNSR 18.08 Release Notes 293

https://www.ntp.org/
https://tools.ietf.org/html/rfc8040
https://nginx.org/

Product Manual, TNSR v19.02

BGP

• TNSR does not send BGP updates without restarting service with redistribute from connected op-
tion [746]

• Route with aggregate-address via next-hop 0.0.0.0 does not appear in TNSR route table [832]

• BGP sessions may fail to establish or rapidly reconnect when receiving more prefixes than defined by
maximum-prefix limit [858]

• The maximum-prefix restart command does not work [859]

• TNSR installs multiple paths for received routes even though support for multiple paths is not enabled [885]

• Unable to restart BGP service more that three times in a row [902]

Workaround: Run systemctl reset-failed frr from the shell to clear the error which will allow the
BGP service to start again.

• Changing update-source from an IP address to loop1 allows a session to establish but remote prefixes do
not appear in the FIB until reboot [1104]

Bridge

• TNSR CLI allows multiple bridge interfaces to have bvi set [984]

Only the first interface set with bvi will work properly.

Workaround: Only set bvi on a single interface.

CLI

• Applied dataplane commands are not immediately present in the running configuration database until an-
other change is made [1099]

• The candidate configuration database cannot be emptied with the clear command [1066]

• show route table causes the backend to die with large numbers of routes in the table [506]

For example, this crash happens with a full BGP feed.

RESTCONF

• nginx does not behave as expected with authentication type none [1086]

This mode is primarily for testing and not production use.

Workaround: Use password or certificate-based authentication for RESTCONF.

Interfaces

• Interface link speed displayed incorrectly in CLI and RESTCONF [672]

• Loopback interface responds to ICMP echo from an outside host even when in a Down state [850]

27.4. TNSR 18.08 Release Notes 294

Product Manual, TNSR v19.02

NAT

• Unable to create a twice-nat pool [972] or twice-nat not working [1023]

twice-nat can only work in endpoint-dependent NAT mode, which can be enabled as follows:

dataplane nat endpoint-dependent
service dataplane restart

• Unable to create out-to-in-only static mapping [976]

out-to-in-only can only work in endpoint-dependent NAT mode, which can be enabled as follows:

dataplane nat endpoint-dependent
service dataplane restart

• NAT Reassembly is not working for ICMP packets [990]

• Fragment limitation for NAT reassembly is not working [1065]

• NAT mode is not deleted from VPP startup configuration after TNSR services restart [1017]

• NAT forwarding is not working for in2out direction [1039]

• NAT static mappings are not added as expected when only the port-local value differs [1100]

• NAT static mapping with defined ports leads to clixon-backend crash after restart [1103]

VLAN/Subinterfaces

• Daemons such as Kea and ntpd do not correctly form configuration file references to subinterface names [1150]

• A VPP issue is preventing clients on subinterface networks from receiving return traffic that passes through
TNSR [1152]

– These clients can communicate to TNSR, but not to hosts on other interfaces or subinterfaces.

– Other interface types work properly

27.4.3 Reporting Issues

For issues, please contact the Netgate Support staff.

• Send email to support@netgate.com

• Phone: 512.646.4100 (Support is Option 2)

27.5 TNSR 18.05 Release Notes

27.5.1 About This Release

This is the first public release of Netgate’s TNSR product.

Please see the TNSR Product Manual for details on the features of TNSR. https://docs.netgate.com/tnsr/en/latest

27.5. TNSR 18.05 Release Notes 295

mailto:support@netgate.com
https://docs.netgate.com/tnsr/en/latest

Product Manual, TNSR v19.02

27.5.2 Known Limitations

[295] Loopback with IPv6 address will not respond to IPv6 pings.

Workaround: none.

[477] Linux route rules for the router-plugin/tap-inject are not cleaned up

If the dataplane crashes, route rules added to the host system network stack are not cleaned up when it restarts.

Workaround: none.

[483] Deleting in-use prefix-list fails

If you attempt to delete an in-use prefix list, the command will fail, but the configuration is left in an inconsistent state.

Workaround: remove the use of the prefix list prior to deleting it.

[490][739] DHCP Server Issues

There are multiple issues with the DHCP Server, it’s use is not recommended at this time.

Workaround: none.

[506] The command “show route table” causes backend crash

A large route table (> 50k routes) can cause the “show route table” command to crash the backend process.

Workaround: Use “vppctl show ip fib” from a shell or vtysh to view route tables when a large number of routes have
been added.

[612] RPC error when input includes “<” character

Using the “<” character as input to the CLI can cause an RPC error. The error is properly detected, reported, and
handled in the known cases. This affects all cases where there is free-form input.

Workaround: Do not use the “<” character.

[616] Enabling NAT on an outside interface disables services on that interface

If you configure NAT on an outside interface, then that interface cannot provide services (like DHCP, ssh, etc.).

Workaround: none

[618] SLAAC is not supported in dataplane, but host stack interfaces have it enabled.

Workaround: none.

[628] Child SAs can disappear after an IKEv1 SA reauth.

Workaround: none.

[672] Interface speed and duplex show as unknown

The link speed and duplex indicators (visibile with the “show interface” command) can display as “unknown”.

Workaround: Use the “vppctl show interface” command from an OS shell.

[706] Unable to change DHCP client hostname option

The DHCP Client hostname can not be changed.

Workaround: none.

[741] Data plane restart breaks RESTCONF

If you restart the data plane, the RESTCONF service loses it’s connection and does not reestablish it.

Workaround: Restart the data plane via the CLI, which does not have the same issue.

27.5. TNSR 18.05 Release Notes 296

Product Manual, TNSR v19.02

[745] RESTCONF RPC output is invalid JSON

Some RPCs return mutliple line output and the new line characters are not handled properly resulting in the inability
of a JSON parser to process the output.

Workaround: none.

[746] BGP updates not being sent when “redistribute from connected” option specified

Routes from connected routers are not propagated when the redistribute from connected option is set

Workaround: none. You can temporarily resolve the problem by resetting the BGP service.

[781] BGP import-check feature does not work

If the import-check option is set and then BGP is configured to advertise an unreachable network then the network is
still advertised.

Workaround: none.

[824] unable to create a default route when more than one loopback interface exists

Workaround: none.

[831] Unable to create a second static NAT translation on a loopback interface

Workaround: none.

[832] Route with aggregate-address via next-hop 0.0.0.0 doesn’t appear in routing table

Workaround: none.

[850] Loopback interface can be ping from an outside host even when marked down

Workaround: none.

[858] BGP session constantly flapping when receiving more prefixes than defined in maximum-prefix limit command

Workaround: none.

[859] BGP “maximum-prefix restart” option doesn’t work

Workaround: none.

[860] No warning message in CLI when BGP “maximum-prefix” option is configured

If the maximum number of prefixes is exceeded, there is no indication to a user that this has occured.

Workaround: none.

[861] Unable to set BGP warning-only option for maximum-prefix option.

Workaround: none.

27.5.3 Reporting Issues

For issues, please contact the Netgate Support staff.

• Send email to support@netgate.com

• Phone: 512.646.4100 (Support is Option 2)

27.5. TNSR 18.05 Release Notes 297

mailto:support@netgate.com

Product Manual, TNSR v19.02

27.6 TNSR 0.1.0 Release Notes

27.6.1 About This Release

The TNSR 0.1.0 Release is the first release of the Netgate TNSR product. As there is no previous release of the TNSR
products, there can be no changes relative to a previous version. Everything is new!

This release constitutes an early, evaluation version of the product.

27.6.2 Known Limitations

BGP Routes

While BGP may be configured, started, and run, reports of it not recording and displaying the learned BGP routes
using the TNSR command “show routes” have been reported.

A possible work-around appears to be to stop, and then restart the BGP daemon using:

tnsr# service bgp stop
tnsr# service bgp start

BGP route-map and prefix-list Entries

TNSR route-maps and prefix-lists may be configured, and subsequently passed along to the underlying FRR config-
uration. TNSR will also allow removal of route-maps or prefix-lists from its configuration. However, they are not
removed from the underlying FRR configuration.

A possible work-around is to manually remove them from the underlying FRR configuration using vtysh directly.

DHCP Server

The DHCP server does not support any form of Options yet.

The “server dhcp stop dhcp4” will not effectively teminate the Kea IPv4 DHCP server. A work-around is to run some
form of “sudo killall kea-dhcp4” from a shell prompt.

27.6.3 Reporting Issues

For issues, please contact the Netgate Support staff.

• Send email to support@netgate.com

• Phone: 512.646.4100 (Support is Option 2)

27.6. TNSR 0.1.0 Release Notes 298

mailto:support@netgate.com

CHAPTER

TWENTYEIGHT

LICENSING

The Netgate TNSR product uses a combination of Open Source and proprietary software subject to several different
licenses.

The following list shows each Open Source component along with its license.

Table 1: Table of Open Source Licenses Used
Software License
CentOS 7 CentOS EULA
Linux kernel and modules GPLv2
cligen Apache 2.0
clixon Apache 2.0
curl MIT
davici LGPLv2.1
frr GPLv2
kea MPL 2.0
libnl LGPLv2.1
net-snmp Net SNMP
nginx BSD 2-clause
ntp NTP License
openssl OpenSSL/SSLeay
strongswan GPLv2
unbound BSD 3-clause
VPP Apache 2.0

GPL-licensed code modified for use in TNSR is available in source form:

Table 2: Table of Modified Open Source Repositories
Package Repository Location
frr http://github.com/netgate/frr
strongswan http://github.com/netgate/strongswan
Hyper-V Linux kernel modules https://github.com/netgate/uio_hv_generic

28.1 Apache 2.0 License

A copy of the Apache 2.0 License is found at https://www.apache.org/licenses .

The full text of the Apache 2.0 license is included below.

299

http://github.com/netgate/frr
http://github.com/netgate/strongswan
https://github.com/netgate/uio_hv_generic
https://www.apache.org/licenses

Product Manual, TNSR v19.02

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the

(continues on next page)

28.1. Apache 2.0 License 300

Product Manual, TNSR v19.02

(continued from previous page)

Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and

(continues on next page)

28.1. Apache 2.0 License 301

Product Manual, TNSR v19.02

(continued from previous page)

wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,

(continues on next page)

28.1. Apache 2.0 License 302

Product Manual, TNSR v19.02

(continued from previous page)

defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

28.2 CentOS EULA License

The TNSR project is built on a foundation of CentOS which is governed by the CentOS EULA License. It is found at
http://mirror.centos.org/centos/7/os/x86_64/EULA .

Its full text is included below.

CentOS Linux 7 EULA

CentOS Linux 7 comes with no guarantees or warranties of any sorts,
either written or implied.

The Distribution is released as GPLv2. Individual packages in the
distribution come with their own licences.

28.3 GPLv2.0 License

A copy of the GPLv2 License is found at https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt .

The full text of the GPLv2 license is included below.

28.2. CentOS EULA License 303

http://mirror.centos.org/centos/7/os/x86_64/EULA
https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

Product Manual, TNSR v19.02

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

(continues on next page)

28.3. GPLv2.0 License 304

Product Manual, TNSR v19.02

(continued from previous page)

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its .. contents::
..

constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

(continues on next page)

28.3. GPLv2.0 License 305

Product Manual, TNSR v19.02

(continued from previous page)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not

(continues on next page)

28.3. GPLv2.0 License 306

Product Manual, TNSR v19.02

(continued from previous page)

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
(continues on next page)

28.3. GPLv2.0 License 307

Product Manual, TNSR v19.02

(continued from previous page)

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

(continues on next page)

28.3. GPLv2.0 License 308

Product Manual, TNSR v19.02

(continued from previous page)

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

28.3. GPLv2.0 License 309

Product Manual, TNSR v19.02

28.4 LGPLv2.1 License

A copy of the LGPLv2.1 License is found at https://www.gnu.org/licenses/lgpl-2.1.txt .

The full text of the LGPLv2.1 license is included below.

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

(continues on next page)

28.4. LGPLv2.1 License 310

https://www.gnu.org/licenses/lgpl-2.1.txt

Product Manual, TNSR v19.02

(continued from previous page)

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

(continues on next page)

28.4. LGPLv2.1 License 311

Product Manual, TNSR v19.02

(continued from previous page)

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its .. contents::
..

constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and

(continues on next page)

28.4. LGPLv2.1 License 312

Product Manual, TNSR v19.02

(continued from previous page)

distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
(continues on next page)

28.4. LGPLv2.1 License 313

Product Manual, TNSR v19.02

(continued from previous page)

that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

(continues on next page)

28.4. LGPLv2.1 License 314

Product Manual, TNSR v19.02

(continued from previous page)

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the .. contents::

..
of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

(continues on next page)

28.4. LGPLv2.1 License 315

Product Manual, TNSR v19.02

(continued from previous page)

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

(continues on next page)

28.4. LGPLv2.1 License 316

Product Manual, TNSR v19.02

(continued from previous page)

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

(continues on next page)

28.4. LGPLv2.1 License 317

Product Manual, TNSR v19.02

(continued from previous page)

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

28.4. LGPLv2.1 License 318

Product Manual, TNSR v19.02

28.5 MIT License

A copy of the MIT License template is found at https://opensource.org/licenses/MIT .

The full text of the license as used by CURL is included below.

Copyright (c) 1996 - 2018, Daniel Stenberg, <daniel@haxx.se>, and many
contributors, see the THANKS file.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale, use
or other dealings in this Software without prior written authorization
of the copyright holder.

28.6 Net SNMP License

The net-snmp repository is used governed by several licenses collectively listed as the Net SNMP License. It is found
at http://www.net-snmp.org/about/license.html .

Its full text is included below.

Various copyrights apply to this package, listed in various separate
parts below. Please make sure that you read all the parts.

---- Part 1: CMU/UCD copyright notice: (BSD like) -----

Copyright 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000
Copyright 1996, 1998-2000 The Regents of the University of California

All Rights Reserved

Permission to use, copy, modify and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of CMU and The Regents of
the University of California not be used in advertising or publicity

(continues on next page)

28.5. MIT License 319

https://opensource.org/licenses/MIT
http://www.net-snmp.org/about/license.html

Product Manual, TNSR v19.02

(continued from previous page)

pertaining to distribution of the software without specific written
permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

---- Part 2: Networks Associates Technology, Inc copyright notice (BSD) -----

Copyright (c) 2001-2003, Networks Associates Technology, Inc
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the Networks Associates Technology, Inc nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 3: Cambridge Broadband Ltd. copyright notice (BSD) -----

Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
(continues on next page)

28.6. Net SNMP License 320

Product Manual, TNSR v19.02

(continued from previous page)

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* The name of Cambridge Broadband Ltd. may not be used to endorse or
promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 4: Sun Microsystems, Inc. copyright notice (BSD) -----

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
California 95054, U.S.A. All rights reserved.

Use is subject to license terms below.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the Sun Microsystems, Inc. nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

(continues on next page)

28.6. Net SNMP License 321

Product Manual, TNSR v19.02

(continued from previous page)

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 5: Sparta, Inc copyright notice (BSD) -----

Copyright (c) 2003-2009, Sparta, Inc
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of Sparta, Inc nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 6: Cisco/BUPTNIC copyright notice (BSD) -----

Copyright (c) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of Cisco, Inc, Beijing University of Posts and
Telecommunications, nor the names of their contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

(continues on next page)

28.6. Net SNMP License 322

Product Manual, TNSR v19.02

(continued from previous page)

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 7: Fabasoft R&D Software GmbH & Co KG copyright notice (BSD) -----

Copyright (c) Fabasoft R&D Software GmbH & Co KG, 2003
oss@fabasoft.com
Author: Bernhard Penz

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* The name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries,
brand or product names may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

---- Part 8: Apple Inc. copyright notice (BSD) -----

Copyright (c) 2007 Apple Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
3. Neither the name of Apple Inc. ("Apple") nor the names of its
contributors may be used to endorse or promote products derived

(continues on next page)

28.6. Net SNMP License 323

Product Manual, TNSR v19.02

(continued from previous page)

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

---- Part 9: ScienceLogic, LLC copyright notice (BSD) -----

Copyright (c) 2009, ScienceLogic, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of ScienceLogic, LLC nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

28.6. Net SNMP License 324

	Introduction
	TNSR Business
	TNSR Enterprise
	Software Trials
	TNSR Architecture
	Technology Stack
	Basic Assumptions

	Installation
	Default Behavior
	Default Accounts and Passwords
	Default TNSR Permissions
	Default Allowed Traffic

	Zero-to-Ping
	First Login
	Interface Configuration
	TNSR Interfaces
	NAT
	DHCP Server
	DNS Server
	Ping

	Command Line Basics
	Working in the TNSR CLI
	Finding Help
	Starting TNSR
	Entering the TNSR CLI
	Configuration Database
	Configuration Mode
	Configuration Backups
	Viewing Status Information
	Service Control
	Diagnostic Utilities
	Basic System Information

	Basic Configuration
	Setup Interfaces
	Disable Host OS NICs for TNSR
	Setup NICs in Dataplane
	Setup QAT Compatible Hardware
	Remove TNSR NIC for Host Use

	Updates and Packages
	Generate a Key Pair
	Generate a Certificate Signing Request
	Submit the Certificate Signing Request
	Retrieve the signed certificate
	Install the certificate
	Package Management
	Package Information Commands
	Package Installation
	Updating TNSR

	Interfaces
	Locate Interfaces
	Configure Interfaces
	Monitoring Interfaces
	Types of Interfaces

	Routing Basics
	Route Tables
	Viewing Routes
	Managing Routes
	Default Route

	Access Lists
	Standard ACLs
	MACIP ACLs
	Viewing ACL and MACIP Information
	ACL and NAT Interaction

	Border Gateway Protocol
	Required Information
	Enabling BGP
	Example BGP Configuration
	Advanced Configuration
	BGP Information
	Working with Large BGP Tables

	IPsec
	IPsec Cryptographic Acceleration
	Required Information
	IPsec Example
	IPsec Status Information

	Network Address Translation
	Dataplane NAT Modes
	NAT Options
	NAT Pool Addresses
	Outbound NAT
	Static NAT
	NAT Reassembly
	Dual-Stack Lite
	Deterministic NAT
	NAT Examples

	MAP (Mapping of Address and Port)
	MAP Configuration
	MAP Parameters
	MAP Example
	MAP Types

	Dynamic Host Configuration Protocol
	DHCP Configuration
	DHCP Service Control and Status
	DHCP Service Example

	DNS Resolver
	DNS Resolver Configuration
	DNS Resolver Service Control and Status
	DNS Resolver Examples

	Network Time Protocol
	NTP Configuration
	NTP Service Control and Status
	NTP Service Example
	NTP Best Practices

	Link Layer Discovery Protocol
	Configuring the LLDP Service

	Public Key Infrastructure
	Key Management
	Certificate Signing Request Management
	Certificate Management
	Certificate Authority Management

	Bidirectional Forwarding Detection
	BFD Sessions
	BFD Session Authentication

	User Management
	User Configuration
	Authentication Methods

	NETCONF Access Control Model (NACM)
	NACM Example
	View NACM Configuration
	Enable or Disable NACM
	NACM Default Policy Actions
	NACM Username Mapping
	NACM Groups
	NACM Rule Lists
	NACM Rules
	NACM Rule Processing Order
	Regaining Access if Locked Out by NACM
	NACM Defaults

	HTTP Server
	HTTP Server Configuration
	HTTPS Encryption
	Authentication
	RESTCONF Server

	TNSR Configuration Example Recipes
	RESTCONF Service Setup with Certificate-Based Authentication and NACM
	TNSR IPsec Hub for pfSense
	Edge Router Speaking eBGP with Static Redistribution for IPv4 And IPv6
	Service Provider Route Reflectors and Client for iBGP IPv4
	LAN + WAN with NAT (Basic SOHO Router Including DHCP and DNS Resolver)
	Using Access Control Lists (ACLs)
	Inter-VLAN Routing
	GRE ERSPAN Example Use Case

	Commands
	Mode List
	Master Mode Commands
	Config Mode Commands
	Show Commands in Both Master and Config Modes
	Access Control List Modes
	MACIP ACL Mode
	GRE Mode
	HTTP mode
	Interface Mode
	Loopback Mode
	Bridge Mode
	NAT Commands in Configure Mode
	NAT Reassmbly Mode
	DS-Lite Commands in Configure Mode
	Tap Mode
	BFD Key Mode
	BFD Mode
	Host Interface Mode
	IPsec Tunnel Mode
	IKE mode
	IKE Peer Authentication Mode
	IKE Peer Authentication Round Mode
	IKE Child SA Mode
	IKE Child SA Proposal Mode
	IKE Peer Identity Mode
	IKE Proposal Mode
	IPsec Related Enumerated Types
	Map Mode
	Map Parameters Mode
	memif Mode
	Dynamic Routing Access List Mode
	Dynamic Routing Prefix List Mode
	Dynamic Routing Route Map Rule Mode
	Dynamic Routing BGP Mode
	Dynamic Routing BGP Server Mode
	Dynamic Routing BGP Neighbor Mode
	Dynamic Routing BGP Address Family Mode
	Dynamic Routing BGP Address Family Neighbor Mode
	Dynamic Routing BGP Community List Mode
	Dynamic Routing BGP AS Path Mode
	Dynamic Routing Manager Mode
	IPv4 Route Table Mode
	IPv6 Route Table Mode
	IPv4 or IPv6 Next Hop Mode
	SPAN Mode
	VXLAN Mode
	User Authentication Configuration Mode
	NTP Configuration Mode
	NACM Group Mode
	NACM Rule-list Mode
	NACM Rule Mode
	DHCP IPv4 Server Config Mode
	DHCP4 Subnet4 Mode
	DHCP4 Subnet4 Pool Mode
	DHCP4 Subnet4 Reservation Mode
	Kea DHCP4, Subnet4, Pool, or Reservation Option Mode
	Unbound Mode
	Unbound Forward-Zone Mode
	Subif Mode
	Bond Mode

	API Endpoints
	YANG Data Models
	RESTCONF API

	Netgate TNSR Releases
	TNSR 19.02.1 Release Notes
	TNSR 19.02 Release Notes
	TNSR 18.11 Release Notes
	TNSR 18.08 Release Notes
	TNSR 18.05 Release Notes
	TNSR 0.1.0 Release Notes

	Licensing
	Apache 2.0 License
	CentOS EULA License
	GPLv2.0 License
	LGPLv2.1 License
	MIT License
	Net SNMP License

